Evolution of Meander Loops

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of Meander Loops JAMES C. BRICE Department of Earth Sciences, Washington University, St. Louis, Missouri 63130 Evolution of Meander Loops ABSTRACT pound meander loops described in this report. However, attention here is confined to the form and evolution of these and other mean- The evolution of the meanders on reaches of 10 alluvial streams in der types that occur on natural streams, a matter that needs to be the United States is reconstructed, and a scheme for the evolution clarified before further speculations are made on the mechanics of and classification of meander loops, derived from a study of the meandering. meandering pattern of 125 alluvial streams, is proposed. In the main Meander-loop evolution, as described and illustrated here, has evolutionary trend, a low symmetrical arc of approximately con- been interpreted mainly from the sequential development of mean- stant curvature tends to increase in height but decrease in radius as it der scrolls as shown on aerial photographs and from the shift of grows. When its length exceeds its radius, the arc is termed a simple stream position as determined from sequential aerial photographs. symmetrical meander loop. A simple loop becomes asymmetrical by Most old maps have sufficiently great planimetric errors so that they the growth on its perimeter of a second arc of constant curvature, are not useful for this purpose. Aerial photographs and recent U.S. which is commonly tangent to the first and curved toward the same Geological Survey topographic maps have been acquired for about side of the stream. A simple loop becomes compound when a second 125 reaches of meandering streams in the United States, and loop arc on its perimeter has developed into a loop. Four main categories forms on all of these reaches have been studied. However, few river of loops (simple symmetrical, simple asymmetrical, compound flood plains show meander scrolls with sufficient clarity for interpre- symmetrical, and compound asymmetrical) and about 16 form types are proposed. The compound loops are regarded as aberrant forms of indefinite radius and length, but the meandering patterns can be analyzed into simple loops whose properties can be measured and treated statistically. INTRODUCTION It is generally known that the evolution of meander loops on natural streams is likely to include downstream migration, increase in amplitude, and eventual cutoff at the neck; but specific informa- tion as to how the different loop forms evolve seems to be lacking in the literature. This paper presents a scheme for the evolution and classification of meander loops and demonstrates its application to some meandering streams in different geomorphic regions of the United States. The terms "meander" and "meander loop" are some- times used interchangeably, but according to the usage of Leopold and others (1964, p. 295), which is followed here, a meander con- sists of a pair of opposing loops. On natural streams, however, a meander loop is not usually paired with another loop of the same size and form. The hypothetical development of meanders is illustrated and de- scribed in a general way by Davis (1902) and by Lobeck (1939, p. 226). The relevant discussion in Leopold and others (1964) is di- rected mainly toward the mechanics of meandering rather than the evolutionary development of meander forms. Langbein and Leopold (1966) proposed that meanders tend toward the development of a stable form (a "sine-generated" curve) tha t minimizes the sum of the squares of the changes in direction for each successive unit length, but the stages by which such a form may develop are not discussed. An account of migration at certain bends of the lower Mississippi River is given by Carey (1969). Daniel (1971) analyzed the growth of several meanders on streams in Indiana, including the White River, from which he concluded that the process of channel move- ment in a meander system involves rotation and translation of meander loops and an increasing path ler.gth. Handy (1972) plotted the growth of a meander in the Des Moines River for a period of about 90 yr and showed that the rate of growth slowed gradually as the channel approached the edge of the meander belt. Lewin (1972) has described the late-stage growth of meanders on some gravel-bed rivers in Wales. As meander length increases, the meander form increases in complexity which is attributed to the effects of evenly spaced riffles on the stream bed. The late-stage Figure 1. Scheme for evolution and classification of meander loops. Flow direction is meanders illustrated by Lewin are apparently the same as the com- left to right for these and all subsequent illustrations. Geological Society of America Bulletin, v. 85, p. 581-586, 6 figs., April 1974 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/85/4/581/3443619/i0016-7606-85-4-581.pdf by guest on 29 September 2021 582 J. C. BR [Ci- tation of meander evolution, and meanders on Few rivers grow at a fast enough rate for evolutionary trends to be discerned in the maximum time span (about 30 yr) between photographs. The White River and the East Fork White River in Indiana have both distinct meander scrolls and a rapid rate of meander growth, and several examples are therefore drawn from these rivers. Neither meander loops that are incised in bedrock nor alluvial loops th at are \ * J Y //!/ in contact with valley sides have been used as examples; nor have I used meanders that might have evolved with the "underfit" condi- / Xl/ 0 5 KM tions postulated by Dury (1964). With the exception of the Maamee River meanders, all meanders used as examples have probably evolved within the past 500 yr, as indicated either by historical records or by extrapolation of measured migration rates. " Jillw Meander loops and meandering reaches are represented on the illustrations herein by a single line that represents the stream center- m '••Nfcfji ^^ line. Where a stream centerline is traced from maps or aerial photo- graphs, it applies to the stream at a stage near the median point on Mx.7^ V/ i^^tAo M the flow duration curve, which is an approximation to the modal stage and to the "normal" stage used by the Topographic Division of the U.S. Geological Survey for representation of streams on maps. The centerline at beads is drawn halfway between the shoreline of the point bar and the cut bank on the outside of bends. Reconstruction of former stream centerlines from meander scrolls has been based on the assumptions that a stream centerline is parallel I . • • • f to a contemporaneous meander scroll and that contemporaneous 0 500 M scrolls of adjoining loops can be correlated on the basis of trend and position. All map references, given in the captions of illustra:ions and elsewhere, apply to U.S. Geological Survey topographic maps. Figure 3. Evolution of simple asymmetrical meander loops. A, Mississippi River On all illustrations, the flow direction is from left to right and the betveen New Madrid, Missjuri, and Dyersburg, Tennessee (Dyersburg 1:250,000); metric scale is used. cent :rlines prior to 1944 intei preted from chronological sequence of alluvial deposits as Circular arcs are inscribed on the loops of Figure 1 for compara- illus rated by Fisk (1944, PI. j 2, Sheet 3). B, White River near Petersburg, Indiana (Iona 7%'I; centerline of 1937 (heiviest line) from aerial photograph and prior centerlines tive purposes to indicate the general geometry and symmetry ol the intei preted from meander sciolls. C, Elkhorn Fiver, Scribner, Nebraska (Scribner 7Vi' idealized forms. For the evolutionary scheme, an approximate ft of and Uehling 7 V;':. Redrawn from Bentall and others (1971, p. 20). circular arcs to segments of the meandering pattern is suffic ent. Such approximation can be quickly ascertained by fitting one of a successive small segments of the stream centerline against distance as series of concentric circles, inscribed on transparent film, to the measured along the stream, according to the useful method devised pattern. Curvature can also be studied by plotting the angular devia- by Langbein and Leopold (1966). Segments of the resulting plot, tion from mean downstream direction (or simply the azimuth) of which have a uniform slope, represent arcs of uniform curvature. Langbein and Leopold |p. H4) reported that the radius of curvature is nearly constant for £ full third of the length of a meander loop. Plots made in the cou-se of this study indicate that segments of constant curvature are much more prominent in the geometry of most meanders, which apparently have not attained the ultimate equilibrium form propesed by Langbein and Leopold. A quantitative analysis of the whole meandering pattern on natural streams must be preceded by a careful consideration of what forms are to be measure d. This paper is intended to provide a basis for such analysis by def ning and classifying meander loops and by demonstrating the genstic relations between loops of different conf guration. The fit of circular arcs to a meandering reach and the technique proposed for quantitative analysis of the pattern are de- monstrated by an example at the end of this paper. SCHEME FOR EVOLUTION AND CLASSIFICATION The scheme of Figure 1 applies to about 125 reaches of meander- ing rivers in the United States, from which examples corresponding to the different loop forns will be cited. The sequence of forms A through C in Figure 1 tepresents an evolutionary trend in which meander ioops originate as stream segments of approximately con- stant curvature, or low circular arcs, that increase in height with time. Length of an arc i:; measured along a chord drawn between point; of tangency with adjoining arcs.
Recommended publications
  • Classifying Rivers - Three Stages of River Development
    Classifying Rivers - Three Stages of River Development River Characteristics - Sediment Transport - River Velocity - Terminology The illustrations below represent the 3 general classifications into which rivers are placed according to specific characteristics. These categories are: Youthful, Mature and Old Age. A Rejuvenated River, one with a gradient that is raised by the earth's movement, can be an old age river that returns to a Youthful State, and which repeats the cycle of stages once again. A brief overview of each stage of river development begins after the images. A list of pertinent vocabulary appears at the bottom of this document. You may wish to consult it so that you will be aware of terminology used in the descriptive text that follows. Characteristics found in the 3 Stages of River Development: L. Immoor 2006 Geoteach.com 1 Youthful River: Perhaps the most dynamic of all rivers is a Youthful River. Rafters seeking an exciting ride will surely gravitate towards a young river for their recreational thrills. Characteristically youthful rivers are found at higher elevations, in mountainous areas, where the slope of the land is steeper. Water that flows over such a landscape will flow very fast. Youthful rivers can be a tributary of a larger and older river, hundreds of miles away and, in fact, they may be close to the headwaters (the beginning) of that larger river. Upon observation of a Youthful River, here is what one might see: 1. The river flowing down a steep gradient (slope). 2. The channel is deeper than it is wide and V-shaped due to downcutting rather than lateral (side-to-side) erosion.
    [Show full text]
  • Belt Width Delineation Procedures
    Belt Width Delineation Procedures Report to: Toronto and Region Conservation Authority 5 Shoreham Drive, Downsview, Ontario M3N 1S4 Attention: Mr. Ryan Ness Report No: 98-023 – Final Report Date: Sept 27, 2001 (Revised January 30, 2004) Submitted by: Belt Width Delineation Protocol Final Report Toronto and Region Conservation Authority Table of Contents 1.0 INTRODUCTION......................................................................................................... 1 1.1 Overview ............................................................................................................... 1 1.2 Organization .......................................................................................................... 2 2.0 BACKGROUND INFORMATION AND CONTEXT FOR BELT WIDTH MEASUREMENTS …………………………………………………………………...3 2.1 Inroduction............................................................................................................. 3 2.2 Planform ................................................................................................................ 4 2.3 Meander Geometry................................................................................................ 5 2.4 Meander Belt versus Meander Amplitude............................................................. 7 2.5 Adjustments of Meander Form and the Meander Belt Width ............................... 8 2.6 Meander Belt in a Reach Perspective.................................................................. 12 3.0 THE MEANDER BELT AS A TOOL FOR PLANNING PURPOSES...............................
    [Show full text]
  • Modification of Meander Migration by Bank Failures
    JournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE Modification of meander migration by bank failures 10.1002/2013JF002952 D. Motta1, E. J. Langendoen2,J.D.Abad3, and M. H. García1 Key Points: 1Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, • Cantilever failure impacts migration 2National Sedimentation Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Oxford, Mississippi, through horizontal/vertical floodplain 3 material heterogeneity USA, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA • Planar failure in low-cohesion floodplain materials can affect meander evolution Abstract Meander migration and planform evolution depend on the resistance to erosion of the • Stratigraphy of the floodplain floodplain materials. To date, research to quantify meandering river adjustment has largely focused on materials can significantly affect meander evolution resistance to erosion properties that vary horizontally. This paper evaluates the combined effect of horizontal and vertical floodplain material heterogeneity on meander migration by simulating fluvial Correspondence to: erosion and cantilever and planar bank mass failure processes responsible for bank retreat. The impact of D. Motta, stream bank failures on meander migration is conceptualized in our RVR Meander model through a bank [email protected] armoring factor associated with the dynamics of slump blocks produced by cantilever and planar failures. Simulation periods smaller than the time to cutoff are considered, such that all planform complexity is Citation: caused by bank erosion processes and floodplain heterogeneity and not by cutoff dynamics. Cantilever Motta, D., E. J. Langendoen, J. D. Abad, failure continuously affects meander migration, because it is primarily controlled by the fluvial erosion at and M.
    [Show full text]
  • Meander Bend Migration Near River Mile 178 of the Sacramento River
    Meander Bend Migration Near River Mile 178 of the Sacramento River MEANDER BEND MIGRATION NEAR RIVER MILE 178 OF THE SACRAMENTO RIVER Eric W. Larsen University of California, Davis With the assistance of Evan Girvetz, Alexander Fremier, and Alex Young REPORT FOR RIVER PARTNERS December 9, 2004 - 1 - Meander Bend Migration Near River Mile 178 of the Sacramento River Executive summary Historic maps from 1904 to 1997 show that the Sacramento River near the PCGID-PID pumping plant (RM 178) has experienced typical downstream patterns of meander bend migration during that time period. As the river meander bends continue to move downstream, the near-bank flow of water, and eventually the river itself, is tending to move away from the pump location. A numerical model of meander bend migration and bend cut-off, based on the physics of fluid flow and sediment transport, was used to simulate five future migration scenarios. The first scenario, simulating 50 years of future migration with the current conditions of bank restraint, showed that the river bend near the pump site will tend to move downstream and pull away from the pump location. In another 50-year future migration scenario that modeled extending the riprap immediately upstream of the pump site (on the opposite bank), the river maintained contact with the pump site. In all other future migration scenarios modeled, the river migrated downstream from the pump site. Simulations that included removing upstream bank constraints suggest that removing bank constraints allows the upstream bend to experience cutoff in a short period of time. Simulations show the pattern of channel migration after cutoff occurs.
    [Show full text]
  • TRCA Meander Belt Width
    Belt Width Delineation Procedures Report to: Toronto and Region Conservation Authority 5 Shoreham Drive, Downsview, Ontario M3N 1S4 Attention: Mr. Ryan Ness Report No: 98-023 – Final Report Date: Sept 27, 2001 (Revised January 30, 2004) Submitted by: Belt Width Delineation Protocol Final Report Toronto and Region Conservation Authority Table of Contents 1.0 INTRODUCTION......................................................................................................... 1 1.1 Overview ............................................................................................................... 1 1.2 Organization .......................................................................................................... 2 2.0 BACKGROUND INFORMATION AND CONTEXT FOR BELT WIDTH MEASUREMENTS …………………………………………………………………...3 2.1 Inroduction............................................................................................................. 3 2.2 Planform ................................................................................................................ 4 2.3 Meander Geometry................................................................................................ 5 2.4 Meander Belt versus Meander Amplitude............................................................. 7 2.5 Adjustments of Meander Form and the Meander Belt Width ............................... 8 2.6 Meander Belt in a Reach Perspective.................................................................. 12 3.0 THE MEANDER BELT AS A TOOL FOR PLANNING PURPOSES...............................
    [Show full text]
  • Approaches to the Enumerative Theory of Meanders
    Approaches to the Enumerative Theory of Meanders Michael La Croix September 29, 2003 Contents 1 Introduction 1 1.1 De¯nitions . 2 1.2 Enumerative Strategies . 7 2 Elementary Approaches 9 2.1 Relating Open and Closed Meanders . 9 2.2 Using Arch Con¯gurations . 10 2.2.1 Embedding Semi-Meanders in Closed Meanders . 12 2.2.2 Embedding Closed Meanders in Semi-Meanders . 14 2.2.3 Bounding Meandric Numbers . 15 2.3 Filtering Meanders From Meandric Systems . 21 2.4 Automorphisms of Meanders . 24 2.4.1 Rigid Transformations . 25 2.4.2 Cyclic Shifts . 27 2.5 Enumeration by Tree Traversal . 30 2.5.1 A Tree of Semi-Meanders . 31 2.5.2 A Tree of Meanders . 32 3 The Symmetric Group 34 3.1 Representing Meanders As Permutations . 34 3.1.1 Automorphisms of Meandric Permutations . 36 3.2 Arch Con¯gurations as Permutations . 37 3.2.1 Elements of n That Are Arch Con¯gurations . 38 C(2 ) 3.2.2 Completing the Characterization . 39 3.3 Expression in Terms of Characters . 42 4 The Matrix Model 45 4.1 Meanders as Ribbon Graphs . 45 4.2 Gaussian Measures . 49 i 4.3 Recovering Meanders . 53 4.4 Another Matrix Model . 54 5 The Temperley-Lieb Algebra 56 5.1 Strand Diagrams . 56 5.2 The Temperley-Lieb Algebra . 57 6 Combinatorial Words 69 6.1 The Encoding . 69 6.2 Irreducible Meandric Systems . 73 6.3 Production Rules For Meanders . 74 A Tables of Numbers 76 Bibliography 79 ii List of Figures 1.1 An open meander represented as a river and a road.
    [Show full text]
  • Bounds for the Growth Rate of Meander Numbers M.H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Combinatorial Theory, Series A 112 (2005) 250–262 www.elsevier.com/locate/jcta Bounds for the growth rate of meander numbers M.H. Alberta, M.S. Patersonb aDepartment of Computer Science, University of Otago, Dunedin, New Zealand bDepartment of Computer Science, University of Warwick, Coventry, UK Received 22 September 2004 Communicated by David Jackson Available online 19 April 2005 Abstract We provide improvements on the best currently known upper and lower bounds for the exponential growth rate of meanders. The method of proof for the upper bounds is to extend the Goulden–Jackson cluster method. © 2005 Elsevier Inc. All rights reserved. MSC: 05A15; 05A16; 57M99; 82B4 Keywords: Meander; Cluster method 1. Introduction A meander of order n is a self-avoiding closed curve crossing a given line in the plane at 2n places, [11]. Two meanders are equivalent if one can be transformed into the other by continuous deformations of the plane, which leave the line fixed (as a set). A number of authors have addressed the problem of exact and asymptotic enumeration of the number Mn of meanders of order n (see for instance [6,9] and references therein). The relationship between the enumeration of meanders and Hilbert’s 16th problem is discussed in [1] and a general survey of the connection between meanders and related structures and problems in mathematics and physics can be found in [2]. It is widely believed that an asymptotic formula n Mn ≈ CM n E-mail addresses: [email protected] (M.
    [Show full text]
  • North Meander Monitoring Report 2008
    Snohomish County Public Works Department Surface Water Management Division 2009 Project Effectiveness Monitoring Program Report North Meander Channel Reconnection Project, Stillaguamish River, 3-year Monitoring Results The North Meander, Stillaguamish River www.surfacewater.info ACKNOWLEDGEMENTS Department of Public Works Steve Thomsen, P.E., Director Surface Water Management (SWM) Division John Engel, P.E., Rivers and Habitat CIP Supervisor Recommended Citation: Leonetti, F., B. Gaddis, and A. Heckman. 2009. North Meander Channel Reconnection Project, Stillaguamish River, 3-year Monitoring Results. 2009 Project Effectiveness Monitoring Program Report. Snohomish County, Public Works, Surface Water Management, Everett, WA. Contributing Staff The following people have made significant contributions to this monitoring project and/or the review and completion of this report: Michael Purser, Andy Haas, Mike Rustay, Arden Thomas, Tong Tran, John Engel, Chris Nelson, Kathy Thornburgh, Ted Parker, Scott Moore, Michael Smith, Josh Kubo (intern), Mike Cooksey (temporary staff), and John Herrmann. Report Inquiries: Snohomish County Public Works Surface Water Management Division 3000 Rockefeller Avenue, MS-607 Everett, WA 98201-4046 Phone: (425) 388-3464 Fax: (425) 388-6455 www.surfacewater.info ii Table of Contents Page EXECUTIVE SUMMARY 1 CHAPTER 1. Monitoring water quality, channel, habitat, vegetation and other site conditions 9 CHAPTER 2. North Meander Fish Use, 2007-2009 34 LITERATURE CITED 52 APPENDIX A. North Meander Photo Point Survey and Aerial Oblique or Orthophotos. List of Tables CHAPTER 1 Page Table 1-1 Number of days the running 7-day average of daily maximum temperatures exceeded designated use temperature criteria. The shaded column represents the regulated temperature criterion for North Meander.
    [Show full text]
  • RVR Meander User Manual—Arcgis Version
    RVR MEANDER – USER’S MANUAL ArcGIS VERSION Davide Motta1, Roberto Fernández2, Jorge D. Abad3, Eddy J. Langendoen4, Nils Oberg5, Marcelo H. Garcia6 May 2011 ABSTRACT This document illustrates how to use the RVR Meander Graphical User Interface develpoped for ArcMap. It provides a description of the current functionalities of the software and shows the user the steps needed to run a simulation and view the output. A standalone version of RVR Meander and its User’s Manual are also available. The present manual is a work‐in‐progress version of the final one. RVR Meander ßeta is in the public domain and is freely distributable. The authors and above organizations assume no responsibility or liability for the use or applicability of this program, nor are they obligated to provide technical support. Author Affiliations: 1 Graduate Research Assistant, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana­ Champaign, Urbana, IL, 61801. E­mail: [email protected] 2 Graduate Research Assistant, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana­ Champaign, Urbana, IL, 61801. E­mail: [email protected] 3 Assistant Professor, Dept. of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15260. E­mail: [email protected] 4 Research Hydraulic Engineer, US Department of Agriculture, Agricultural Research Service, National Sedimentation Laboratory, Oxford, MS, 38655. E­mail:[email protected] 5 Resident Programmer, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana­ Champaign, Urbana, IL, 61801. E­mail: [email protected] 6 Chester and Helen Siess Professor, Dept. of Civil and Environmental Engineering, University of Illinois at Urbana­Champaign.
    [Show full text]
  • Meander Line Meander Line Diagram Graphic
    Web Problem Fix Calculate Proportionate Positions of Corners & Adjust Meander Line Meander Line Diagram graphic Should be Should be COR #6 COR #9 PAGE 8 of 11 2nd INCORRECT FEEDBACK That's still incorrect. The correct position is N. 10001.456, E. 9801.389. These coordinates were determined as follows: The record information and retracement diagram indicate the following: • Record latitude (northing) of the east 1/2 mile is N. – 0.8893. • Record latitude (northing) of the west 1/2 mile is N. 1.9168. • Record departure (easting) of the east 1/2 mile is E. 39.1899. • Record departure (easting) of the west 1/2 mile is E. 41.1554. • Retracement latitude (northing) between controlling corners is N. 0.9550. • Retracement departure (easting) between controlling corners is E. 81.1010. • Misclosure in latitude = 0.0725 • Misclosure in departure = 0.7557 The latitudinal position of the corner is determined using the method described in Section 5-36 of the Manual - "...is moved north or south an amount proportional to the total distance from the starting point". Applying this method results in the following: For the east 1/2 mile • 39.20 (distance from starting point) ÷ 80.40 (total distance between controlling corners) = 0.487562 • 0. 487562 x 0.0725 (misclosure in latitude) = 0.0353 • N. 0.8893 (record latitude of east 1/2 mile) + 0.0353 (correction in latitude east 1/2 mile) = 0.9246 chains • N. 10000.531 (N. coor. of cor. #8) + 0.9246 (corrected latitude of east 1/2 mile) = N. 10001.456 ( N. coor. of cor.
    [Show full text]
  • Meander Graphs and Frobenius Seaweed Lie Algebras II
    Georgia Southern University Digital Commons@Georgia Southern Mathematical Sciences Faculty Publications Mathematical Sciences, Department of 7-29-2015 Meander Graphs and Frobenius Seaweed Lie Algebras II Vincent Coll Lehigh University, [email protected] Matthew Hyatt Pace University Colton Magnant Georgia Southern University, [email protected] Hua Wang Georgia Southern University, [email protected] Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/math-sci-facpubs Part of the Education Commons, and the Mathematics Commons Recommended Citation Coll, Vincent, Matthew Hyatt, Colton Magnant, Hua Wang. 2015. "Meander Graphs and Frobenius Seaweed Lie Algebras II." Journal of Generalized Lie Theory and Applications, 9 (1): 1-6. doi: 10.4172/ 1736-4337.1000227 https://digitalcommons.georgiasouthern.edu/math-sci-facpubs/361 This article is brought to you for free and open access by the Mathematical Sciences, Department of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Mathematical Sciences Faculty Publications by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Coll et al., J Generalized Lie Theory Appl 2015, 9:1 Journal of Generalized Lie http://dx.doi.org/10.4172/1736-4337.1000227 Theory and Applications Research Article Open Access Meander Graphs and Frobenius Seaweed Lie Algebras II Vincent Coll1*, Matthew Hyatt2, Colton Magnant3 and Hua Wang3 1Department of Mathematics, Lehigh University, Bethlehem, PA, USA 2Mathematics Department, Pace University, Pleasantville, NY, USA 3Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, USA Abstract We provide a recursive classification of meander graphs, showing that each meander is identified by a unique sequence of fundamental graph theoretic moves.
    [Show full text]
  • Press Deck Vancouver to Alaska Cycle Tour
    Media Kit 2017 Meander-the-World.com [email protected] About us Meander the World is an adventure travel blog with a focus on unique experiences that capture the culture and landscapes of each individual destination. With over 30,000 followers and listed multiple times as one of the top travel blogs to follow, Meander the World is an established voice in the outdoor lifestyle market. Collaborations are designed to highlight the extraordinary, with storytelling crafted to fit the brand. Through photos and words, our goal is to inspire people to enjoy and explore the world we live in. Meander-the-World.com [email protected] What we stand for Sustainable travel Years of travel have taught us that an exotic escape can take place in your own backyard but that by exploring the world around you, you will ultimately become richer through experiences. By embarking on human powered adventures, we highlight natural beauty around the globe and promote respect for the wild. Strong women and men in the outdoors Meander the World is run by a young couple that aims to promote people to get outside. You won’t see any duck faced selfies or flexing bathroom shots, instead Meander aims to promote strong role models capable of climbing mountains, kayaking into the wilderness, biking for weeks and travelling the world. Life outside the box After over a decade of continuous travel with multiple around the world trips, Meander the World promotes a life outside the normal ‘plan’. Whether encouraging the weekend warrior to do more, the backpacker to go further, or the person on the couch to just get outside, Meander’s goal is to encourage others to enjoy life to its fullest and challenge themselves every day.
    [Show full text]