Introduction to Tertiary Filtration Study Guide November 1991 Edition

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Tertiary Filtration Study Guide November 1991 Edition Wisconsin Department of Natural Resources Wastewater Operator Certification Introduction to Tertiary Filtration Study Guide November 1991 Edition Subclass H Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 07/18/13 Introduction to Tertiary Filtration Study Guide - November 1991 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. Note: Key knowledges 2.1.9 and 2.1.10 were edited July 2013. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification". It can also be found in the annual DNR "Certified Operator" or by contacting your DNR regional operator certification coordinator. Acknowledgements Special appreciation is extended to the many individuals who contributed to this effort. Thomas A. Kroehn, Director of Office of Operations and Maintenance, DNR. Thomas P. Mickelson, Coordinator, Operator Certification and Training, DNR. Wastewater operators were represented by: Bob Anderson - Brooklyn Jerry Carroll - Lancaster Berger Enstad - Sun Prairie Phil Hoopman - Ripon Pat O'Flahrity - Mineral Point Phil Hoopman - Ripon Cheryl Janny - Watertown Mike Kelly - Jefferson Printed on 07/18/13 Dave Paulson - Monroe Kevin Pub - Watertown Joel Sampson - Lomira Brian Schepp - Waupun Mark Sillmon - Waterloo Steve Swiggum - Marshall Dennis Westhuis - Waupun VTAE and educational interests were represented by: Glen Smeaton, Environmental Education Pat Gomez, Moraine Park Technical College Bill Hughes, Mead & Hunt DNR district offices were represented by: Tom Mugan, Southern District, Fitchburg DNR central office was represented by: Lori Eckrich, Madison Ron Wilhelm, Madison Printed on 07/18/13 Introduction to Tertiary Filtration Study Guide - November 1991 Edition Table of Contents Chapter 1 - Principle, Structure and Function Section 1.1 - Principle of Tertiary Filtration pg. 1 Section 1.2 - Structure and Function pg. 1 Chapter 2 - Operation and Maintenance Section 2.1 - Operation pg. 3 Section 2.2 - Maintenance pg. 7 Chapter 3 - Monitoring and Troubleshooting Section 3.1 - Monitoring pg. 8 Section 3.2 - Troubleshooting pg. 9 Chapter 4 - Safety and Calculations Section 4.1 - Safety pg. 12 Section 4.2 - Calculations pg. 13 Printed on 07/18/13 Introduction to Tertiary Filtration Study Guide - November 1991 Edition Chapter 1 - Principle, Structure and Function Section 1.1 - Principle of Tertiary Filtration 1.1.1 Discuss the primary purpose of tertiary filtration. Tertiary filtration is used to reduce BOD, total suspended solids and phosphorus in the final effluent. Suspended solids will have BOD and phosphorus associated with it so by removing suspended solids to very low levels will also significantly reduce the BOD and phosphorus. Filtration may be required to consistently achieve stringent effluent limits for BOD, TSS and phosphorus. 1.1.2 Describe receiving stream water quality/quantity characteristics that would require tertiary filtration. Stream water quality classifications describe the use that the water course should achieve. The general classifications are exceptional waters (no discharge allowed), high quality (trout streams with strict effluent limits), normal fish and aquatic life (majority of water courses), intermediate (low quality), and marginal (basically effluent streams). Tertiary filtration could be required on almost any of these classifications in order to meet the stream classification requirements. The flow quantity in the stream is used to determine the allowable loading without affecting the intended stream use (low flow streams would have strict effluent limits while larger streams may need only secondary limits). 1.1.3 Define the terms headloss and terminal headloss. Headloss is defined as the loss of flow energy of the water as it passes through a filter. The greater the vertical difference between the upstream water levels and the downstream water levels, the greater the headloss. Terminal headloss is the maximum headloss allowed prior to backwashing. Section 1.2 - Structure and Function 1.2.1 Describe where water enters and leaves a filter during the following functions: A. During a filter run B. During a backwash cycle A. During a filter run: after secondary treatment the final effluent flows to the filter via various piping arrangements; liquid flow to the filter is normally controlled by weirs or valving arrangements; the water leaves the filter after passing through the media using an underdrain system B. During a backwash cycle: during a backwash cycle the flow through the filter is reversed, with the backwash water entering the underdrain system and flowing upward through the media; the backwash water is directed to a waste drain line that goes to a spent backwash tank or to the head of the treatment plant Page 1 of 15 Printed on 07/18/13 Introduction to Tertiary Filtration Study Guide - November 1991 Edition 1.2.2 Describe the function of the following parts of a filter: A. Media B. Underdrains C. Washwater troughs D. Media support A. Media: the function of the media is to provide filtering to remove suspended solids; the suspended solids are "trapped" in the media B. Underdrains: the function of the underdrains is to collect the filtered water and convey the water to downstream treatment units; the underdrains are also used during backwash to convey the backwash water to the filter media C. Washwater troughs: the washwater troughs are channel-like devices located above the media used to convey backwash water from the filter to a waste drain line D. Media support: the media support is used to prevent the media from entering the underdrain system; depending on the type of filter, the support system can include a gravel bed on top of the underdrains, the top of the underdrain systems that provides media retaining strainers, or in the case of shallow bed filters various forms of porous plates. 1.2.3 Diagram a piping by-pass arrangement for a filter and indicate the valving required to isolate the filter. With either deep bed or shallow bed filters, the filter is by-passed using piping, and valving arrangements to isolate the filter. To isolate the filter close valves 2 and 3 and open valves 1 and 4. Figure 1.2.3.1 1.2.4 Identify the common media materials used for filtration. Coarse sand, fine sand, anthracite, and garnet are commonly used as filter media. The purpose of using these materials is to remove as much suspended solids as possible. The media present a barrier with pore size smaller than the suspended solids. Page 2 of 15 Printed on 07/18/13 Introduction to Tertiary Filtration Study Guide - November 1991 Edition 1.2.5 Describe the location of the various media in multi-media filters. Stratified deep bed multi-media filters use various materials as media. During backwash with the bed fully expanded (fluidized) the media is redeposited in order of specific gravity and size (lightest and finest on the top). Specific gravity values are anthracite 1.6 to 1.7 with an effective size of 1.0-1.2 mm, sand 2.65 with an effective size of 0.5-0.6 mm, and garnet 4.0 to 4.6 with an effective size of 0.3-0.4 mm. Most multi-media filters would have the following sequence from top to bottom anthracite- sand-garnet. If gravel is used for media support it would be on the bottom above the underdrains. The common dual-media would be anthracite and sand. Large solids would be retained in the upper media with finer solids retained in the lower smaller effective size media. Typical dual and multi-media filters will have total media depth of 30" to 48". The anthracite in dual-media filters would range between 8" to 24". Shallow bed filters (less than 18") use just sand with an effective size of 0.5 to 0.6 mm. Single media filters may be stratified or unstratified. 1.2.6 Discuss the common auxiliary cleaning aids that may be used during backwashing to aid in cleaning the media. Air scour and surface jets may be used to aid in cleaning the media during backwashing. Surface jets are used in some filters to increase shearing action during backwash which aids in the cleaning of the media and surface encrustations. Air scour increases turbulence and bed expansion during the backwash cycle. The increased agitation of the filter bed by the air scour improves the removal of solid particles from the media. Air scour reduces the formation of mudballs and reduces the amount of backwash water needed. Chapter 2 - Operation and Maintenance Section 2.1 - Operation 2.1.1 List the items to consider in starting-up a filter that is new, replaced, or has been stored dry.
Recommended publications
  • Anaerobic Digestion of Wastewater Sludge (Nazaroff & Alvarez-Cohen, Section 6.E.3)
    Anaerobic Digestion of Wastewater Sludge (Nazaroff & Alvarez-Cohen, Section 6.E.3) nice, clean water going to disinfection and then to outdoor body of receiving water (stream, lake or sea) sludge in need of further treatment The goal is to reduce the amount of sludge that needs to be disposed. The most widely employed method for sludge treatment is anaerobic digestion. In this process, a large fraction of the organic matter (cells) is broken down into carbon dioxide (CO2) and methane (CH4), and this is accomplished in the absence of oxygen. About half of the amount is then converted into gases, while the remainder is dried and becomes a residual soil-like material. What the equipment looks like The tank is capped - to prevent oxygen from coming in, - to prevent odors from escaping, and - to capture the methane produced. This methane, a fuel, can be used to meet some of the energy requirements of the wastewater treatment facility (co-generation). What the sludge looks like after anaerobic digestion and subsequent drying. It is rich in nitrates and performs well as a fertilizer. (Photos from http://www.madep-sa.com/english/wwtp.html) 1 (Originally from Metcalf & Eddy, 1991) from & Metcalf Eddy, (Originally 6.E.7) Figure Alvarez-Cohen, & (Nazaroff How the system works The treatment of wastewater sludge, from both primary and secondary treatment steps, consists of two main phases. ● In the 1st step, all incoming flows of sludge are combined, and the mixture is heated to a mild temperature (about body temperature) to accelerate biological conversion. The residence time here ranges from 10 to 20 days.
    [Show full text]
  • Sewage Secondary Treatment After Primary Treatment, the Sewage Water Is Subjected to the Next Phase Called Biological Treatment Or Secondary Treatment
    Sewage secondary treatment After primary treatment, the sewage water is subjected to the next phase called biological treatment or secondary treatment. Dissolved and suspended biological materials are removed by indigenous microbial decomposition in a managed environment. In this treatment, BOD is reduced up to 90-95%. Biological treatment is carried out in two important phases: 1. Aerobic phase: oxidation lagoons trickling filters, activated sludge 2. Anaerobic phase: sludge digestion A. Oxidation lagoons /oxidation ponds / stabilization ponds 1. It is outdoor, simple, suspension type aerobic treatment. 2. It is suggested for small societies in rural areas where sufficient low lying land of little real state value is available. 3. It is oldest of the sewage treatment systems used in most of developing countries due to its low cost. 4. In this shallow pond is required which should be maximum of 10 feet depth having inlet and outlet. 5. It consists of three different zones as shown in the following diagram: Requirements of Oxidation pond: 1. Presence of algal growth which produces oxygen. 2. Oxygen is also available from atmosphere. 3. Heterotrophic aerobic and anaerobic microbes for decomposing sewage. 4. Sunlight required for photosynthesis, also has bactericidal properties (UV). Advantages of oxidation pond: 1. Simple 2. Inexpensive 3. Low maintenance Disadvantages of oxidation pond: 1. Effected by environment: low temperature, cloudy sky lowers efficiency 2. Takes longer time(Long retention time) 3. Gives bad odour(H2 S) 4. Not hygienic 5. Just lowers BOD by 25%to 60% B. Trickling Filter Method 1. It is also outdoor, aerobic, relatively simple but of film flow type.
    [Show full text]
  • How Is Wastewater Treated (PDF)
    FOLD FOLD FOLD We Need Your Help Industrial Service Area How is Pretreatment Here are three easy things you can do to protect The City of Everett’s wastewater treatment Wastewater water quality and minimize treatment cost. plant, called the Everett Water Pollution Control unicipal treatment plants like the EWPCF are Facility (EWPCF), is located on Smith Island 1. Keep trash out of the system. designed to treat residential and commercial in North Everett. The EWPCF serves more than Treated? ■ M Put hair, feminine hygiene products, wastewater. However, some industrial 133,000 people including all of Everett and cotton swabs and grease in the wastewater contains pollutants that primary and parts of Mukilteo, Silver Lake and Alderwood. garbage. secondary treatment cannot remove. The plant treats an average of 20 million 2. Reduce your water consumption. This wastewater requires industrial pretreatment gallons of wastewater per day, although the ■ Conserving water saves money and to remove metals, acids or other chemicals, influent volume to the plant can increase to protects the environment since the less or in the case of food services, most fats almost 100 million gallons on rainy days. water you use, the less wastewater we and grease. City staff work with industrial have to treat. customers to remove these pollutants before the 3. Keep hazardous waste out of the system. wastewater is sent to the treatment plant. ■ Never put hazardous waste down the drain. Hazardous waste includes pesticides, herbicides, solvents, paint thinners and engine oil. Hazardous Biosolids waste is any material that can catch fire, Port explode, corrode or is toxic.
    [Show full text]
  • Anaerobic Digestion of Primary Sewage Effluent
    Anaerobic Digestion of Primary Sewage Effluent Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-EE0003507 Hawai‘i Energy Sustainability Program Subtask 3.4: Biomass Submitted by Hawai‘i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai‘i September 2014 Acknowledgement: This material is based upon work supported by the United States Department of Energy under Cooperative Agreement Number DE-EE0003507. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference here in to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. SUMMARY A hybrid system comprised an up-flow packed bed anaerobic reactor and a down-flow trickling-filter reactor connected in series was shown to effectively treat primary clarifier effluent. When a clarifier and sand filter were added to the system, the effluent water quality achieved values of BOD5 and TSS that were below the EPA’s water discharge limits of 30 mg/l and equivalent to highly efficient activated sludge systems.
    [Show full text]
  • Treatment and Biosolids Technologies
    Treatment and Biosolids Technologies City of Morro Bay New Water Reclamation Facility Engineering Component of Siting Study • Project engineering team will look at the following parameters related to each site: – Range of cost for conveyance, treatment, and distribution to potential users – Land availability for range of treatment and biosolids management options • A range of treatment technologies can reach City objectives – Keep options open during preliminary planning Public Workshop Results Top‐Ranked Issues from Dot Exercise • Environmental – Avoid Visual Impacts • Cost Issues – Keep Costs Low (highest score) • Engineering and Design – Recharge Morro Aquifer Overview • Environmental – Effluent reuse goals – Quality and Quantity – Conveyance methods for recycled water • Cost Issues / Engineering and Design – Liquid treatment technologies – Biosolids processing technologies / products – Procurement Treatment Processes • Preliminary – Screening of large solids • Primary –Flotation & settling • Secondary – Biological Treatment Source of • Tertiary – Filtration Biosolids • Disinfection • Advanced – Salts – Contaminants of Emerging Concern Treatment Process Selection Driven by End Goals 1. Start with effluent reuse goals 2. Identify treatment technologies to meet those goals 3. Develop plan for handling biosolids from range of liquid treatment options Effluent Reuse Goals ‐ Quantity • “How much” varies seasonally • Evapotranspiration rates determine potential use for irrigation • Wet weather or production of “off‐spec” water often require
    [Show full text]
  • Giving Wastewater a Boost with Breakthroughs in Secondary Treatment Brent Giles Research Director About Lux Research Coverage Areas
    Giving Wastewater a Boost with Breakthroughs in Secondary Treatment Brent Giles Research Director About Lux Research Coverage areas . Advanced Materials Helps clients find new business opportunities from . Agro Innovation emerging technologies in physical and life sciences . Alternative Fuels Offers ongoing technology and market intelligence, as . Autonomous Systems 2.0 well as market data and consulting services . Bio‐based Materials & Chemicals . Bioelectronics Over 250 clients on six continents – multinational . Efficient Building Systems corporations, investors, governments, and SMEs . Energy Electronics . Energy Storage Global reach,with offices in Boston, New York, . Exploration and Production Amsterdam, Singapore, Shanghai, and Tokyo . Food and Nutrition . Printed, Flexible, and Organic Combines deep technical expertise with business analysis Electronics to support strategic decisions . Solar . More at www.luxresearchinc.com Sustainable Building Materials . Water 2 Contents Problems with existing wastewater treatment A picture of the “average” activated sludge plant Six innovative technologies go head to head Stickney Water Reclamation Plant, Chicago 3 Contents Problems with existing wastewater treatment A picture of the “average” activated sludge plant Six innovative technologies go head to head Stickney Water Reclamation Plant, Chicago 4 Wastewater treatment gobbles energy and produces large volumes of sludge The dominant process for treating the world’s wastewater, activated sludge, faces three major issues: High energy Mountains of The squeeze consumption waste sludge for space 5 Anaerobic digestion reduces, but doesn’t eliminate waste sludge Does not scale down well Many facilities need to combine sludge with other waste streams Reduces sludge volume by about 40%, but you still have to do something with the remaining stabilized biosolids 6 Many U.S.
    [Show full text]
  • Municipal Wastewater Anaerobic Treatment with Enhanced Clarification Kevin Berg Marquette University
    Marquette University e-Publications@Marquette Master's Theses (2009 -) Dissertations, Theses, and Professional Projects Municipal Wastewater Anaerobic Treatment with Enhanced Clarification Kevin Berg Marquette University Recommended Citation Berg, Kevin, "Municipal Wastewater Anaerobic Treatment with Enhanced Clarification" (2015). Master's Theses (2009 -). 331. https://epublications.marquette.edu/theses_open/331 MUNICIPAL WASTEWATER ANAEROBIC TREATMENT WITH ENHANCED CLARIFICATION by Kevin J. Berg A Thesis submitted to the Faculty of the Graduate School, Marquette University, in Partial Fulfillment of the Requirements for the Degree of Master of Science Milwaukee, Wisconsin August 2015 ABSTRACT MUNICIPAL WASTEWATER ANAEROBIC TREATMENT WITH ENHANCED CLARIFICATION Kevin J. Berg Marquette University, 2015 As energy costs rise, water reclamation facilities (WRFs) desire lower cost, easily operated systems to remove BOD5 and suspended solids. WRFs typically utilize an aerobic process called activated sludge to remove biochemical oxygen demand (BOD). BOD, specifically 5 day BOD (BOD5), is used as an indicator of the organic strength of a solution. Anaerobic treatment provides an alternative to activated sludge by removing BOD5, generating biogas containing methane for energy and producing less biomass that requires disposal. Anaerobic treatment functions as an exceptional alternative to activated sludge when packaged as a system with a small footprint that operates at ambient temperature. These systems can produce effluent with organic constituent quality similar to activated sludge without requiring the energy inputs that conventional treatment demands. In this work, an anaerobic, fluidized bed reactor (FBR) treating both synthetic and real domestic primary effluent was utilized to remove BOD5 from wastewater. The reactor was operated at 10°C to determine operation under challenging, low-temperature conditions.
    [Show full text]
  • The Activated Sludge Process Part II Revised October 2014
    Wastewater Treatment Plant Operator Certification Training Module 16: The Activated Sludge Process Part II Revised October 2014 This course includes content developed by the Pennsylvania Department of Environmental Protection (Pa. DEP) in cooperation with the following contractors, subcontractors, or grantees: The Pennsylvania State Association of Township Supervisors (PSATS) Gannett Fleming, Inc. Dering Consulting Group Penn State Harrisburg Environmental Training Center MODULE 16: THE ACTIVATED SLUDGE PROCESS – PART II Topical Outline Unit 1 – Process Control Strategies I. Key Monitoring Locations A. Plant Influent B. Primary Clarifier Effluent C. Aeration Tank D. Secondary Clarifier E. Internal Plant Recycles F. Plant Effluent II. Key Process Control Parameters A. Mean Cell Residence Time (MCRT) B. Food/Microorganism Ratio (F/M Ratio) C. Sludge Volume Index (SVI) D. Specific Oxygen Uptake Rate (SOUR) E. Sludge Wasting III. Daily Process Control Tasks A. Record Keeping B. Review Log Book C. Review Lab Data Unit 2 – Typical Operational Problems I. Process Operational Problems A. Plant Changes B. Sludge Bulking C. Septic Sludge D. Rising Sludge E. Foaming/Frothing F. Toxic Substances II. Process Troubleshooting Guide Bureau of Safe Drinking Water, Department of Environmental Protection i Wastewater Treatment Plant Operator Training MODULE 16: THE ACTIVATED SLUDGE PROCESS – PART II III. Equipment Operational Problems and Maintenance A. Surface Aerators B. Air Filters C. Blowers D. Air Distribution System E. Air Header/Diffusers F. Motors G. Gear Reducers Unit 3 – Microbiology of the Activated Sludge Process I. Why is Microbiology Important in Activated Sludge? A. Activated Sludge is a Biological Process B. Tools for Process Control II. Microorganisms in Activated Sludge A.
    [Show full text]
  • Wastewater Treatment Processes
    Wastewater Treatment Processes (Sep 12 th -15 th , 2016) by Dr. Arun Kumar ( [email protected] ) Objective: To learn about processes used in wastewater treatment plant Courtesy: Dr. Irene Xagoraraki, MSU, USA September 27, 2016 Arun Kumar 1 ([email protected]) Minor 1 copies • Minor 1 copies next week Monday afternoon in different slots • Slot timings will be emailed. September 27, 2016 2 Characteristics of Domestic Wastewater September 27, 2016 4 Wastewater characteristics • Compare wastewater (WW)characteristics of – Domestic WW – Industrial WW (for ex: tannery industry; distillery industry) September 27, 2016 5 Wastewater Management Different sources http://dnr.metrokc.gov/WTD/homepage/process.htm Wastewater Management www.oconomowocusa.com/ wastewater.gif Municipal Wastewater Treatment Systems • Preliminary treatment (removes materials that can cause operational problems, equalization basins are optional) • Primary treatment (remove ~60% of solids and ~35% of BOD) • Secondary treatment (remove ~85% of BOD and solids) • Advanced treatment (varies: 95+ % of BOD and solids, N, P) • Final Treatment (disinfection) • Solids Processing (sludge management) Pre-Treatment of Industrial Wastewaters • Industrial wastewaters must be pretreated prior to being discharged to municipal sewer system • Pretreatment requirements set by regulatory agencies • Why: remove materials that will not be treated by municipal system, remove materials that inhibit the biological processes in secondary treatment • For example: silver ions are toxic to
    [Show full text]
  • Comparative Analysis of Grey Water Treatment Using Vermifilter Through Various Filter Depth Level
    Special Issue - 2019 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICONEEEA - 2k19 Conference Proceedings Comparative Analysis of Grey Water Treatment using Vermifilter Through Various Filter Depth Level 1* 2 T. Janani , Dr. S. Evany Nithya 1 2 Student, Asst.professor/HOD, Department of Civil Engineering, University college of engineering (BIT campus), Tiruchirappalli, Tamilnadu, India. Abstract:- Wastewater contains high number of organic solids consists of low number of organic solids and inorganic and harmful contaminants. Due to these harmful substance solids comparatively low than wastewater but these grey wastewater treatments is essential but many developed and waters is one of the major parts of wastewater so developing countries like India cannot construct and maintain treatment of grey water in house itself reduce the volume the conventional centralized sewage treatment plants due to of wastewater production. untreated grey water consists of high cost of treatment and high amount of wastewater production. So, cost effective and eco-friendly decentralized high amount of microorganism. These pathogens make sewage treatment system is needed in small areas. Hence grey water as harmful. So, treatment is essential before vermifilteration can be very effective for small villages and usage. According to United States Environmental colonies. In this system filter bed is inoculated with Protection agency, grey water can be treated to varying earthworms (Eisenia fetida). these earthworms body works as degrees U (victor G.Ngnaga et. al,2012) It can be treated a “biofilter” and it has high efficiency to remove BOD, using various secondary treatment. Mainly we have used COD.TSS by the general mechanism of biodegradation and Activates sludge process, waste stabilization pond, adsorption of organic wastes.
    [Show full text]
  • Supporting Document #3
    Supporting Document 3 Leachate Treatment Alternatives – Assessment and Evaluation Methodology Waste Management of Canada Corporation West Carleton Environmental Centre Landfill Footprint Expansion LEACHATE TREATMENT ALTERNATIVES – ASSESSMENT AND EVALUATION METHODOLOGY Prepared by: AECOM Canada Ltd. Project Number: 60242342 Date: August, 2012 Leachate Treatment Alternatives – Assessment and Evaluation Methodology West Carleton Environmental Centre Table of Contents Page 1. Overview of Leachate Treatment Alternatives ................................................. 1 1.1 Background .......................................................................................................... 1 1.2 Report Objective .................................................................................................. 1 2. Considerations for Leachate Treatment Alternatives ..................................... 2 2.1 Leachate Control.................................................................................................. 2 2.2 Leachate Generation Rate ................................................................................... 2 2.3 Leachate Quality .................................................................................................. 3 2.4 Leachate Pretreatment ........................................................................................ 5 2.4.1 Equalization .............................................................................................. 5 2.4.2 Biological Treatment ................................................................................
    [Show full text]
  • WASTEWATER TREATMENT Freshwater Water Quality 1
    WASTEWATER TREATMENT Freshwater Water Quality 1. INDICATOR (a) Name: Wastewater treatment. (b) Brief Definition: Proportion of wastewater that is treated, in order to reduce pollutants before being discharged to the environment, by level of treatment. (c) Unit of Measurement: Percentage of volume of generated wastewater treated by primary treatment, secondary treatment, tertiary treatment or not treated. (d) Placement in the CSD Indicator Set: Freshwater/Water Quality. 2. POLICY RELEVANCE (a) Purpose: This indicator assesses the potential level of pollution from domestic and industrial/commercial point sources entering the aquatic environment, and monitors progress towards reducing this potential within the framework of integrated water resources management. It helps to identify communities where wastewater treatment action is required to protect the ecosystem. Wastewater from households and different industries represent a significant pressure on the environment and treatment is normally required before discharge. The indicator assesses the proportion of wastewater that undergoes different (primary, secondary and tertiary) levels of treatment. It includes the volume of wastewater treated at public wastewater treatment plants, industrial wastewater treatment plants and by independent wastewater treatment systems. For treated wastewater from households (sometimes mixed with industrial wastewater in a public collecting system) to be considered acceptable it should undergo at least secondary treatment either at a public wastewater treatment
    [Show full text]