Bioturbation in Estuarine Sediments: Modelling Macrofauna-Mediated Oxygen Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Bioturbation in Estuarine Sediments: Modelling Macrofauna-Mediated Oxygen Dynamics Bioturbation in estuarine sediments: modelling macrofauna-mediated oxygen dynamics Xiaoyu Fang Promoters: Prof. Tom Moens Dr. Carl Van Colen Prof. Karline Soetaert Prof. Antony Knights Academic year 2018-2019 Members of the examination and reading committee Prof. Ann Vanreusel Ghent University (chair) Dr. Ulrike Braeckman Ghent University (secretary) Prof. Jan Vanaverbeke Ghent University Prof. Peter Goethals Ghent University Prof. David Bilton University of Plymouth Dr. Ana Queiros Plymouth Marine Lab Prof. Tom Moens Ghent University (promoter) Dr. Carl Van Colen Ghent University (promoter) Prof. Karline Soetaert Ghent University (promoter) Prof. Antony Knights University of Plymouth (promoter) Acknowledgments The last four years have been the most informative, happiest, thoughtful, altering, moulding, powerful and accepting years of my life. When this PhD journey finally came to an end, I would like to acknowledge the support and encouragement received during my doctoral research. Back then, I was a beginner sailor who can barely handle a ship steering wheel. However, anything is possible when you have the right people to support you. I have been immensely lucky to have a ‘super’ supervisory team who guided me through what started as a daunting sea fog, which eventually turned into a sail of intellectual discovery. I am incredibly grateful for all my supervisors who stood by to support me along the way. Carl, you are the compass. You welcomed me with open arms even though I was lacking the academic background of biology and introduced me those nice and interesting ‘macrobenthos’ buddies. Over the years, you taught me how to adopt a critical view in marine biology research. You cared so much about my work and responded to my questions and queries so promptly. Your door was always open for me to discuss things. You were by my side throughout this PhD journey, in the climate room, field, onboard, from the first day until the very last stage in finalizing this thesis! Tony, you are the motive power. You witnessed my ‘breakdown’ in my toughest time and helped me back on my feet. Thank you for being such a strong and compassionate friend. You helped me to take one step back and see the broad picture when my sail vessel got stuck. Thank you for all the incredible insights into my work and those ‘aha’ moments! Tom, you are the water- and wind- proof jacket. Whenever I was freaking out in the storm, you told me it would be fine, and you have been in the same situation yet got it through. Your excellent eye for science has always motivated me to work harder and aim higher. Thank you for helping me translate the summary to Dutch and backing me up in the last several hours countdown of the finalization! Karline, you wrote the sailing slogan when our ship set sail. The first time we met, you told me we will make it together, since ‘bio-geo-chemistry’ corresponds to expertise of all my supervisors. You taught me to use R in modelling and guided me step by step at every crucial moment! I am still not a skilled sailor, but I learnt how to brave the storms in tough times and enjoy the sea breeze when it is calm. I am confident to compete against my own limits of resilience and brave any challenges in the future. Thank you! My gratitude goes out as well to the reading and examination committee: Prof. Dr. David Bilton, Prof. Dr. Jan Vanaverbeke, Prof. Dr. Peter Goethals, Prof. Ann Vanreusel, Dr. Ana Queiros and Dr. Ulrike Braeckman. Thank you for providing me extensive professional guidance and sharing your expertise and knowledge which have honed my thesis. I also want to thank you for letting my pre-defense be an enjoyable moment. It is the most informed, intelligent and inspiring conversation I had about my PhD study! I am grateful to all of those with whom I have had the pleasure to work with at Ghent University, NIOZ and University of Plymouth. As a marine biologist without great professional skills such as swimming and mud landing, nothing would have been done without all the generous help from my colleagues. Here is an exhaustive list of all the colleagues who helped me out in the field excursions and laboratory work: Sebastiaan Mestdagh, An-Sofie D’Hondt, Tim Tkint, Lisa Mevemkamp, Dirk Van Gansbeke, Bart Beuselinck, Guy Desmet, Mohammed Alsebai, Van Kenhove, Niels Viaene, Elise Toussaint, Emil De Borger, Ninon Mavraki, Ulrike Braeckman, Anna-Maria Vafeiadou, Isolde De Grem, Veerle Rogge, Thomas Kerkhove, Ellen Vlaminck, Lara Macheriotou, the crew of RV Simon Stevin and the students of the IMBRSea programme of UGent. A heartfelt thanks goes to my MARES alumni: Qian Huang, Ee Zin Ong, Valentina Filimonova, Veronica Lo, Sofia Ramalho, Svenja Tidau, Paul Dolder, Cátia Monteiro, Shawn Hinz, Jeffrey Wilson, La Daana Kanhai, who provided support, inspiration, peer pressure, and motivation along this Erasmus Mundus PhD journey. Francesco, I never expected the co-authorship would turn into a sincere friendship. You have been a role model for me since we met at NIOZ four years ago. I am impressed by your enthusiasm and passion for modelling. You taught me a great deal about research and life. Those fun days in your hometown Lecce, the inspiring modelling brainstorm during the custom- tailored city tour, the discussion about collaboration during ice cream breaks and the R scripts writing in the bar, turned out to be one of the most productive periods in my PhD! I would like to extend my sincerest thanks and appreciation to my parents for their unconditional support, love and care to an extent that has exceeded all reasonable expectation (no matter what path I choose). We shared our daily life over these years and geographical distance has never been a problem. I inherited the core values ‘work hard’ and ‘love hard’ from you. From the bottom of my heart, I thank you. 小花大葱我爱你们!你们一直是我最大的骄傲! Benjamin, you are the last piece to solve the Jigsaw puzzle of my life. Eventually, all my ‘mad’ life choices made sense and the complete picture was revealed: I was meant to take this PhD journey to find my best friend, soulmate and life partner. You were with me in all the ups and downs in this journey and had faith in me even when I felt like digging hole and crawling into one due to frustration and self-doubt. We have been through a lot of tears and joyful moments together and strengthened our commitment and determination to each other and to live life to the fullest. There are no words to convey how much I appreciate having you in my life! Dear Mestdagh and de Wilde family, they say you never get to choose your family in-law, but life brought me the best! Thank you for welcoming me warmly into the family and making me experience the sense of belonging in Belgium. I owe special gratitude particularly to Katrien, Karel, Sebastiaan, Rita, Johannes and Nicolas. In those hectic days when the apartment moving, PhD finalization, certificate examination, adaptation to the new job, preparation for the arrival of Chinese family and reception were all scheduled in a few weeks, you were always there supporting Benjamin and me in every possible way and letting us pursue our dreams! In the pre-defence, I was asked if I would re-do my PhD research in the particular manner given a second chance. To wrap up the reflection on my PhD journey by answering this question: PhD work-wise, there are still some aspects which can be improved (please refer to Chapter 6 General discussion of this thesis); but for my four-year PhD journey, no doubt I would duplicate it without changing a tiny bit, to still have all of you in my life! I love you all dearly. I dedicate this thesis to all of you. With much gratitude Xiaoyu Table of contents Chapter 1 General introduction ................................................................................................................ 2 1.1 Macrobenthos in marine soft bottoms ................................................................................................. 2 1.2 Macrobenthos-biogeochemistry ............................................................................................................. 4 Bioturbation ........................................................................................................................................... 4 1.2.1.1 Particle mixing ................................................................................................................................. 5 1.2.1.2 Ventilation patterns ....................................................................................................................... 7 Bioturbation effects on sediment biogeochemistry .............................................................. 8 1.3 The Scheldt estuary ................................................................................................................................... 11 1.4 Using macrobenthos for ecology conservation and estuarine ecosystem management 14 1.5 PhD objectives ............................................................................................................................................. 15 Research gaps..................................................................................................................................... 15 Outline ................................................................................................................................................... 18 Chapter 2 Spatio-temporal variation in sediment ecosystem processes and roles of key biota in the Scheldt estuary .....................................................................................................................
Recommended publications
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1984 Elsevier B.V. This manuscript is an author version with the final publication available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Wilson, W. H., Jr. (1984). Non‐overlapping distributions of spionid polychaetes: the relative importance of habitat and competition. Journal of Experimental Marine Biology and Ecology, 75(2), 119‐127. doi:10.1016/0022‐0981(84)90176‐X J. Exp. Mar. Bioi. Ecol., 1984, Vol. 75, pp. 119-127 119 Elsevier JEM 217 NON-OVERLAPPING DISTRIBUTIONS OF SPIONID POLYCHAETES: THE RELATIVE IMPORTANCE OF HABITAT AND COMPETITIONI W. HERBERT WILSON, JR. Harbor Branch Institution, Inc .. R.R. 1, Box 196, Fort Pierce, FL 33450. U.S.A. Abstract: The spionid polychaetes, Pygospio elegans Claparede, Pseudopolydora kempi (Southern), and Rhynchospio arenincola Hartman are found in False Bay, Washington. Two species, Pygospio elegans and Pseudopolydora kempi, co-occur in the high intertidal zone. The third species Rhynchospio arenincola occurs only in low intertidal areas. Reciprocal transplant experiments were used to test the importance of intraspecific density, interspecific density, and habitat on the survivorship of experimental animals. For all three species, only habitat had a significant effect. Individuals of each species survived better in experimental containers in their native habitat, regardless of the heterospecific and conspecific densities used in the experiments. The physical stresses associated with the prolonged exposure of the high intertidal site are experimentally shown to result in Rhynchospio mortality. From these experiments, habitat type is the only significant factor tested which can explain the observed distributions; the presence of confamilials has no detected effect on the survivorship of any species, suggesting that competition does not serve to maintain the patterns of distribution.
    [Show full text]
  • Abarenicola Pacifica Class: Polychaeta, Sedentaria, Scolecida
    Phylum: Annelida Abarenicola pacifica Class: Polychaeta, Sedentaria, Scolecida Order: The lugworm or sand worm Family: Arenicolidae Description pendages (Fig. 2). Size: Individuals often over 10 cm long and Parapodia: (Fig. 3) Segments 1–19 with re- 1 cm wide. Present specimen is duced noto- and neuropodia that are reddish approximately 4 cm in length (from South and are far from the lateral line. All parapodia Slough of Coos Bay). On the West coast, are absent in the caudal region. average length is 15 cm (Ricketts and Calvin Setae (chaetae): (Fig. 3) Bundles of notose- 1971). tae arise from notopodia near branchiae. Color: Head and abdomen orange, body a Short neurosetae extend along neuropodium. mixture of yellow, green and brown with par- Setae present on segments 1-19 only (Blake apodial areas and branchiae red (Kozloff and Ruff 2007). 1993). Eyes/Eyespots: None. General Morphology: A sedentary poly- Anterior Appendages: None. chaete with worm-like, cylindrical body that Branchiae: Prominent and thickly tufted in tapers at both ends. Conspicuous segmen- branchial region with bunched setae. Hemo- tation, with segments wider than they are globin makes the branchiae appear bright red long and with no anterior appendages (Kozloff 1993). (Ruppert et al. 2004). Individuals can be Burrow/Tube: Firm, mucus impregnated bur- identified by their green color, bulbous phar- rows are up to 40 cm long, with typical fecal ynx (Fig. 1), large branchial gills (Fig. 2) and castings at tail end. Head end of burrow is a J-shaped burrow marked at the surface collapsed as worm continually consumes mud with distinctive coiled fecal castings (Kozloff (Healy and Wells 1959).
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Ecological Condition of the Estuaries of Oregon and Washington
    EPA 910-R-06-001 Alaska United States Region 10 Idaho Environmental Protection 1200 Sixth Avenue Oregon Agency Seattle, WA 98101 Washington Office of Environmental Assessment March 2006 Ecological Condition of the Estuaries of Oregon and Washington (blank page) EPA Region 10 Office of Environmental Assessment March 2006 Ecological Condition of the Estuaries of Oregon and Washington an Environmental Monitoring and Assessment Program (EMAP) Report Authors: Gretchen Hayslip1, Lorraine Edmond1, Valerie Partridge2, Walt Nelson3, Henry Lee3, Faith Cole3, Janet Lamberson3 , and Larry Caton4 March 2006 1 U.S. Environmental Protection Agency, Region 10, Seattle, Washington 2 Washington State Department of Ecology, Environmental Assessment Program, Olympia, Washington 3 U.S. Environmental Protection Agency, Office of Research and Development, Western Ecology Division, Newport, Oregon 4 Oregon Department of Environmental Quality, Portland, Oregon U.S. Environmental Protection Agency, Region 10 Office of Environmental Assessment 1200 Sixth Avenue Seattle, Washington 98101 Publication Number: EPA 910-R-06-001 Suggested Citation: Hayslip, G., L. Edmond, V. Partridge, W. Nelson, H. Lee, F. Cole, J. Lamberson , and L. Caton. 2006. Ecological Condition of the Estuaries of Oregon and Washington. EPA 910-R-06-001. U.S. Environmental Protection Agency, Office of Environmental Assessment, Region 10, Seattle, Washington. i EPA Region 10 Office of Environmental Assessment March 2006 (blank page) ii EPA Region 10 Office of Environmental Assessment March 2006
    [Show full text]
  • Interplay Between Abiotic Factors and Species Assemblages Mediated by the Ecosystem Engineer Sabellaria Alveolata
    Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier To cite this version: Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier. Interplay between abi- otic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuarine, Coastal and Shelf Science, Elsevier, 2018, 200, pp.1-18. 10.1016/j.ecss.2017.10.001. hal-02323051 HAL Id: hal-02323051 https://hal.archives-ouvertes.fr/hal-02323051 Submitted on 10 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 3 1 Title 4 5 2 Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria 6 7 3 alveolata (Annelida: Polychaeta) 8 9 4 Authors 10 11 5 Auriane G. Jones a,b,c, Stanislas F. Dubois a, Nicolas Desroy b, Jérôme Fournier c,d 12 6 Affiliations 13 14 7 a IFREMER, Laboratoire Centre de Bretagne, DYNECO LEBCO, 29280 Plouzané, France 15 b 16 8 IFREMER, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, BP 80108, 35801 Dinard cedex, France 17 9 18 10 c CNRS, UMR 7208 BOREA, 61 rue Buffon, CP 53, 75231 Paris cedex 05, France 19 20 11 d MNHN, Station de Biologie Marine, BP 225, 29182 Concarneau cedex, France 21 12 Corresponding author 22 23 Auriane G.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Interplay Between Abiotic Factors and Species Assemblages Mediated by the Ecosystem Engineer Sabellaria Alveolata (Annelida: Polychaeta)
    Estuarine, Coastal and Shelf Science 200 (2018) 1e18 Contents lists available at ScienceDirect Estuarine, Coastal and Shelf Science journal homepage: www.elsevier.com/locate/ecss Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) * Auriane G. Jones a, b, c, , Stanislas F. Dubois a, Nicolas Desroy b,Jer ome^ Fournier c, d a IFREMER, Centre de Bretagne, DYNECO LEBCO, 29280 Plouzane, France b IFREMER, Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, BP 80108, 35801 Dinard cedex, France c CNRS, UMR 7208 BOREA, 61 rue Buffon, CP 53, 75231 Paris cedex 05, France d MNHN, Station de Biologie Marine, BP 225, 29182 Concarneau cedex, France article info abstract Article history: Sabellaria alveolata is a gregarious polychaete that uses sand particles to build three-dimensional Received 1 February 2017 structures known as reefs, fixed atop rocks or built on soft sediments. These structures are known to Received in revised form modify the local grain-size distribution and to host a highly diversified macrofauna, altered when the 4 October 2017 reef undergoes disturbances. The goal of this study was to investigate the different sedimentary and Accepted 6 October 2017 biological changes associated with the presence of a S. alveolata reef over two contrasting seasons (late Available online 7 October 2017 winter and late summer), and how these changes were linked. Three different sediments were considered: the engineered sediment (the actual reef), the associated sediment (the soft sediment Keywords: Honeycomb worm surrounding the reef structures) and a control soft sediment (i.e. no reef structures in close proximity).
    [Show full text]
  • Abarenicola Pacifica Phylum: Annelida Class: Polychaeta Order: Capitellida the Lugworm, Or Sand Worm Family: Arenicolidae
    Phylum: Annelida Abarenicola pacifica Class: Polychaeta Order: Capitellida The lugworm, or sand worm Family: Arenicolidae Description reddish and are far from the lateral line. All Size: Individuals often over 10 cm long and 1 parapodia are absent in the caudal region. cm wide. Present specimen is approximately Setae (chaetae): (Fig. 3) Bundles of 4 cm in length (from South Slough of Coos notosetae arise from notopodia near Bay). On the West coast, average length is branchiae. Short neurosetae extend along 15 cm (Ricketts and Calvin 1971). neuropodium. Setae present on segments 1- Color: Head and abdomen orange, body a 19 only (Blake and Ruff 2007). mixture of yellow, green and brown with Eyes/Eyespots: None. parapodial areas and branchiae red (Kozloff Anterior Appendages: None. 1993). Branchiae: Prominent and thickly tufted in General Morphology: A sedentary branchial region with bunched setae. polychaete with worm-like, cylindrical body Hemoglobin makes the branchiae appear that tapers at both ends. Conspicuous bright red (Kozloff 1993). segmentation, with segments wider than they Burrow/Tube: Firm, mucus impregnated are long and with no anterior appendages burrows are up to 40 cm long, with typical (Ruppert et al. 2004). Individuals can be fecal castings at tail end. Head end of burrow identified by their green color, bulbous is collapsed as worm continually consumes pharynx (Fig. 1), large branchial gills (Fig. 2) mud (Healy and Wells 1959). Water is and a J-shaped burrow marked at the surface pumped through burrow by pulsating with distinctive coiled fecal castings (Kozloff movements of the body (Ruppert et al. 2004). 1993).
    [Show full text]
  • Kachemak Bay Research Reserve: a Unit of the National Estuarine Research Reserve System
    Kachemak Bay Ecological Characterization A Site Profile of the Kachemak Bay Research Reserve: A Unit of the National Estuarine Research Reserve System Compiled by Carmen Field and Coowe Walker Kachemak Bay Research Reserve Homer, Alaska Published by the Kachemak Bay Research Reserve Homer, Alaska 2003 Kachemak Bay Research Reserve Site Profile Contents Section Page Number About this document………………………………………………………………………………………………………… .4 Acknowledgements…………………………………………………………………………………………………………… 4 Introduction to the Reserve ……………………………………………………………………………………………..5 Physical Environment Climate…………………………………………………………………………………………………… 7 Ocean and Coasts…………………………………………………………………………………..11 Geomorphology and Soils……………………………………………………………………...17 Hydrology and Water Quality………………………………………………………………. 23 Marine Environment Introduction to Marine Environment……………………………………………………. 27 Intertidal Overview………………………………………………………………………………. 30 Tidal Salt Marshes………………………………………………………………………………….32 Mudflats and Beaches………………………………………………………………………… ….37 Sand, Gravel and Cobble Beaches………………………………………………………. .40 Rocky Intertidal……………………………………………………………………………………. 43 Eelgrass Beds………………………………………………………………………………………… 46 Subtidal Overview………………………………………………………………………………… 49 Midwater Communities…………………………………………………………………………. 51 Shell debris communities…………………………………………………………………….. 53 Subtidal soft bottom communities………………………………………………………. 54 Kelp Forests…………………………………………………….…………………………………….59 Terrestrial Environment…………………………………………………………………………………………………. 61 Human Dimension Overview……………………………………………………………………………………………….
    [Show full text]
  • Environmental Assessment of the Alaskan Continental Shelf
    ~~~_-. 1.- _ ~ .~,_ ---,: ••• Environmental Assessment of the Alaskan Continental Shelf Interim Lower CookInlet Synthesis Report December 1977 Prepared under contract by: Science Applications, Inc. "oATMOS",., ~I" ~.s>/C' <3'. ~ ~ t I • • \ U.S. DEPARTMENT OF COMMERCE ~ ~.~€z •• National Oceanic and Atmospheric Administration ""'0", ",,,,,fJ' Environmental Research Laboratories .<>.qIi'rJlfENT Of co~ ,NOTICE The Environmental ResearchLaboratorie~ do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the Environmental Research Laboratories or to this publication furnished by the Environmental Research Labora- tories in any advertising or sales promotion which would in- dicate or imply that the Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the adver- tised product to be used or purchased because of this Envi- ronmental Research Laboratories publication. i i TABLE OF CONTENTS Chapter 1. INTRODUCTION . OBJECTIVES AND HISTORY OF THE SYNTHESIS REPORT 1 CONTENTS OF THE REPORT 3 GRAPHICS 4 LH1ITATIONS .. 4 PREVIOUS PUBLICATIONS 5 Chapter 2. NATURAL REGIONS OF COOK INLET 10 REGION ONE -- LOWER COOK INLET CENTRAL ZONE 12 REGION TWO -- KAMISHAK BAY 16 REGION THREE -- KACHEMAK BAY 22 REGION FOUR -- KENNEDY ENTRANCE 34 REGION FIVE -- KALGIN ISLAND AREA 39 REGION SIX -- UPPER COOK INLET 41 Chapter 3. STATE OF KNOWLEDGE OVERVIEW 44 CLIMATE . 45 REGIONAL SETTING 46 SEA ICE . 50 CIRCULATION . 51 CHEMICAL OCEANOGRAPHY 67 BIOTIC RESOURCES . 72 Primary Production 72 Zooplankton . 80 Benthic Invertebrates 81 Fish . 97 Birds 104 Mammals 112 Vulnerability and Food Chain Implications 115 CONCEPTUAL MODELS: PHYSICO-CHEMICAL BEHAVIOR OF AN OIL SLICK AND THE FATE OF TOXIC tlJETALS .
    [Show full text]
  • IV. Discussion
    IV. Discussion A. Sediment Conditions Regionally, average particle grain sizes (Table 4-1) of sediments at sites in the middle of the inlet were coarser while those on the west side of the inlet were finer. The predominance of coarser grains in the middle of the inlet was influenced by the degree of exposure to wave action and currents at the Kalgin Island sites, and by the number of highly exposed shoals examined. In contrast, the sites on the west side of the inlet, especially toward the north, receive heavy loads of fine grained, suspended sediments from the many river systems feeding from glaciers. Table 4 –1. Summary of upper Cook Inlet regional sediment characteristics. West Side Middle East Side Overall Number of Sites Sampled 11 8 6 25 Average particle grain 0.113 ± 0.088 0.22 ± 0.128 0.176 ± 0.143 0.16 ± 0.12 size (mm) TOC (%) 0.449 ± 0.345 0.155 ± 0.211 0.427 ± 0.337 0.357 ± 0.326 TKN (%) 0.032 ± 0.024 0.01 ± 0.008 0.03 ± 0.022 0.025 ± 0.022 C:N 14.5:1 ± 4.9 11.3:1 ± 6.8 13.5:1 ± 5.5 13.3:1 ± 5.6 While some of the sites examined supported small populations of single-celled or large plants, all sites depend on organic matter produced in or imported from other areas to support the nutritional requirements of the invertebrates living there. Measures of the quantity and quality of this form of nutrition are provided by analyses of Total Organic Carbon (TOC) and Total Kjeldahl Nitrogen (TKN) (Table D-1).
    [Show full text]