Activity of Bortezomib in Glioblastoma

Total Page:16

File Type:pdf, Size:1020Kb

Activity of Bortezomib in Glioblastoma ANTICANCER RESEARCH 26: 4499-4504 (2006) Activity of Bortezomib in Glioblastoma JAN STYCZYNSKI1*, DOROTA OLSZEWSKA-SLONINA2*, BEATA KOLODZIEJ1, MALGORZATA NAPIERAJ1 and MARIUSZ WYSOCKI1 1Department of Pediatric Hematology and Oncology, Laboratory of Clinical and Experimental Oncology, 2Department of Medical Biology, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland Abstract. Background: Chemotherapy is the commonly accepted of substrate polyubiquinated proteins, while normal activity standard therapy for most types of brain tumor, especially in rapidly clears them from the cell. Alteration of the levels of medulloblastoma, primitive neuroectodermal tumor and these cellular proteins leads to inhibition of proliferation, astrocytoma. However, no efficient therapy has been established migration and angiogenesis and to the promotion of to date for glioblastoma multiforme. The aim of the present study apoptosis of cancer cells. was to analyze the activity of bortezomib in glioblastoma cell lines Bortezomib (formerly PS-341, Figure 1) is an extremely in comparison with that in a pediatric acute lymphoblastic potent and selective proteasome inhibitor that showed leukemia cell line. Materials and Methods: Glioblastoma strong activity in in vitro and in vivo laboratory studies multiforme T98G, glioblastoma-astrocytoma U373M and T- against many solid and hematologic tumor types. Moreover, lineage acute lymphoblastic leukemia CCRF-CEM cell lines were bortezomib, mainly by inhibition of the NF-kappaB used. Proteasome inhibitor, bortezomib and 14 other anticancer pathway, had a chemosensitizing effect when administered drugs were tested using the MTT assay. Results: Compared to the together with other antitumoral drugs (2). Bortezomib is a acute lymphoblastic cell line, both glioblastoma cell lines showed biologically active agent, producing predictable, dose- relatively good sensitivity to bortezomib, as well as to cisplatin, related and reversible proteasome inhibition; it has shown carboplatin, etoposide and actinomycin-D. The lines showed antitumor activity in various malignancies and was the first intermediate sensitivity to thiotepa and daunorubicin, but were proteasome inhibitor to be used in clinical practice. Several highly resistant to first-line drugs used in the therapy of acute trials demonstrated that bortezomib is relatively well- lymphoblastic leukemia, such as prednisolone, L-asparaginase, tolerated, causing manageable non-hematological and vincristine, doxorubicin and cytarabine. Bortezomib, which is not hematological toxicity. Clinical phase I, II and III studies, a substrate for PGP and MRP1, did not show cross resistance to showed good tolerance of bortezomib and high response drugs transported by these proteins. Conclusion: Our results rates in refractory multiple myeloma patients (3, 4). It was support the necessity for further research on the role of bortezomib used as a single agent and in combination with in the therapy of glioblastoma. chemotherapeutic drugs, showing potentiation of the effect. In variety of other hematological malignancies and solid The proteasome is an ubiquituous enzyme complex that tumors, phase I and II studies with bortezomib alone or in plays a critical role in the degradation of many proteins combination with other drugs have produced encouraging involved in cell cycle regulation, apoptosis and angiogenesis results, both in children and adults (5-8), for carcinomas of (1). Inhibition of the 26S proteasome permits accumulation the breast, lung (9, 10), colon (11), bladder (3), ovary (12), pancreas (13) and prostate (12), melanoma (14), thyroid carcinoma (15) and metastatic neuroendocrine tumors (16). The objective of this study was the evaluation of the *Both authors contributed equally to the study. activity of bortezomib and 14 other anticancer drugs in glioblastoma cell lines, in comparison with that of childhood Correspondence to: Jan Styczynski, MD, Ph.D., Department of acute lymphoblastic leukemia CCRF-CEM cell line. Pediatric Hematology and Oncology, Collegium Medicum, Nicolaus Copernicus University, ul. Curie-Sklodowskiej 9, 85-094 Bydgoszcz, Poland. Tel: +48 52 585 4860, Fax: +48 52 585 4867, e- Materials and Methods mail: [email protected] Cell lines. Glioblastoma (T98G, U373MG) and T-lineage acute Key Words: Brain tumor, drug resistance, drug sensitivity, MTT lymphoblastic leukemia (CCRF-CEM) cell lines were analyzed. assay. Both brain tumor cell lines were maintained in EMEM (EBSS, 0250-7005/2006 $2.00+.40 4499 ANTICANCER RESEARCH 26: 4499-4504 (2006) Table I. Drug sensitivity and resistance of cell lines. Drug IC50 (mean±SD) CCRF-CEM T98G U373MG Bortezomib 18.5±4.3 28.9±4.5 48.2±12.3 RR=1.56 RR=2.6 (p<0.01) (p<0.01) Cisplatin 6.8±1.4 6.7±4.5 19.9±9.7 RR=0.99 (ns) RR=2.9 (p<0.01) Carboplatin 33.6±33.7 54.4±38.4 29.1±13.6 RR=1.6 (ns) RR=0.8 (ns) Etoposide 0.38±0.11 0.45±0.44 0.49±0.22 RR=1.2 (ns) RR=1.3 (ns) Figure 1. Chemical structure of bortezomib. Actinomycin-D 0.04±0.03 0.1±0.12 0.07±0.07 RR=2.5 (ns) RR=1.7 (ns) Thiotepa 1.01±0.17 9.74±4.96 8.59±6.78 RR=9.5 RR=8.4 (p<0.001) (p<0.05) Sigma, Munich, Germany) medium supplemented with 2 mM Daunorubicin 0.1±0.1 0.69±0.25 0.39±0.09 glutamine (Sigma), 1 mM non-essential amino acids (NEAA, RR=6.9 RR=3.9 Sigma), 1% sodium pyruvate (NaP, Sigma) and 10% fetal bovine (p<0.001) (p<0.001) serum (FBS, Gibco BRL, Paisley, UK). For seeding, 0.25% Cladribine 0.02±0.01 >40 0.9±0.22 trypsin/EDTA was used. The culture was carried out under RR>2000 RR=45 (p<0.001) (p<0.001) conditions of 5% CO2, 37ÆC and 95% humidity. The culture medium for CCRF-CEM cell line contained RPMI 1640 medium Arsenic trioxide 6.8±3.2 >20 >20 (Sigma), supplemented with 2 mM glutamine and 20% FBS. Both RR>2.9 RR>2.9 (p<0.001) (p<0.001) culture media were supplemented with 100 U/ml penicilin (Polfa Topotecan <0.097 0.2±0.01 21.36±18.93 Tarchomin, Poland), 100 Ìg/ml streptomycin (Polfa Tarchomin), RR>2 RR>220 200 Ìg/ml gentamycin (Krka, Nove mesto, Slovenia) and 0.125 (p<0.001) (p<0.001) Ìg/ml amphotericine B (Fungizone, Brisol-Myers Squibb, Ruel- Prednisolone 1.01±0.98 >250 >250 Malmaison, France). RR>247.5 RR>247.5 (p<0.001) (p<0.001) Drugs. The following 15 drugs were used: bortezomib (Velcade, Vincristine 0.09±0.03 7.19±2.36 8.23±2.28 Janssen Pharmaceutica N.V., Beerse, Belgium, concentrations RR=79.8 RR=91.4 tested: 0.19-200 nM), prednisolone (Jelfa, Jelenia Gora, Poland, (p<0.001) (p<0.001) 0.0076-250 Ìg/ml), vincristine (Gedeon Richter, Budapest, Hungary, L-asparaginase 0.1±0.08 0.97±0.71 2.67±2.12 0.019-20 Ìg/ml), L-asparaginase (Medac, Hamburg, Germany, RR=9.7 RR=26.7 0.0032-10 IU/ml), daunorubicin (Rhone-Poulenc Rorer, Montrouge, (p<0.001) (p<0.001) France, 0.0019-2 Ìg/ml), doxorubicin (Pharmacia Italia S.p.A., Doxorubicin 0.08±0.02 5.2±1.2 6.9±1.6 Milan, Italy, 0.031-40 Ìg/ml), actinomycin-D (Lyovac, MSD, Viena, RR=65 RR=86 (p<0.001) (p<0.001) Austria, 0.0048-5 Ìg/ml), cytarabine (Upjohn, Puurs, Belgium, 0.24- Cytarabine <0.24 67.8±46.7 >250 250 Ìg/ml), cladribine (Bioton, Warsaw, Poland, 0.0004-40 Ìg/ml), RR>282 RR>1041 cisplatin (Pliva-Lachema, Brno, Czech Republic, 0.97-100 Ìg/ml), (p<0.01) (p<0.001) carboplatin (Pliva-Lachema, 0.48-500 Ìg/ml), etoposide (Bristol- Myers Squibb, Sermoneta, Italy, 0.048-50 Ìg/ml), thiotepa (Lederle, RR (relative resistance)-ratio of mean values of IC50 of brain tumor Wolfratshausen, Germany, 0.032-100 Ìg/ml), arsenic trioxide cell line and leukemic CCRF-CEM cell line. P-value was calculated (Sigma, 0.019-20 ÌM), topotecan (Glaxo Smith Kline, Brentford, using the Student’s t-test. Concentration is given in nM for bortezomib, UK, 0.097-100 Ìg/ml). Before the assay was performed, most drug ÌM for arsenic trioxide, IU/ml for L-asparaginase and in Ìg/ml for the stock solutions were stored frozen in small aliquots at –20ÆC, except rest of the drugs. cladribine, cisplatin and carboplatin, which were stored at +4ÆC. Stock solutions were prepared in water for injection; further dilution was made in respective media. The MTT assay. Cellular drug resistance was tested by means of the resistance (RR) between cell lines for each drug was calculated as a MTT assay. The procedure of the assay was described previously ratio of mean value of IC50 for this drug in tested cell lines. (17). The drug concentration that was inhibitory to 50% of the cells (IC50) was calculated from the dose-response curve and was used as Statistical analysis. The t-test for independent samples was used to a measure for in vitro drug resistance in each sample. Results were compare differences in drug resistance between groups. The compared between respective cell lines. At least four independent correlation between cytotoxicity of drugs was determined by experiments were performed for each cell line. The relative Spearman’s rho coefficient. 4500 Styczynski et al: Activity of Bortezomib in Glioblastoma Results Bortezomib was only 1.56-2.6-fold less active in the glioblastoma cell lines when compared to the CCRF-CEM cell line. The leukemic cell line was the most drug-sensitive cell line for all tested drugs, with possible exception to cisplatin and carboplatin (Table I). These two drugs showed good activity against both brain tumor cell lines. Actinomycin-D and etoposide also showed good activity and were only 1.2- to 2.5-fold less cytotoxic against malignant brain tumor cells, in comparison with the leukemic cell line.
Recommended publications
  • Treatment of Localized Extranodal NK/T Cell Lymphoma, Nasal Type: a Systematic Review Seok Jin Kim†, Sang Eun Yoon† and Won Seog Kim*
    Kim et al. Journal of Hematology & Oncology (2018) 11:140 https://doi.org/10.1186/s13045-018-0687-0 REVIEW Open Access Treatment of localized extranodal NK/T cell lymphoma, nasal type: a systematic review Seok Jin Kim†, Sang Eun Yoon† and Won Seog Kim* Abstract Extranodal natural killer/T cell lymphoma (ENKTL), nasal type, presents predominantly as a localized disease involving the nasal cavity and adjacent sites, and the treatment of localized nasal ENKTL is a major issue. However, given its rarity, there is no standard therapy based on randomized controlled trials and therefore a lack of consensus on the treatment of localized nasal ENKTL. Currently recommended treatments are based mainly on the results of phase II studies and retrospective analyses. Because the previous outcomes of anthracycline-containing chemotherapy were poor, non- anthracycline-based chemotherapy regimens, including etoposide and L-asparaginase, have been used mainly for patients with localized nasal ENKTL. Radiotherapy also has been used as a main component of treatment because it can produce a rapid response. Accordingly, the combined approach of non-anthracycline-based chemotherapy with radiotherapy is currently recommended as a first-line treatment for localized nasal ENKTL. This review summarizes the different approaches for the use of non-anthracycline-based chemotherapy with radiotherapy including concurrent, sequential, and sandwich chemoradiotherapy, which have been proposed as a first-line treatment for newly diagnosed patients with localized nasal ENKTL. Keywords: Extranodal NK/T cell lymphoma, Chemoradiotherapy, Localized disease Background Treatment for newly diagnosed patients with localized Extranodal natural killer/T cell lymphoma (ENKTL), nasal nasal ENKTL type, is a rare subtype of non-Hodgkin lymphoma [1].
    [Show full text]
  • Ciera L. Patzke, Alison P. Duffy, Vu H. Duong, Firas El Chaer 4, James A
    Journal of Clinical Medicine Article Comparison of High-Dose Cytarabine, Mitoxantrone, and Pegaspargase (HAM-pegA) to High-Dose Cytarabine, Mitoxantrone, Cladribine, and Filgrastim (CLAG-M) as First-Line Salvage Cytotoxic Chemotherapy for Relapsed/Refractory Acute Myeloid Leukemia Ciera L. Patzke 1, Alison P. Duffy 1,2, Vu H. Duong 1,3, Firas El Chaer 4, James A. Trovato 2, Maria R. Baer 1,3, Søren M. Bentzen 1,3 and Ashkan Emadi 1,3,* 1 Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA; [email protected] (C.L.P.); aduff[email protected] (A.P.D.); [email protected] (V.H.D.); [email protected] (M.R.B.); [email protected] (S.M.B.) 2 School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA; [email protected] 3 School of Medicine, University of Maryland, Baltimore, MD 21201, USA 4 School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-410-328-2596 Received: 10 January 2020; Accepted: 13 February 2020; Published: 16 February 2020 Abstract: Currently, no standard of care exists for the treatment of relapsed or refractory acute myeloid leukemia (AML). We present our institutional experience with using either CLAG-M or HAM-pegA, a novel regimen that includes pegaspargase. This is a retrospective comparison of 34 patients receiving CLAG-M and 10 receiving HAM-pegA as first salvage cytotoxic chemotherapy in the relapsed or refractory setting. Composite complete response rates were 47.1% for CLAG-M and 90% for HAM-pegA (p = 0.027).
    [Show full text]
  • Asparaginase As Consolidation Therapy in Patients Undergoing Bone Marrow Transplantation for Acute Lymphoblastic Leukemia
    Bone Marrow Transplantation, (1998) 21, 879–885 1998 Stockton Press All rights reserved 0268–3369/98 $12.00 http://www.stockton-press.co.uk/bmt Toxicity, pharmacology and feasibility of administration of PEG-L- asparaginase as consolidation therapy in patients undergoing bone marrow transplantation for acute lymphoblastic leukemia ML Graham1, BL Asselin2, JE Herndon II3, JR Casey1, S Chaffee1, GH Ciocci1, CW Daeschner4, AR Davis4, S Gold6, EC Halperin7, MJ Laughlin1, PL Martin8, JF Olson1 and J Kurtzberg1,9 Departments of 1Pediatrics, 3Community and Family Medicine, 5Pharmacy, 7Radiation Oncology and 9Pathology, Duke University Medical Center, Durham, NC; 2Department of Pediatrics, University of Rochester, Rochester, NY; 4Department of Pediatrics, Eastern Carolina University School of Medicine, Greenville; 6Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill; 8Department of Pediatrics, Bowman-Gray School of Medicine, Winston-Salem, NC, USA Summary: for bone marrow transplantation have occasionally been successful, but usually at the price of higher morbidity and We attempted to administer PEG-L-asparaginase (PEG- mortality rates, since most preparative regimens employ L-A) following hematologic recovery to 38 patients maximal or near maximal radiation and chemotherapy undergoing autologous or allogeneic marrow transplan- doses.6–8 tation for acute lymphoblastic leukemia (ALL). Twenty- Other strategies for reducing relapse have been explored. four patients (12 of 22 receiving allogeneic and 12 of 16 Since the development of graft-versus-host disease receiving autologous transplants) received between one (GVHD) in some series of allogeneic BMT has been asso- and 12 doses of PEG-L-A, including nine who com- ciated with a diminished relapse rate,9–12 Sullivan et al13 pleted the planned 12 doses of therapy.
    [Show full text]
  • Prescribing Information | VELCADE® (Bortezomib)
    HIGHLIGHTS OF PRESCRIBING INFORMATION Hypotension: Use caution when treating patients taking These highlights do not include all the information needed to antihypertensives, with a history of syncope, or with dehydration. use VELCADE safely and effectively. See full prescribing (5.2) information for VELCADE. Cardiac Toxicity: Worsening of and development of cardiac VELCADE® (bortezomib) for injection, for subcutaneous or failure has occurred. Closely monitor patients with existing heart intravenous use disease or risk factors for heart disease. (5.3) Initial U.S. Approval: 2003 Pulmonary Toxicity: Acute respiratory syndromes have ------------------------RECENT MAJOR CHANGES-------------------------- occurred. Monitor closely for new or worsening symptoms and consider interrupting VELCADE therapy. (5.4) Warnings and Precautions, Posterior Reversible Encephalopathy Syndrome: Consider MRI Thrombotic Microangiopathy (5.10) 04/2019 imaging for onset of visual or neurological symptoms; ------------------------INDICATIONS AND USAGE-------------------------- discontinue VELCADE if suspected. (5.5) VELCADE is a proteasome inhibitor indicated for: Gastrointestinal Toxicity: Nausea, diarrhea, constipation, and treatment of adult patients with multiple myeloma (1.1) vomiting may require use of antiemetic and antidiarrheal medications or fluid replacement. (5.6) treatment of adult patients with mantle cell lymphoma (1.2) Thrombocytopenia and Neutropenia: Monitor complete blood ----------------------DOSAGE AND ADMINISTRATION---------------------
    [Show full text]
  • Acute Lymphoblastic Leukemia (ALL) (Part 1 Of
    LEUKEMIA TREATMENT REGIMENS: Acute Lymphoblastic Leukemia (ALL) (Part 1 of 12) Note: The National Comprehensive Cancer Network (NCCN) Guidelines® for Acute Lymphoblastic Leukemia (ALL) should be consulted for the management of patients with lymphoblastic lymphoma. Clinical Trials: The NCCN recommends cancer patient participation in clinical trials as the gold standard for treatment. Cancer therapy selection, dosing, administration, and the management of related adverse events can be a complex process that should be handled by an experienced healthcare team. Clinicians must choose and verify treatment options based on the individual patient; drug dose modifications and supportive care interventions should be administered accordingly. The cancer treatment regimens below may include both U.S. Food and Drug Administration-approved and unapproved indications/regimens. These regimens are only provided to supplement the latest treatment strategies. The NCCN Guidelines are a work in progress that may be refined as often as new significant data becomes available. They are a consensus statement of its authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult any NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The NCCN makes no warranties of any kind whatsoever regarding their content, use, or application and disclaims any responsibility for their application or use in any
    [Show full text]
  • L-Asparaginase-Induced Hepatotoxicity Treated Successfully with L-Carnitine and Vitamin B Infusion
    Open Access Case Report DOI: 10.7759/cureus.16917 L-Asparaginase-Induced Hepatotoxicity Treated Successfully With L-Carnitine and Vitamin B Infusion Christina Lee 1 , Thomas M. Leventhal 2 , Chimaobi M. Anugwom 3 1. Internal Medicine, University of Minnesota Medical School, Minneapolis, USA 2. Division of Gastroenterology, Hepatology, and Nutrition/Transplant Hepatology and Critical Care Medicine, University of Minnesota, Minneapolis, USA 3. Gastroenterology and Hepatology, University of Minnesota, Minneapolis, USA Corresponding author: Christina Lee, [email protected] Abstract Asparaginase plays an integral role in chemotherapy for acute lymphoblastic leukemia (ALL). We present a 69-year old woman with refractory ALL, who developed asparaginase-induced hepatotoxicity and cholangiopathy after starting intravenous PEG-L-asparaginase-based chemotherapy. The patient was ultimately treated with the combination of L-carnitine and vitamin B complex, resulting in normalization of liver enzymes levels. This case highlights the consideration of PEG-L asparaginase chemotherapy-induced liver steatosis, injury, and cholangiopathy as well as the role of L-carnitine and vitamin B complex as treatment. Categories: Internal Medicine, Gastroenterology, Oncology Keywords: severe hepatotoxicity, drug-induced hepatotoxicity, cholangiopathy, acute lymphocytic leukemia, asparaginase, l-carnitine, vitamin b Introduction Drug-induced liver injury is a complex and diverse syndrome that has been attributed to a variety of therapeutic and non-therapeutic agents [1]. The toxic effect of cancer chemotherapy on the liver ranges from sub-clinical disease to fatal cases of acute liver failure; and management of these toxicities are largely supportive [1]. Here, we describe a case of severe hepatic steatosis and cholangiopathy due to PEG- Asparaginase toxicity, with the resolution of liver injury after discontinuation of PEG-asparaginase use and concomitant treatment with an L-carnitine supplement and vitamin B complex.
    [Show full text]
  • Cancer Drug Costs for a Month of Treatment at Initial Food and Drug
    Cancer drug costs for a month of treatment at initial Food and Drug Administration approval Year of FDA Monthly Cost Monthly cost Generic name Brand name(s) approval (actual $'s) (2014 $'s) vinblastine Velban 1965 $78 $586 thioguanine, 6-TG Thioguanine Tabloid 1966 $17 $124 hydroxyurea Hydrea 1967 $14 $99 cytarabine Cytosar-U, Tarabine PFS 1969 $13 $84 procarbazine Matulane 1969 $2 $13 testolactone Teslac 1969 $179 $1,158 mitotane Lysodren 1970 $134 $816 plicamycin Mithracin 1970 $50 $305 mitomycin C Mutamycin 1974 $5 $23 dacarbazine DTIC-Dome 1975 $29 $128 lomustine CeeNU 1976 $10 $42 carmustine BiCNU, BCNU 1977 $33 $129 tamoxifen citrate Nolvadex 1977 $44 $170 cisplatin Platinol 1978 $125 $454 estramustine Emcyt 1981 $420 $1,094 streptozocin Zanosar 1982 $61 $150 etoposide, VP-16 Vepesid 1983 $181 $430 interferon alfa 2a Roferon A 1986 $742 $1,603 daunorubicin, daunomycin Cerubidine 1987 $533 $1,111 doxorubicin Adriamycin 1987 $521 $1,086 mitoxantrone Novantrone 1987 $477 $994 ifosfamide IFEX 1988 $1,667 $3,336 flutamide Eulexin 1989 $213 $406 altretamine Hexalen 1990 $341 $618 idarubicin Idamycin 1990 $227 $411 levamisole Ergamisol 1990 $105 $191 carboplatin Paraplatin 1991 $860 $1,495 fludarabine phosphate Fludara 1991 $662 $1,151 pamidronate Aredia 1991 $507 $881 pentostatin Nipent 1991 $1,767 $3,071 aldesleukin Proleukin 1992 $13,503 $22,784 melphalan Alkeran 1992 $35 $59 cladribine Leustatin, 2-CdA 1993 $764 $1,252 asparaginase Elspar 1994 $694 $1,109 paclitaxel Taxol 1994 $2,614 $4,176 pegaspargase Oncaspar 1994 $3,006 $4,802
    [Show full text]
  • Erwinaze® (Asparaginase Erwinia Chrysanthemi) (Intramuscular/Intravenous)
    Erwinaze® (asparaginase Erwinia chrysanthemi) (Intramuscular/Intravenous) Document Number: IC-0288 Last Review Date: 10/26/2020 Date of Origin: 12/20/2016 Dates Reviewed: 12/2016, 10/2017, 11/2018, 11/2019, 11/2020 I. Length of Authorization Coverage will be provided for 6 months and may be renewed II. Dosing Limits A. Quantity Limit (max daily dose) [NDC Unit]: • Erwinaze 10,000 IU lyophilized powder vial : 18 vials per 7 days B. Max Units (per dose and over time) [HCPCS Unit]: • 190 billable units per week 1-3 III. Initial Approval Criteria Coverage is provided in the following conditions: • Patient is at least 1 year of age; AND Universal Criteria • Patient must not have a history of serious pancreatitis, thrombosis, or hemorrhagic events with prior L-asparaginase therapy; AND Acute lymphoblastic leukemia (ALL) † • Used as a component of multi-agent chemotherapy; AND o Used as a substitute for pegaspargase ‡ or E. coli-derived asparaginase † in cases of systemic allergic reaction or anaphylaxis; OR o Used as induction therapy in patients at least 65 years of age or older ‡ † FDA Approved Indication(s); ‡ Compendia recommended indication(s) 1 IV. Renewal Criteria Coverage can be renewed based upon the following criteria: Proprietary & Confidential © 2020 Magellan Health, Inc. • Patient continues to meet universal and indication-specific criteria as identified in section III; AND • Disease stabilization or improvement as evidenced by a complete response [CR] (i.e. morphologic, cytogenetic or molecular complete response CR), complete hematologic response or a partial response by CBC, bone marrow cytogenic analysis, QPCR, or FISH; AND • Absence of unacceptable toxicity from the drug.
    [Show full text]
  • CYTOTOXIC and NON-CYTOTOXIC HAZARDOUS MEDICATIONS
    CYTOTOXIC and NON-CYTOTOXIC HAZARDOUS MEDICATIONS1 CYTOTOXIC HAZARDOUS MEDICATIONS NON-CYTOTOXIC HAZARDOUS MEDICATIONS Altretamine IDArubicin Acitretin Iloprost Amsacrine Ifosfamide Aldesleukin Imatinib 3 Arsenic Irinotecan Alitretinoin Interferons Asparaginase Lenalidomide Anastrazole 3 ISOtretinoin azaCITIDine Lomustine Ambrisentan Leflunomide 3 azaTHIOprine 3 Mechlorethamine Bacillus Calmette Guerin 2 Letrozole 3 Bleomycin Melphalan (bladder instillation only) Leuprolide Bortezomib Mercaptopurine Bexarotene Megestrol 3 Busulfan 3 Methotrexate Bicalutamide 3 Methacholine Capecitabine 3 MitoMYcin Bosentan MethylTESTOSTERone CARBOplatin MitoXANtrone Buserelin Mifepristone Carmustine Nelarabine Cetrorelix Misoprostol Chlorambucil Oxaliplatin Choriogonadotropin alfa Mitotane CISplatin PACLitaxel Cidofovir Mycophenolate mofetil Cladribine Pegasparaginase ClomiPHENE Nafarelin Clofarabine PEMEtrexed Colchicine 3 Nilutamide 3 Cyclophosphamide Pentostatin cycloSPORINE Oxandrolone 3 Cytarabine Procarbazine3 Cyproterone Pentamidine (Aerosol only) Dacarbazine Raltitrexed Dienestrol Podofilox DACTINomycin SORAfenib Dinoprostone 3 Podophyllum resin DAUNOrubicin Streptozocin Dutasteride Raloxifene 3 Dexrazoxane SUNItinib Erlotinib 3 Ribavirin DOCEtaxel Temozolomide Everolimus Sirolimus DOXOrubicin Temsirolimus Exemestane 3 Tacrolimus Epirubicin Teniposide Finasteride 3 Tamoxifen 3 Estramustine Thalidomide Fluoxymesterone 3 Testosterone Etoposide Thioguanine Flutamide 3 Tretinoin Floxuridine Thiotepa Foscarnet Trifluridine Flucytosine Topotecan Fulvestrant
    [Show full text]
  • Overview of the Current Treatment Strategy in Extranodal NK/T-Cell Lymphoma: from Diagnosis to Recurrence
    10 Review Article Page 1 of 10 Overview of the current treatment strategy in extranodal NK/T-cell lymphoma: from diagnosis to recurrence Sang Eun Yoon, Seok Jin Kim, Won Seog Kim Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea Contributions: (I) Conception and design: All authors; (II) Administrative support: All authors; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: SE Yoon; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Won Seog Kim, MD, PhD. Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-Gu, Seoul 06351, Korea. Email: [email protected]. Abstract: Extranodal natural killer/T cell lymphoma (ENKTL) is an extraordinary subtype of non- Hodgkin’s lymphoma (NHL), mainly involves the nasal cavity and the upper airway, and is influenced by the Epstein-Barr virus (EBV). Compared to other subtypes of T-cell lymphoma, ENKTL cannot be effectively treated with commonly used anthracycline-based systemic chemotherapy. Thus, the recent treatment of ENKTL has undergone significant changes based as informed by various clinical trials and prospective studies. Concurrent, sequential, and sandwich chemoradiotherapy, which is based on the alteration of the order of radiation and chemotherapy, has emerged as vital treatment approach for localized ENTKL. After the emergence of anthracycline-based systemic chemotherapy, nonanthracycline-based chemotherapy combined with L-asparaginase, including SMILE (dexamethasone, methotrexate, ifosfamide, L-asparaginase, and etoposide), Asp-MTX-Dex (L-asparaginase, methotrexate and dexamethasone), and DDGP (dexamethasone, cisplatin, gemcitabine, and peg-asparaginase) has attracted attention in advanced and relapsed/refractory (R/R) ENKTL treatment.
    [Show full text]
  • Protocol, L-Asparaginase, Cisplatin, Dexamethasone
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 30), pp: 50155-50163 Clinical Research Paper A phase II prospective study of the “Sandwich” protocol, L-asparaginase, cisplatin, dexamethasone and etoposide chemotherapy combined with concurrent radiation and cisplatin, in newly diagnosed, I/II stage, nasal type, extranodal natural killer/T-cell lymphoma Ming Jiang1,*, Li Zhang1,4,*, Li Xie2,*, Hong Zhang2, Yu Jiang1, Wei-Ping Liu3, Wen- Yan Zhang3, Rong Tian5, Yao-Tiao Deng1, Sha Zhao3 and Li-Qun Zou1 1 Department of Medical Oncology, State Key Laboratory, Cancer Center, West China Hospital of Sichuan University, Chengdu, China 2 Radiation Oncology of Cancer Center, West China Hospital of Sichuan University, Chengdu, China 3 Pathology Department, West China Hospital of Sichuan University, Chengdu, China 4 Department of Oncology, Dujiangyan Medical Center, Dujiangyan, Sichuan, China 5 Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China * These authors have contributed equally to this work Correspondence to: Li-qun Zou, email: [email protected] Keywords: nasal-type, extranodal NK/T cell lymphoma, L-asparaginase, cisplatin, etoposide and dexamethasone (LVDP) Received: June 19, 2016 Accepted: January 27, 2017 Published: March 17, 2017 Copyright: Jiang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Nasal-type, extranodal NK/T cell lymphoma (ENKTCL) is a special type of lymphomas with geographic and racial specificity. Up to now, the standard first-line treatment is still not unified.
    [Show full text]
  • FDA Listing of Established Pharmacologic Class Text Phrases January 2021
    FDA Listing of Established Pharmacologic Class Text Phrases January 2021 FDA EPC Text Phrase PLR regulations require that the following statement is included in the Highlights Indications and Usage heading if a drug is a member of an EPC [see 21 CFR 201.57(a)(6)]: “(Drug) is a (FDA EPC Text Phrase) indicated for Active Moiety Name [indication(s)].” For each listed active moiety, the associated FDA EPC text phrase is included in this document. For more information about how FDA determines the EPC Text Phrase, see the 2009 "Determining EPC for Use in the Highlights" guidance and 2013 "Determining EPC for Use in the Highlights" MAPP 7400.13.
    [Show full text]