Reactivity Coefficients in Nuclear Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Reactivity Coefficients in Nuclear Reactors europhysics BULLETIN OF THE EUROPEAN PHYSICAL SOCIETY n e w s J.A. Volume 18 Number 11/12 November/December 1987 Notice to Members Reactivity Coefficients in As required by the statutes of EPS, members are informed (at least three Nuclear Reactors months in advance) of the intention to ask Council, at its meeting at the end of March 1988 in Dresden, to approve a rise in the unit fee from the current level of M. Hyland, Risley Sw.Fr. 11.- to Sw.Fr. 12.-. This would (United Kingdom Atomic Energy Authority) take effect from 1 January 1989 and would mean that independent Individual Ordinary Members would pay an annual In the months following the accident at the Chernobyl Nuclear Power Station it became ap­ membership fee of Sw.Fr. 144,- while parent that one of the contributary causes was the 'positive void coefficient of reactivity'. lOMs who are members of an EPS na­ Reactivity coefficients provide a measure of the way in which the neutron multiplication, or tional society would pay Sw.Fr. 48.-. The reactivity, of a reactor core changes as a function of other reactor variables, such as tempe­ national society fees would rise in the rature and pressure, and hence indicate the reactor's inherent stability. same proportion. The system for changing the unit fee is deliberately cumbersome to encourage The source of the energy produced in tem is said to be critical. If, however, stability and the last rise became effec­ all present day nuclear reactors Is the fis­ more than one neutron causes further tive from 1 January 1986. In effect, com­ sioning or splitting up of certain massive fissions, the system is said to be super­ pensation for three years inflation is pro­ nuclei. When such a nucleus is hit by a critical and the rate of energy production posed at a rate of less than 3% per year. All costs to the Society have not gone up stray neutron it can absorb it momen­ increases, while if less than one neutron equally and we have been making hard tarily to form a compound nucleus goes on to cause further fission, the sys­ currency savings through the operations which then splits up or fissions into two tem is said to be sub-critical and the rate of the Budapest Supplementary Secreta­ parts, releasing in the process two or of energy production decreases and riat. Nevertheless we have seen a comfor­ three neutrons and a large amount of eventually stops. The state of such sys­ table operating margin dwindle to a defi­ cit and the Society needs to counteract energy. A nuclear fission reaction typi­ tems can be expressed in terms of a mul­ the trend before it becomes too big. cally releases about 200 MeV of energy, tiplication factor, K, which is defined as In the current year the deficit at first associated with a net loss of mass rela­ the ratio of the number of neutrons in sight appears alarming — about Sw.Fr. tive to the initial excited compound nu­ one generation to the number in the pre- 80000.- but a significant part of this ceeding generation. So arises in connexion with extra staff char­ cleus. This energy appears mostly in the ges necessitated by the unexpectedly form of the kinetic energy of the two fis­ K < 1 sub-critical power falling high response of authors to the launching sion fragments. A typical fission reac­ K = 1 critical power constant of Europhysics Letters. This is not a conti­ tion takes the form : K > 1 super-critical power rising nuing charge on the Society so the situa­ n + 235U → 236U The reactivity of a system is defined tion can be contained if the rise in the unit - 141 Ba + 92Kr + 3n + as : fee is agreed. beta particles + neutrinos ρ = (K-1)/K IOM Delegates + gamma rays. With this issue of Europhysics News is Whilst this is only one of many possible Contents the membership renewal notice. Please 235U fission reactions, each leading to a check that it has not been left in the different pair of fission products, all fis­ Notice to EPS Members 133 despatch envelope and then deal with it Reactivity Coefficients in straight away rather than put it to one side sion reactions lead to the production of Nuclear Reactors 133 where it might get forgotten. The fewer energy and two or three fission neu­ Astronomers in Europe, Letter, the reminders that have to be sent, the trons. A & A Division Replies 137 lower the administrative charges on the It is the production of these neutrons, Dark Matter in the Universe 138 Society. which in turn can cause further fissions No invitation to propose the names of Deep Level Point Imperfections new IOM delegates to Council is included and more neutrons, that leads to the in Semiconductors 142 because no vacancies fall due next year. possibility of a self-sustaining or chain AMP Divisional Board 144 In part, this arises from the change in the reaction, continuously producing large Uppsala Conference of standard length of term of office (from amounts of energy. If, on average, one of HEPP Division 145 three to four years), but more importantly, the fission neutrons goes on to cause a two serving delegates have been elected 1987 Nobel Prize Winners 147 to the Executive Committee and so their further fission, the rate of energy pro­ Europhys. News Index for 1987 148 term is automatically extended. duction remains constant and the sys­ Published by the European Physical Society : 10 issues per year. © 1987. Reproduction rights reserved. ISSN 0531-7479 133 and it is thus a measure of the deviation from the condition of criticality (ρ = 0). An important factor in controlling a NEUTRON CAPTURE nuclear reactor is the rate at which the FISSION power level changes when the reactivity is non-zero and in particular when it is positive. The time between successive generations of neutrons, that is the average time between the appearance of a fission neutron and the appearance of any further fission neutrons, is typi­ cally a millisecond or less. If all neutrons were created at the time of fission, this very short time interval between suc­ cessive neutron generations would mean that the neutron population and hence the reactor power would change extremely rapidly and would be difficult Fig. 1 — Neutron fission and capture cross-sections for 235U. to control. However, not all neutrons are 238U are shown in Figs. 1 and 2 respecti­ Typical moderating materials used in emitted at the instant of fission. A small vely. It can be seen that 235U has a signi­ reactors are water (both H2O and D2O) fraction — less than 1% — are emitted ficant fission cross-section at all neutron and carbon, in the form of graphite. by certain fission products which decay energies and particularly at low ener­ Increasing the relative amount of fis­ by neutron emission rather than by β- gies, whereas 238U will only undergo sile isotopes in the reactor fuel is another decay. These delayed neutrons appear fission when struck by a neutron with an means of achieving a chain reaction and from a fraction of a second to a few energy greater than about 1 MeV. For this process is referred to as enrichment minutes after the fission event and they this reason 235U is referred to a fissile of the fuel. If there is a suitably high frac­ play a vital role in the control of nuclear isotope and 238U is referred to a fissio­ tion of fissile isotopes it is possible to reactors. A reactor is designed so that nable isotope. sustain a chain reaction without the the delayed neutrons are required to The cross-sections for neutron cap­ need for a moderating material. Reac­ keep the chain reaction going and the ture exhibit rapid changes with energy in tors operating on this principle are refer­ fact that they do not appear until on the 10-1000 eV region, particularly so red to as fast reactors, as the bulk of fis­ average some 10-20 seconds after fis­ for 238U. These changes are due to reso­ sions in them take place with fast neu­ sion means that changes in the power nance effects and represent the very trons, that is neutrons with energies level do not occur very rapidly. high neutron absorption probability higher than the resonance region. If, however, enough reactivity is ad­ when the energy of the incident neu­ ded, such that the delayed neutrons are tron, together with its binding energy in Factors Affecting Reactivity no longer necessary to maintain the the compound nucleus, coincide with an The proper and detailed analysis of chain reaction and the prompt neutrons energy level of the compound nucleus. the possible changes in reactivity, dur­ alone can sustain it, then the power level Natural uranium contains 99.3% 238U ing normal operations and under all fore­ will rise very rapidly and will be extre­ and only 0.7% of the fissile isotope seeable accident conditions, is a vital mely difficult to control. This is what 235U. The high level of resonance cap­ part of the overall safety assessment happened at Chernobyl. ture in 238U means that it is impossible carried out for every nuclear reactor. to sustain a chain reaction in natural Nowadays these calculations are ac­ Controlling the Chain Reaction uranium alone. If, however, some means complished with the aid of large com­ Fission neutrons are emitted with a is found of slowing down the fast neu­ puter models of the reactor system, broad range of energies but, typically, trons, while keeping them out of contact which are able to deal with the complex they are in the range of 2-3 MeV.
Recommended publications
  • Core Safety of Indian Nuclear Power Plants (Npps) Under Extreme Conditions
    Sadhan¯ a¯ Vol. 38, Part 5, October 2013, pp. 945–970. c Indian Academy of Sciences Core safety of Indian nuclear power plants (NPPs) under extreme conditions JBJOSHI1,∗, AKNAYAK2, M SINGHAL3 and D MUKHOPADHAYA4 1Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India 2Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India 3Nuclear Power Corporation of India Limited, Anushaktinagar, Mumbai 400 0094, India 4Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India e-mail: [email protected] Abstract. Nuclear power is currently the fourth largest source of electricity produc- tion in India after thermal, hydro and renewable sources of electricity. Currently, India has 20 nuclear reactors in operation and seven other reactors are under construction. Most of these reactors are indigenously designed and built Heavy Water Reactors. In addition, a 300 MWe Advanced Heavy Water Reactor has already been designed and in the process of deployment in near future for demonstration of power production from Thorium apart from enhanced safety features by passive means. India has ambi- tious plans to enhance the share of electricity production from nuclear. The recent Fukushima accident has raised concerns of safety of Nuclear Power Plants world- wide. The Fukushima accident was caused by extreme events, i.e., large earthquake followed by gigantic Tsunami which are not expected to hit India’s coast considering the geography of India and historical records. Nevertheless, systematic investigations have been conducted by nuclear scientists in India to evaluate the safety of the current Nuclear Power Plants in case of occurrence of such extreme events in any nuclear site.
    [Show full text]
  • Liquid Metal Cooled Reactors: Experience in Design and Operation
    IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 The originating Sections of this publication in the IAEA were: INIS and Nuclear Knowledge Management and Nuclear Power Technology Development Sections International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria LIQUID METAL COOLED REACTORS: EXPERIENCE IN DESIGN AND OPERATION IAEA, VIENNA, 2007 IAEA-TECDOC-1569 ISBN 978–92–0–107907–7 ISSN 1011–4289 © IAEA, 2007 Printed by the IAEA in Austria December 2007 FOREWORD In 2002, within the framework of the Department of Nuclear Energy’s Technical Working Group on Fast Reactors (TWG-FR), and according to the expressed needs of the TWG-FR Member States to maintain and increase the present knowledge and expertise in fast reactor science and technology, the IAEA established its initiative seeking to establish a comprehensive, international inventory of fast reactor data and knowledge. More generally, at the IAEA meeting of senior officials convened to address issues of nuclear knowledge management underlying the safe and economic use of nuclear science and technology (Vienna, 17–19 June 2002), there was widespread agreement that, for sustainability reasons for fissile sources and waste management, long-term development of nuclear power as a part of the world’s future energy mix will require the fast reactor technology. Furthermore, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This consensus concluded from the recognition of immediate need gave support to the IAEA initiative for fast reactor data and knowledge presevation.
    [Show full text]
  • Reactor Physics Calculations in the Nordic Countries
    ESPOO 2003 VTT SYMPOSIUM 230 The eleventh biennial meeting on reactor physics calculations in the Nordic VTT SYMPOSIUM 230 countries was arranged by VTT Processes in Otaniemi, Espoo and on board Tallink´s m/s Romantika on April 9–10, 2003. General reactor physics, calculational methods, a code system adapted for RBMK reactor analyses, and transmutation of nuclear waste were presented by representatives of universities and programme developers. Computer programmes are the most important tools of reactor physics. At the meeting there were presentations of VTT Processes’ new deterministic 3- dimensional radiation transport code MultiTrans and BWR simulator ARES based upon the AFEN model, and also of new features in internationally wellknown codes like CASMO-4E and POLCA (POLCA-T) together with Reactor physics calculations in the Nordic countries results obtained by these programmes. A code for PWR loading pattern search, called LP-fun, is being developed by Westinghouse and others. On the subject of code validation, measurements on SVEA-96+ fuel bundles in the PROTEUS facility had been analyzed with the PHOENIX4 code, reactor scram experiments in the Loviisa and Mochovce VVER reactors using CASMO-4, MCNP4B and HEXTRAN, results of gamma scanning by the PHOENIX4/POLCA7 combination. Some difficulties in predicting the power distribution in the reactor core with sufficiently good accuracy using any of the available code systems were reported by OKG. Heating of non-fuel regions by gamma radiation and neutrons had been investigated using the HELIOS lattice code. Calculational results for heat deposition from gamma radiation in the moderator tank of the Forsmark-1 reactor were reported by Risø.
    [Show full text]
  • Vver and Rbmk Cross Section Libraries for Origen-Arp
    VVER AND RBMK CROSS SECTION LIBRARIES FOR ORIGEN-ARP Germina Ilas, Brian D. Murphy, and Ian C. Gauld, Oak Ridge National Laboratory, USA Introduction An accurate treatment of neutron transport and depletion in modern fuel assemblies characterized by heterogeneous, complex designs, such as the VVER or RBMK assembly configurations, requires the use of advanced computational tools capable of simulating multi-dimensional geometries. The depletion module TRITON [1], which is part of the SCALE code system [2] that was developed and is maintained at the Oak Ridge National Laboratory (ORNL), allows the depletion simulation of two- or three-dimensional assembly configurations and the generation of burnup-dependent cross section libraries. These libraries can be saved for subsequent use with the ORIGEN-ARP module in SCALE. This later module is a faster alternative to TRITON for fuel depletion, decay, and source term analyses at an accuracy level comparable to that of a direct TRITON simulation. This paper summarizes the methodology used to generate cross section libraries for VVER and RBMK assembly configurations that can be employed in ORIGEN-ARP depletion and decay simulations. It briefly describes the computational tools and provides details of the steps involved. Results of validation studies for some of the libraries, which were performed using isotopic assay measurement data for spent fuel, are provided and discussed. Cross section libraries for ORIGEN-ARP Methodology The TRITON capability to perform depletion simulations for two-dimensional (2-D) configurations was implemented by coupling of the 2-D transport code NEWT with the point depletion and decay code ORIGEN-S. NEWT solves the transport equation on a 2-D arbitrary geometry grid by using an SN approach, with a treatment of the spatial variable that is based on an extended step characteristic method [3].
    [Show full text]
  • Nuclear Fuel Optimization and Problem of Xa9953256 Increasing Burnup and Cost Efficiency of Light Water Reactors in Russia
    NUCLEAR FUEL OPTIMIZATION AND PROBLEM OF XA9953256 INCREASING BURNUP AND COST EFFICIENCY OF LIGHT WATER REACTORS IN RUSSIA M.I. SOLONIN, Yu. K. BIBLASHCVLI, F.G. RESHETNIKOV, F.F. SOKOLOV, A.A. BOCHVAR All-Russia Research Institute of Inorganic Materials, Moscow, Russia Abstract Brief analysis is given of the results of WWER-1000 and WWER-440 fuel assembly (FA) and fuel rod operation to the average burn-up of 44 and 34 MW-day/kg U, respectively. The reliable operation of the fuel is noted which made it possible to outline the paths of further improvements in their fuel cycles. Based on a series of improvements reactors are being switched on a 4-year cycle; a 5-year cycle is contemplated for the WWER- 440. The fuel cycle of the boiling RBMK reactors is subjected to essential alterations. Specifically, the use of erbium oxide as an integral burnable absorber allows a higher enrichment of uranium and bum-up. To extend the burn-up a new zirconium alloy E-635 is assumed to be used as fuel rod claddings and other FA components; the alloy has higher corrosion and irradiation resistance. INTRODUCTION The current technical level of the PWR and BWR fuel production and the perfected system of the reactor management have allowed to provide the successful operation of PWR NPP to the average burn-up of ~45 MW* day/kg U in all countries of developed nuclear power. The differences in the reliability and FA serviceability as well as in the number of leaky fuel rods are rather small and the attention is usually not focused on this issue.
    [Show full text]
  • INIS-Mf —14954 CA9600857
    i-\ I- S I *• t. -^ INIS-mf —14954 III CA9600857 v // / A ^r^-14 i I ULJ n ^^ ISSN 0S3?-O299 CURRENT ISSUE PAPER i 17 NCIIERNOBYL, THREE MILE ISLAND AND BEYOND; LESSONS FOR ONTARIO? Prepared by: K. Lewis Yeagcr Research C fficer Legij'ative Research Service March 1991 y Ho-sonrch So THKSSSim Nuclear power has been a fact of life in the developed world for two generations. It is v. workhorse supplier of base electricity loads in Ontario, France. Belgium, Japan and many American states. Highly publicized accidents at Chernobyl, and .to.a.lesser..:. extent Three Mile Island, have raised public concern around the world about the safety of nuclear generatin;;, -nations. Since the planning process which will guide the Province's 'power generic:1. for <!ie next 25'years is now under way, it isimportant" that the public and elected officials understand how and why these and other nuclear accidents occurred and whether there are lessons.to.be learned in designing and-, operating CANUU facilities in Ontario. Tilts Current Issue Paper reviews major accidents which nave occurred at commercial and military nuclear facilities, and provides basic background on nuclear power and reactor design features to assist the novice in understanding the very complex technical issues surrounding these events. Above all, the role of human factors in the prevention of potential accident situations is emphasized. ih>- TABLE OF CONTENTS Page No l-xncurivr-: SUMMARY . j INTRODUCTION , ] BACKGROUND 2 . General Principles of Nuclear Power 2 Types of Reactors " " " ~ ' 3 Nuclear Safety Philosophy 5 THREE MILE ISLAND .... 8 The Plant : 8 The Accident ; ft Local Impacts .
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • Description of the Advanced Gas Cooled Type of Reactor (AGR)
    Nordisk Nordisk Poh|oismaincn Nordic kerne- karn- ydin- nuclear sikkerheds- sakcrhets- turvallisuus- safely forskning forskning lutkimus research KAK-2 NKS/RAK2(96)TR-C2 DK9700041 Description of the Advanced Gas Cooled Type of Reactor (AGR) Erik Nonbel Riso National Laboratory Roskilde, Denmark November 1996 Abstract The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail Data on the other 6 stations, Dungeness B, Hinkley Point B, Hunterston B, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data Where specific data for Torness AGR has not been available, corresponding data from other AGR plants has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors The information presented is based on the open literature The report is written as a part of the NKS/RAK-2 subproject 3 "Reactors in Nordic Surroundings", which comprises a description of nuclear power plants neighbouring the Nordic countries NKS/RAK-2(96)TR-C2 ISBN 87-550-2264-2 Graphic Service, Riso, 1996 Tlic report can be obtained from NKS Secretariat Phone +45 46 77 40 45 POBox49 Fax +45 46 35 92 73 DK-4000 Roskildc hUp/Auuv nsoc dk/nks Denmark e-mail anncttc.lemmensfr nsoe dk -3- Contents 1 INTRODUCTION 8 2 SUMMARY OF DESIGN DATA 10 3 SITE AND REGION 13 3.1 Selection of the site 13 4 SAFETY CRITERIA 14 5 TECHNICAL DESCRIPTION AND DESIGN EVALUATION 15 5.1 Plant arrangement 15 5.2 Buildings and structures 16 5.3 Reactor core and other reactor vessel internals 17 5.3.1 Mechanical design..
    [Show full text]
  • Nuclear Fuel Cycle, KD2430
    Nuclear Fuel Cycle 2011 Lecture 8: Reactor Concepts Fission Exotherm process for all nuclides with more than 130 nucleons (A>130) Activation energy for A=130 is very high; 100 MeV For A > 230 the activation energy is <10 MeV Fission with thermal (slow) neutrons is only possible for (even,odd) or (odd,odd) nuclei with Z>90 Nuclear chain reaction 235U + n fission products + 2.4 n + 210 MeV Fission of 235U with thermal neutrons Thermal neutron is captured and forms an excited compound nuclueus 235U + n (236U)* Excitation energy = captured neutron’s binding energy (6.8 MeV). Compound nucleus must emit energy. Either as γ or by fission. Probability for these can be expressed as cross sections σn,γ and σn,f 2 fission products + ν neutrons (236U)* 236U + γ => 85% of captured neutrons will cause fission Energy balance Binding energy/nucleon for heavy nuclei: 7.6 MeV Binding energy/nucleon for semi-heavy nuclei (A=80-150): 8.5 MeV Difference: 0.9 MeV For U-235: 235×0.9 MeV = 210 MeV Kinetic energy of fission products: 175 MeV Kinetic energy of neutrons: 5 MeV Kinetic energy of γ: 7 MeV β from fission products: 7 MeV γ from fission products 6 MeV Neutrinos (energy is lost): 10 MeV Effective neutron multiplication factor, k • If the number of produced neutrons, k > 1 Supercritical => Atomic explosion • If k< 1 Subcritical=> Chain reaction will die out • In a nuclear reactor k is controlled to be 1 (critical) with control rods (containing neutron-absorbent) Moderating neutrons • Fast and slow (thermal) neutrons are produced.
    [Show full text]
  • Magnox Corrosion
    Department Of Materials Science & Engineering From Magnox to Chernobyl: A report on clearing-up problematic nuclear wastes Sean T. Barlow BSc (Hons) AMInstP Department of Materials Science & Engineering, The University of Sheffield, Sheffield S1 3JD, UK IOP Nuclear Industry Group, September 28 | Warrington, Cheshire, UK Department Of Materials Science & Engineering About me… 2010-2013: Graduated from University of Salford - BSc Physics (Hons) Department Of Materials Science & Engineering About me… 2013-2018: Started on Nuclear Fission Research Science and Technology (FiRST) at the University of Sheffield Member of the Immobilisation Science Laboratory (ISL) group • Wasteforms cement, glass & ceramic • Characterisation of materials (Trinitite/Chernobylite) • Corrosion science (steels) Department Of Materials Science & Engineering Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Fully funded project based PhD with possibility to go on secondment • 3-4 month taught course at Manchester • 2 mini-projects in Sheffield • 3 years for PhD + 1 year write up • Funding available for conferences and training • Lots of outreach work • Site visits to Sellafield reprocessing facility, Heysham nuclear power station & Atomic Weapons Authority Department Of Materials Science & Engineering Department Of Materials Science & Engineering 2017: Junior Project Manager at DavyMarkham Department Of Materials Science & Engineering PhD projects… 4 main projects 1. Magnox waste immobilisation in glass 2.
    [Show full text]
  • Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report
    NUREG-1251 Vol. I Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report Main Report U.S. Nuclear Regulatory Commission p. o AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investi- gation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceed- ings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regula- tions in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
    [Show full text]
  • Fundamentals of Nuclear Reactor Physics
    Fundamentals of Nuclear Reactor Physics E. E. Lewis Professor of Mechanical Engineering McCormick School of Engineering and Applied Science Northwestern University AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO ELSEVIER Academie Press is an imprint of Elsevier Contents Preface xiii 1 Nuclear Reactions 1 1.1 Introduction 1 1.2 Nuclear Reaction Fundamentals 2 Reaction Equations 3 Notation 5 Energetics 5 1.3 The Curve of Binding Energy 7 1.4 Fusion Reactions 8 1.5 Fission Reactions 9 Energy Release and Dissipation 10 Neutron Multiplication 12 Fission Products 13 1.6 Fissile and Fertile Materials 16 1.7 Radioactive Decay 18 Saturation Activity 20 Decay Chains 21 2 Neutron Interactions 29 2.1 Introduction 29 2.2 Neutron Cross Sections 29 Microscopic and Macroscopic Cross Sections 30 Uncollided Flux 32 Nuclide Densities 33 Enriched Uranium 35 Cross Section Calculation Example 36 Reaction Types 36 2.3 Neutron Energy Range 38 2.4 Cross Section Energy Dependence 40 Compound Nucleus Formation 41 Resonance Cross Sections 42 Threshold Cross Sections 46 Fissionable Materials 47 vii viii Contents 2.5 Neutron Scattering 48 Elastic Scattering 49 Slowing Down Decrement 50 Inelastic Scattering 52 3 Neutron Distributions in Energy 57 3.1 Introduction 57 3.2 Nuclear Fuel Properties 58 3.3 Neutron Moderators 61 3.4 Neutron Energy Spectra 63 Fast Neutrons 65 Neutron Slowing Down 66 Thermal Neutrons 70 Fast and Thermal Reactor Spectra 72 3.5
    [Show full text]