Evaluating the Host Range of Agents for Biological Control of Arthropods: Rationale, Methodology and Interpretation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1. -
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion. -
Ables, J.R., Shepard, M. & Holman, 1.R. 1976. Development of The
Ables, J.R., Shepard, M. & Holman, 1.R. 1976. Development of the parasitoids Spalangia endius and Muscidifurax raptor in relation to constant and variable temperature: simulation and validation. Environmental Entomology 5,329-333 . Aldyhim, Y. N. & Khalil, A.F. 1993. Influence of temperature and day length on population development of Aphis gossypii in Cucurbita pepo. Entomologia Experimentalis et Applicata 67, 167-172. Ali , A. & Gaylor, M.1. 1992. Effects of temperature and larval diet on development of the beet armyworm (Lepidoptera: Noctuidae). Environmental Entomology 21, 780-786. Ali, A., Luttrell, R.G. & Schneider, J.e. 1990. Effects of temperature and larval diet on development of the fall armyworm (Lepidoptera: Noctuidae). Annals ofEntomological Society ofAmerica 83, 725-733. Ali, A.S.A. & Watson, T.F. 1978. Effect of temperature on development and survival of Zelus renardii. Environmental Entomology 7, 889-891. Allen, G.R. & Keller, M.A . 1991. Uraba lugens (Lepidoptera: Noctuidae) and its parasitoids (Hymenoptera: Braconidae): temperature, host size, and development. Environmental Entomology 20, 458-469. Allsopp, P.G. 1977. Biology and capacity for increase of Monistria discrepans (Walker) (Orthoptera: Pyrgomophidae) in the laboratory. Journal ofAustralian Entomological Society 16, 207-2l3. Allsopp, P. G., Cowie, B.A. & Franzmann, B.A. 1983. Development of immature stages of the Lucerne leafroller Merophyas divulsana (Walker) (Lepidoptera: Tortricidae) under constant temperatures and on several larval diets. Journal ofAustralian Entomological Society 22, 287-291. Al-Maliky, S.K., Al-Izzi, M.A.1. & Jabbo, NT 1988. Effects of temperature and photoperiod on the development and oviposition of Apanteles sp. Group Ultor (Hymenoptera: Braconidae), a larval parasite of the Carob moth Ectomyelois ceratoniae (Lepidoptera: Pyralidae). -
JAVELIN WG® Spray Must Be Deposited at the Larval Feeding Site
For Control of Insect Pests of Vegetables, Fruit and Field Crops ACTIVE INGREDIENT: Bacillus thuringiensis, subspecies kurstaki strain SA-11 solids, spores, and Lepidopteran active toxins* .............................................................................. 85.0% OTHER INGREDIENTS: ........................................................................................ 15.0% TOTAL 100.0% * The percentage active ingredient does not indicate product performance and potency measurements are not federally standardized. KEEP OUT OF REACH OF CHILDREN CAUTION See additional precautionary statements EPA REG. NO.: 70051-66 Lot No. EPA EST. NO.: Net Contents: Manufactured by: Certis USA LLC ESL 20160825 9145 Guilford Road, Suite 175 rev20191112 Columbia, MD 21046 This is a Specimen Label. It may not reflect the most-recent approved label for use in your state. Always refer to the label on the product packaging for approved use instructions. Please contact your Certis sales representative for more information. Page 1 of 17 PRECAUTIONARY STATEMENTS HAZARDS TO HUMANS AND DOMESTIC ANIMALS CAUTION. Harmful if absorbed through skin. Avoid contact with skin, eyes or clothing. Wash thoroughly with soap and water after handling and before eating, drinking, chewing gum, using tobacco, or using the toilet. Remove and wash contaminated clothing before reuse. Harmful if inhaled. Avoid breathing spray mist. Prolonged or frequently repeated skin contact may cause allergic reactions in some individuals. FIRST AID If on skin or clothing: Take off contaminated clothing. Rinse skin immediately with plenty of water for 15-20 minutes. If in eyes: Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. If inhaled: Move person to fresh air. -
Bioecología De Cactoblastis Cactorum (Berg) (Lep: Pyralidae) En Argentina: Bases Para Su Manejo Integrado
Tesis Doctoral Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado Varone, Laura 2013-11-15 Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Varone, Laura. (2013-11-15). Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Cita tipo Chicago: Varone, Laura. "Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado". Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2013-11-15. Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes 2160 - C1428EGA - Tel. (++54 +11) 4789-9293 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Exactas y Naturales Bioecología de Cactoblastis cactorum (Berg) (Lep: Pyralidae) en Argentina: bases para su manejo integrado Tesis presentada para optar al título de Doctor de la Universidad de Buenos Aires en -
Erionota Thrax)
® Tree and Forestry Science and Biotechnology ©2010 Global Science Books Bioecology and Management of the Banana Skipper (Erionota thrax) Justin N. Okolle1,2* • Abu Hassan Ahmad1 • Mashhor Mansor1 1 School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia 2 Laboratory of Nematology/Entomology, Centre Africain de Recherches sur Bananiers et Plantains (CARBAP), BP 832, Douala, Cameroon Corresponding author : * [email protected], [email protected] ABSTRACT Bananas and plantains are important food crops to several people in the world. One of the most important folivorous insect pest on these crops is the banana skipper; Erionota thrax. The larvae of these large butterflies can cause mean leaf defoliation of about 60, leading to yield losses of about 20. Indigenous to Southeast Asia, life stages of the pest are attacked by several parasitoids of which Ooencyrtus erionotae, Cotesia erionotae and Brachymeria spp. are the major ones. Infestation and parasitism of the pest varies with plant growth stages, leaf ages, between interior and field edges, and seasons. Significantly higher infestation and parasitism found on pre-flowered plants, younger leaves and during the rainy season. In addition, eggs and larvae are randomly distributed while pupae are clumped and parasitized eggs and pupae are clumped while that of larvae is random. Although E. thrax has never been reported on non-Musa species or weeds, other smaller Erionota species have been recorded on Asystacia intrusa, Ipomoea cairica, Mimosa pudica -
Lepidoptera:Pyralidae) in Florida
Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2009 The Ecology of Cactoblastis Cactorum (Berg) (Lepidoptera:pyralidae) in Florida Kristen Erica Sauby Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Sauby, Kristen Erica, "The Ecology of Cactoblastis Cactorum (Berg) (Lepidoptera:pyralidae) in Florida" (2009). Theses and Dissertations. 4323. https://scholarsjunction.msstate.edu/td/4323 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. THE ECOLOGY OF CACTOBLASTIS CACTORUM (BERG) (LEPIDOPTERA: PYRALIDAE) IN FLORIDA By Kristen Erica Sauby A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences in the Department of Biological Sciences Mississippi State, Mississippi August 2009 Copyright by Kristen Erica Sauby 2009 THE ECOLOGY OF CACTOBLASTIS CACTORUM (BERG) (LEPIDOPTERA: PYRALIDAE) IN FLORIDA By Kristen Erica Sauby Approved: Christopher P. Brooks Richard L. Brown Assistant Professor of Biological Sciences Professor of Entomology (Director of Thesis) (Committee Member) Gary N. Ervin Gary N. Ervin Associate Professor of Biological Sciences Graduate Coordinator of the -
Temperature-Dependent Development of Cnaphalocrocis Medinalis Guenée (Lepidoptera: Pyralidae) and Their Validation in Semi-field Condition☆
Journal of Asia-Pacific Entomology 17 (2014) 83–91 Contents lists available at ScienceDirect Journal of Asia-Pacific Entomology journal homepage: www.elsevier.com/locate/jape Temperature-dependent development of Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) and their validation in semi-field condition☆ Hong-Hyun Park 1, Jeong Joon Ahn 1, Chang-Gyu Park ⁎ Crop Protection Division, Department of Crop Life Safety, National Academy of Agricultural Science, 126 Suin-ro, Kweonseon-gu, Suwon, Gyeonggi-do 441-707, Republic of Korea article info abstract Article history: The developmental time and survival of the immature stages of Cnaphalocrocis medinalis Guenée were studied at Received 26 August 2013 nine constant temperatures (15, 17.5, 20, 22.5, 25, 27.5, 30, 32.5, and 35 °C), 40 ± 10% relative humidity, and a Revised 5 November 2013 16:8 h light:dark cycle. The total developmental time decreased with increasing temperature between 15 Accepted 13 November 2013 (115.6 days) and 32.5 °C (20.9 days), but increased above 32.5 °C. The relationship between the developmental rate and temperature was fitted by a linear model and three nonlinear developmental rate models (Logan 6, Keywords: Briere 1, and Shi et al.). The nonlinear shape of temperature-dependent development was best described by Cnaphalocrocis medinalis 2 Developmental rate the Briere 1 model (r = 0.99), and this was supported by statistical information criteria. The total mortality of Nonlinear developmental rate model immature C. medinalis was lowest at 25 °C (67.2%) and highest at 35 °C (98.1%). The distribution of the develop- Rice paddy field mental times of each stage was described by the two-parameter Weibull distribution equation (r2 = 0.84–0.96). -
No Slide Title
Tachinidae: The “other” parasitoids Diego Inclán University of Padova Outline • Briefly (re-) introduce parasitoids & the parasitoid lifestyle • Quick survey of dipteran parasitoids • Introduce you to tachinid flies • major groups • oviposition strategies • host associations • host range… • Discuss role of tachinids in biological control Parasite vs. parasitoid Parasite Life cycle of a parasitoid Alien (1979) Life cycle of a parasitoid Parasite vs. parasitoid Parasite Parasitoid does not kill the host kill its host Insects life cycles Life cycle of a parasitoid Some facts about parasitoids • Parasitoids are diverse (15-25% of all insect species) • Hosts of parasitoids = virtually all terrestrial insects • Parasitoids are among the dominant natural enemies of phytophagous insects (e.g., crop pests) • Offer model systems for understanding community structure, coevolution & evolutionary diversification Distribution/frequency of parasitoids among insect orders Primary groups of parasitoids Diptera (flies) ca. 20% of parasitoids Hymenoptera (wasps) ca. 70% of parasitoids Described Family Primary hosts Diptera parasitoid sp Sciomyzidae 200? Gastropods: (snails/slugs) Nemestrinidae 300 Orth.: Acrididae Bombyliidae 5000 primarily Hym., Col., Dip. Pipunculidae 1000 Hom.:Auchenorrycha Conopidae 800 Hym:Aculeata Lep., Orth., Hom., Col., Sarcophagidae 1250? Gastropoda + others Lep., Hym., Col., Hem., Tachinidae > 8500 Dip., + many others Pyrgotidae 350 Col:Scarabaeidae Acroceridae 500 Arach.:Aranea Hym., Dip., Col., Lep., Phoridae 400?? Isop.,Diplopoda -
The Mcguire Center for Lepidoptera and Biodiversity
Supplemental Information All specimens used within this study are housed in: the McGuire Center for Lepidoptera and Biodiversity (MGCL) at the Florida Museum of Natural History, Gainesville, USA (FLMNH); the University of Maryland, College Park, USA (UMD); the Muséum national d’Histoire naturelle in Paris, France (MNHN); and the Australian National Insect Collection in Canberra, Australia (ANIC). Methods DNA extraction protocol of dried museum specimens (detailed instructions) Prior to tissue sampling, dried (pinned or papered) specimens were assigned MGCL barcodes, photographed, and their labels digitized. Abdomens were then removed using sterile forceps, cleaned with 100% ethanol between each sample, and the remaining specimens were returned to their respective trays within the MGCL collections. Abdomens were placed in 1.5 mL microcentrifuge tubes with the apex of the abdomen in the conical end of the tube. For larger abdomens, 5 mL microcentrifuge tubes or larger were utilized. A solution of proteinase K (Qiagen Cat #19133) and genomic lysis buffer (OmniPrep Genomic DNA Extraction Kit) in a 1:50 ratio was added to each abdomen containing tube, sufficient to cover the abdomen (typically either 300 µL or 500 µL) - similar to the concept used in Hundsdoerfer & Kitching (1). Ratios of 1:10 and 1:25 were utilized for low quality or rare specimens. Low quality specimens were defined as having little visible tissue inside of the abdomen, mold/fungi growth, or smell of bacterial decay. Samples were incubated overnight (12-18 hours) in a dry air oven at 56°C. Importantly, we also adjusted the ratio depending on the tissue type, i.e., increasing the ratio for particularly large or egg-containing abdomens. -
Identified Difficulties and Conditions for Field Success of Biocontrol
Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles: