Chlorophyta, Dasycladales) from the Pridolian to Middle Lochkovian Indian Point Formation, New Brunswick, Canada Steve T

Total Page:16

File Type:pdf, Size:1020Kb

Chlorophyta, Dasycladales) from the Pridolian to Middle Lochkovian Indian Point Formation, New Brunswick, Canada Steve T Document generated on 09/25/2021 8:42 a.m. Atlantic Geology Journal of the Atlantic Geoscience Society Revue de la Société Géoscientifique de l'Atlantique Medusaegraptus (Chlorophyta, Dasycladales) from the Pridolian to middle Lochkovian Indian Point Formation, New Brunswick, Canada Steve T. LoDuca, Randall F. Miller and Reginald A. Wilson Volume 49, 2013 Article abstract Carbonaceous compressions from the Pridolian to middle Lochkovian Indian URI: https://id.erudit.org/iderudit/1062310ar Point Formation in the Flatlands area of New Brunswick comprising a central DOI: https://doi.org/10.4138/atlgeol.2013.005 axis with irregularly arranged unbranched appendages are assigned to Medusaegraptusmirabilis. This is the first report of intact thalli of this See table of contents noncalcified macroalgal taxon from a locality outside of western New York. The biotic composition, stratigraphic context, and sedimentology of this occurrence suggest a shallow-marine depositional setting roughly comparable Publisher(s) to that for the type material of Medusaegraptus mirabilis from Gasport, New York.RÉSUMÉRÉSUMÉLes fossiles carbonés comprimés de la formation Atlantic Geoscience Society d’Indian Point, située dans la région de Flatlands du Nouveau-Brunswick et qui date du Pridolien au Lochkovien moyen, sont attribués àMedusaegraptus ISSN mirabilis; ils présentent un axe central avec des appendices non ramifiés et disposés de façon irrégulière. C’est la première fois qu’on signale la présence 0843-5561 (print) de thalles intacts de ce taxon de macroalgues non calcifiées dans une localité 1718-7885 (digital) ailleurs que dans l’ouest de l’État de New York. La composition biotique, le contexte stratigraphique et les données sédimentologiques permettent de Explore this journal penser à un dépôt marin peu profond à peu près comparable à ce qu’on trouve dans le cas de Medusaegraptus mirabilis de Gasport, dans l’État de New York.[Traduit par la redaction] Cite this article LoDuca, S., Miller, R. & Wilson, R. (2013). Medusaegraptus (Chlorophyta, Dasycladales) from the Pridolian to middle Lochkovian Indian Point Formation, New Brunswick, Canada. Atlantic Geology, 49, 118–125. https://doi.org/10.4138/atlgeol.2013.005 All Rights Reserved ©, 2013 Atlantic Geology This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ Medusaegraptus (Chlorophyta, Dasycladales) from the Pridolian to middle Lochkovian Indian Point Formation, New Brunswick, Canada Steven T. LoDuca1*, Randall F. Miller2, and Reginald A. Wilson3 1. Department of Geography and Geology, Eastern Michigan University, Ypsilanti, Michigan 48197, USA 2. Steinhammer Palaeontology Laboratory, Natural Science Department, New Brunswick Museum, Saint John, New Brunswick E2K 1E5, Canada 3. Geological Surveys Branch, Department of Energy and Mines, PO Box 50, Bathurst, New Brunswick E2A 3Z1, Canada *Corresponding author <[email protected]> Date received: 26 February 2013 ¶ Date accepted 25 March 2013 ABSTRacT Carbonaceous compressions from the Pridolian to middle Lochkovian Indian Point Formation in the Flatlands area of New Brunswick comprising a central axis with irregularly arranged unbranched appendages are assigned to Medusaegraptus mirabilis. This is the first report of intact thalli of this noncalcified macroalgal taxon from a locality outside of western New York. The biotic composition, stratigraphic context, and sedimentology of this occurrence suggest a shallow-marine depositional setting roughly comparable to that for the type material of Medusaegraptus mirabilis from Gasport, New York. RÉSUMÉ Les fossiles carbonés comprimés de la formation d’Indian Point, située dans la région de Flatlands du Nouveau-Brunswick et qui date du Pridolien au Lochkovien moyen, sont attribués à Medusaegraptus mirabilis; ils présentent un axe central avec des appendices non ramifiés et disposés de façon irrégulière. C’est la première fois qu’on signale la présence de thalles intacts de ce taxon de macroalgues non calcifiées dans une localité ailleurs que dans l’ouest de l’État de New York. La composition biotique, le contexte stratigraphique et les données sédimentologiques permettent de penser à un dépôt marin peu profond à peu près comparable à ce qu’on trouve dans le cas de Medusaegraptus mirabilis de Gasport, dans l’État de New York. [Traduit par la redaction] ATlanTic GEOLOGY 49, 118 - 125 (2013) doi: 10.4138/atlgeol.2013.005 Copyright © Atlantic Geology 2013 0843-5561|8|00118-125 $2.35|0 Atlantic Geology Volume 49 .. 2013 119 INTRODUCTION of deformed Cambrian to Middle Ordovician rocks, namely the Humber Zone (Laurentian margin) to the northwest In 1925, Rudolf Ruedemann erected Medusaegraptus and Ganderia (peri-Gondwanan tracts) to the southeast on the basis of material from the Silurian of western New (van Staal et al. 2009). The stratigraphic framework and York. Two species were assigned to the genus: the type, evolution of the Matapedia Cover Sequence in northern Medusaegraptus mirabilis from the Lockport Group near New Brunswick has been described by Wilson et al. (2004) Gasport; and Medusaegraptus graminiformis from the and Wilson and Kamo (2008, 2012). Following the Silurian younger (Pridolian) Bertie Group in the Buffalo area. The collision between Ganderia and Laurentia (Salinic Orogeny), latter had been described originally by Pohlman (1886) Matapedia Cover Sequence sedimentation occurred in a under the name Chondrites graminiformis as a “marine plant”. retroarc foreland setting with respect to northwestward Ruedemann (1925) classified Medusaegraptus as a dendroid (present coordinates) migration of the Avalonian (Acadian) graptolite, but Bulman (1938, 1955) and Mierzejewski (1986) orogenic wedge (Wilson et al. 2004). In the Restigouche expressed doubt concerning Ruedemann’s assignment and area, uplift associated with the Salinic Orogeny produced suggested an algal affinity. Uncertainty over affinity arises a widespread middle Silurian erosional unconformity that from a problem common to many early Paleozoic marine separates Upper Silurian rocks of the Chaleurs Group from taxa with a branched form preserved as thin films of carbon: underlying Lower Silurian rocks of the Quinn Point and the gross morphology allows for either an animal or an algal Matapedia groups (Wilson et al. 2004; Wilson and Kamo affinity. LoDuca (1990) formally transferred Medusaegraptus 2012). The Chaleurs Group in the Restigouche area consists to the green algal order Dasycladales on the grounds that of reefal carbonates of the West Point Formation (limestone its general form, comprising an unbranched cylindrical axis bioherms and associated peri-reefal facies), and overlying surrounded in irregular fashion by numerous unbranched and interfingering calcareous sedimentary rocks of the cylindrical appendages, is characteristic of early Paleozoic Indian Point Formation (Wilson et al. 2004; Fig. 1). dasycladaleans. In addition, none of the material assigned to the genus shows key graptolite features, such as triad budding or fusellar structure, and the type material of the Indian Point Formation: genus occurs in direct association with undoubted algae lithology and depositional setting (LoDuca, 1990). Results of a later geochemical study of Medusaegraptus mirabilis supported reassignment to the The Indian Point Formation is a lithologically diverse algae (LoDuca and Pratt 2002). unit consisting mainly of moderately to strongly calcareous Apart from the New York material described by mudstone, fine-grained sandstone, and wackestone, all of Ruedemann (1925), Silurian occurrences of Medusaegraptus which commonly contain comminuted fossil debris. Minor have been reported from the Czech Republic (Bouček lithotypes include coarse-grained sandstone, wackestone– 1957), Michigan (Ehlers and Kesling 1957), Gotland (Hede packstone biostromes, limestone conglomerate, and 1960), Australia (Rickards et al. 1995), and additional polymictic conglomerate (Wilson et al. 2004). Fossils localities in New York (LoDuca 1990; LoDuca and Brett include stromatoporoids, brachiopods, trilobites, and 1997; Ciurca 2002). In addition, the genus has been reported crinoids; some sections contain abundant rugose corals. In from the Ordovician of China (Mu et al. 1979; Lin 1984), the Flatlands area, including the study site, the dominant and Shrock (1928) and Tinn et al. (2009) reported what lithological association comprises greenish-grey, medium- were regarded as possible occurrences from the Silurian of to thick-bedded (up to roughly 1 m), locally fossiliferous, Indiana and Estonia, respectively. Here, a new occurrence moderately to strongly calcareous mudstone with local of Medusaegraptus is reported from the Pridolian to middle thin beds of calcareous siltstone and fine-grained, parallel- Lochkovian Indian Point Formation in the Flatlands area of laminated sandstone (Fig. 2). The fossils described herein New Brunswick (Fig. 1). were recovered in October 2011 from tumbled-out blocks of calcareous mudstone along a cut through the Indian Point Formation on the south side of Highway 134, opposite GEOLOGIC SETTING Island View Road,
Recommended publications
  • The La Coulee Formation, a New Post-Acadian Continental Clastic Unit Bearing Groundwater Calcretes, Gaspe Peninsula, Quebec
    Document generated on 09/23/2021 3:19 p.m. Atlantic Geology The La Coulee Formation, a new post-Acadian continental clastic unit bearing groundwater calcretes, Gaspe Peninsula, Quebec Pierre Jutras, Gilbert Prichonnet and Peter H. von Bitter Volume 35, Number 2, 1999 Article abstract A I km2 erosional remnant of the La Coulee Formation, a previously URI: https://id.erudit.org/iderudit/ageo35_2art03 unrecognized stratigraphic unit, has been studied in the Perce area of the Gaspd Peninsula. It unconformably overlies folded Cambrian to Devonian See table of contents rocks and is unconformably overlain by the mid-Carboniferous Bonaventure Fonnation. The erosional remnant includes the lowest 60 m of this newly identified formation of unknown thickness. Original sedimentary fades are Publisher(s) limited to 50 m of breccia debris flows passing stratigraphically upward into 10m of conglomeratic debris flows. Groundwater calcrete formation has Atlantic Geoscience Society partially or completely transformed the lowest 30 m of the sequence. The depositional environment is interpreted as being related to a proximal ISSN continental alluvial fan. The nearby presence of a saline body of water is inferred to account for thick and massive groundwater calcrete formation and 0843-5561 (print) water-saturated debris flows in a relatively arid climatic context Most of the 1718-7885 (digital) formation was eroded prior to deposition of the Bonaventure Formation. However, the basal groundwater calcretes were more widely preserved. They Explore this journal underlie the Bonaventure Formation in most of the Perce1 area and in the Saint-Elzear area, close to a hundred kilometres to the southwest. Post-sedimentary faulting has affected both the La Coulee and Bonaventure Cite this article formations.
    [Show full text]
  • Fossil Crinoids from the Basal West Point Formation (Silurian), Southeastern Gaspé Peninsula, Québec, Eastern Canada Stephen K
    Document généré le 1 oct. 2021 14:43 Atlantic Geology Fossil crinoids from the basal West Point Formation (Silurian), southeastern Gaspé Peninsula, Québec, eastern Canada Stephen K. Donovan et David G. Keighley Volume 52, 2016 Résumé de l'article Les strates du Silurien au Canada atlantique et dans le sud du Québec URI : https://id.erudit.org/iderudit/ageo52art08 renferment à divers endroits des fossiles de crinoïdes communs, bien qu’il s’agisse de vestiges morcelés. Parmi les nouveaux crinoïdes de la formation de Aller au sommaire du numéro West Point du groupe de Chaleurs (du Ludlow au Pridoli?; Silurien supérieur) de la péninsule de Gaspé, on compte Iocrinus? maennili (Yeltysheva) [observé par ailleurs dans l’étage Katien de l’Estonie], Bystrowicrinus (col.) depressus sp. Éditeur(s) nov. et Cyclocyclicus (col.) sp. aff. C. (col.) echinus Donovan. D’après sa morphologie générale et sa position stratigraphique, il est peu probable Atlantic Geoscience Society qu’Iocrinus? maennili fasse partie de la famille Iocrinidae (ordre Disparida), une famille disparue à la fin de l’Ordovicien. Son nom commun a été jusqu’à ISSN présent épelé incorrectement männili, mannili ou mjannili. La plupart des spécimens de Bystrowicrinus (col.) depressus commun ont un aspect 0843-5561 (imprimé) cyclocyclique, car le lumen pentaétoilé se trouve dans un claustrum très 1718-7885 (numérique) profond généralement obstrué par des sédiments; les spécimens libres de sédiments ont un aspect très distinctif. Cyclocyclicus (col.) sp. aff. C. (col.) Découvrir la revue echinus est semblable à une espèce présente dans l’étage Katien du Pays de Galles nordique. Dans son ensemble, cet assemblage fait davantage penser à l’étage Katien (Ordovicien supérieur).
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • (Polyphysacea, Dasycladales, Chlorophyta), Mid
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Granier, B.; Dias Brito, D.; Bucur, I. I. Clypeina tibanai, sp. nov. (Polyphysacea, Dasycladales, Chlorophyta), mid-Cretaceous green alga from the Potiguar Basin, Brazilian margin of the young South Atlantic Ocean Geologica Acta: an international earth science journal, vol. 12, núm. 3, julio-septiembre, 2014, pp. 227- 237 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50531655005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.12, Nº 3, September 2014, 227-237 DOI: 10.1344/GeologicaActa2014.12.3.5 Clypeina tibanai, sp. nov. (Polyphysacea, Dasycladales, Chlorophyta), mid-Cretaceous green alga from the Potiguar Basin, Brazilian margin of the young South Atlantic Ocean B. GRANIER1 D. DIAS-BRITO2 I.I. BUCUR3 1Department of Ecology and Evolutionary Biology, The University of Kansas 1200 Sunnyside Avenue, Lawrence, Kansas 66045 (USA). E-mail: [email protected] 2UNESP - Universidade Estadual Paulista, Center for Geosciences Applied to Petroleum (UNESPetro) and Departamento de Geologia Caixa Postal 178, Av. 24 A, n º 1515, Bela Vista, CEP13506-900 - Rio Claro -SP (Brazil) 3Babeş-Bolyai University, Department of Geology and Center for Integrated Geological Studies Str. M. Kogalniceanu nr.1, 400084 Cluj-Napoca (Romania) ABS TRACT The fossil genus Clypeina (Michelin, 1845) comprises some 40 species. We describe Clypeina tibanai, a new spe- cies from ? upper Albian–Cenomanian strata of the Potiguar Basin, Brazil, characterised by closely set verticils of tubular, bended laterals.
    [Show full text]
  • Fossil Crinoids from the Basal West Point Formation (Silurian), Southeastern Gaspé Peninsula, Québec, Eastern Canada Stephen K
    Document generated on 09/28/2021 2:45 a.m. Atlantic Geology Fossil crinoids from the basal West Point Formation (Silurian), southeastern Gaspé Peninsula, Québec, eastern Canada Stephen K. Donovan and David G. Keighley Volume 52, 2016 Article abstract Silurian strata of Atlantic Canada and southern Québec locally preserve URI: https://id.erudit.org/iderudit/ageo52art08 common fossil crinoids, albeit mostly as disarticulated remains. New crinoids from the Chaleurs Group, West Point Formation (Ludlow to Pridoli?; Upper See table of contents Silurian) of the Gaspé Peninsula include Iocrinus? maennili (Yeltysheva) (otherwise known from the Katian of Estonia), Bystrowicrinus (col.) depressus sp. nov. and Cyclocyclicus (col.) sp. aff. C. (col.) echinus Donovan. On the basis of Publisher(s) both its gross morphology and stratigraphic position, Iocrinus? maennili is unlikely to be an iocrinid disparid, a family that became extinct at the end of Atlantic Geoscience Society the Ordovician. The trivial name has hitherto been erroneously spelled as männili, mannili and mjannili. Most specimens of the common Bystrowicrinus ISSN (col.) depressus appear cyclocyclic because the pentastellate lumen occurs in a deeply sunken claustrum that is commonly occluded by sediment; clean 0843-5561 (print) specimens are highly distinctive. Cyclocyclicus (col.) sp. aff. C. (col.) echinus is 1718-7885 (digital) similar to a species known from the Katian of North Wales. Taken together, this assemblage is more reminiscent of Katian strata (Upper Ordovician). This is Explore this journal problematic given the current mapping of the outcrop as West Point Formation (Upper Silurian), suggesting further stratigraphic studies in the area are required. Cite this article Donovan, S.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    bioRxiv preprint doi: https://doi.org/10.1101/668475; this version posted June 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, Pavel Škaloudf, Charles F. Delwicheg, Andrew H. Knollh, John A. Raveni,j,k, Heroen Verbruggene, Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2 Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium cVIB Center for Plant Systems Biology, Technologiepark 71, 9052 Zwijnaarde, Belgium dBioinformatics Institute Ghent, Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium eSchool of Biosciences, University of Melbourne, Melbourne, Victoria, Australia fDepartment of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800 Prague 2, Czech Republic gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138, USA. iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK jSchool of Biological Sciences, University of Western Australia (M048), 35 Stirling Highway, WA 6009, Australia kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia lMeise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium 1To whom correspondence may be addressed. Email [email protected], [email protected], [email protected] or [email protected].
    [Show full text]
  • Acetabularia Acetabulum
    Plant Cell Physiol. 48(1): 122–133 (2007) doi:10.1093/pcp/pcl053, available online at www.pcp.oxfordjournals.org ß The Author 2006. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: [email protected] Spectroscopic and Biochemical Analysis of Regions of the Cell Wall of the Unicellular ‘Mannan Weed’, Acetabularia acetabulum Erin K. Dunn 1, 5, Douglas A. Shoue 2, 5, Xuemei Huang 3, Raymond E. Kline 4, Alex L. MacKay 3, Nicholas C. Carpita 2, Iain E.P. Taylor 4 and Dina F. Mandoli 1,Ã 1 Department of Biology, Center for Developmental Biology & Institute for Stem Cell and Regenerative Medicine, Box 35325, University of Washington, Seattle, WA 98195-5325, USA 2 Department of Botany and Plant Pathology, Purdue University, W. Lafayette, Indiana 47907-2054, USA 3 Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1 4 Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 Downloaded from https://academic.oup.com/pcp/article/48/1/122/2469303 by guest on 29 September 2021 Although the Dasycladalean alga Acetabularia acetabulum Introduction has long been known to contain mannan-rich walls, it is not known to what extent wall composition varies as a function of The Mediterranean coralline alga Acetabularia the elaborate cellular differentiation of this cell, nor has it acetabulum (previously classified as A. mediterranea)isa been determined what other polysaccharides
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • Dasycladales Morphogenesis: the Pattern Formation Viewpoint
    Dasycladales Morphogenesis: The Pattern Formation Viewpoint By Jacques Dumais B.Sc. (Biology) Universite de Sherbrooke, 1993 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF BOTANY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April 1996 © Jacques Dumais, 1996 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of l^OlXlrnu The University of British Columbia Vancouver, Canada Date Apl fl3^ , % DE-6 (2/88) Abstract The Dasycladalian algae produce diverse whorled structures, among which the best-known are the reproductive whorl (cap) and the vegetative whorls (hair whorls) of Acetabularia acetabulum. The origin of these structures is addressed in terms of three pattern forming mechanisms proposed to explain whorl formation. The mechanisms involve either: mechanical buckling of the cell wall, reaction-diffusion of morphogens along the cell membrane, or Ca2+-cytoskeleton mechano- chemical interactions in the cytosol. They are described and their idiosyncrasies underlined to provide a ground to test them experimentally. It is also suggested that the closely regulated spacing between the elements of a whorl is a key component of such a test.
    [Show full text]
  • Restigouche County, New Brunswick
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B8 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White New Brunswick Appalachian transect: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel bedrock and Quaternary geology of the B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal, and John Greenough Mount Carleton – Restigouche River area B4 Stratigraphic setting of base-metal deposits in the Bathurst Mining Camp, New Brunswick Steve McCutcheon, Jim Walker, Pierre Bernard, David Lentz, Warna Downey, and Sean McClenaghan Reginald A.
    [Show full text]
  • Genera of the World: an Overview and Estimates Based on the March 2020 Release of the Interim Register of Marine and Nonmarine Genera (IRMNG)
    Megataxa 001 (2): 123–140 ISSN 2703-3082 (print edition) https://www.mapress.com/j/mt/ MEGATAXA Copyright © 2020 Magnolia Press Article ISSN 2703-3090 (online edition) https://doi.org/10.11646/megataxa.1.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:F4A52C97-BAD0-4FD5-839F-1A61EA40A7A3 All genera of the world: an overview and estimates based on the March 2020 release of the Interim Register of Marine and Nonmarine Genera (IRMNG) TONY REES 1, LEEN VANDEPITTE 2, 3, BART VANHOORNE 2, 4 & WIM DECOCK 2, 5 1 Private address, New South Wales, Australia. [email protected]; http://orcid.org/0000-0003-1887-5211 2 Flanders Marine Institute/Vlaams Instituut Voor De Zee (VLIZ), Wandelaarkaai 7, 8400 Ostend, Belgium. 3 [email protected]; http://orcid.org/0000-0002-8160-7941 4 [email protected]; https://orcid.org/0000-0002-6642-4725 5 [email protected]; https://orcid.org/0000-0002-2168-9471 Abstract Introduction We give estimated counts of known accepted genera of the The concept of a series of papers addressing portions of world (297,930±65,840, of which approximately 21% are the question of “all genera of the world” is a valuable one, fossil), of a total 492,620 genus names presently held for which can benefit from as much preliminary scoping as “all life”, based on the March 2020 release of the Interim may be currently available. To date, synoptic surveys of Register of Marine and Nonmarine Genera (IRMNG). A fur- biodiversity have been attempted mainly at the level of ther c.
    [Show full text]