Comparative Analysis of Grey Water Treatment Using Vermifilter Through Various Filter Depth Level
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Combined Vermifiltration-Hydroponic System
applied sciences Article A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment Kirill Ispolnov 1,*, Luis M. I. Aires 1,Nídia D. Lourenço 2 and Judite S. Vieira 1 1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), School of Technology and Management (ESTG), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal; [email protected] (L.M.I.A.); [email protected] (J.S.V.) 2 Applied Molecular Biosciences Unit (UCIBIO)-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT), NOVA University of Lisbon, 2829-516 Caparica, Portugal; [email protected] * Correspondence: [email protected] Abstract: Intensive swine farming causes strong local environmental impacts by generating ef- fluents rich in solids, organic matter, nitrogen, phosphorus, and pathogenic bacteria. Insufficient treatment of hog farm effluents has been reported for common technologies, and vermifiltration is considered a promising treatment alternative that, however, requires additional processes to remove nitrate and phosphorus. This work aimed to study the use of vermifiltration with a downstream hydroponic culture to treat hog farm effluents. A treatment system comprising a vermifilter and a downstream deep-water culture hydroponic unit was built. The treated effluent was reused to dilute raw wastewater. Electrical conductivity, pH, and changes in BOD5, ammonia, nitrite, nitrate, phosphorus, and coliform bacteria were assessed. Plants were monitored throughout the experiment. Electrical conductivity increased due to vermifiltration; pH stayed within a neutral to mild alkaline range. Vermifiltration removed 83% of BOD5, 99% of ammonia and nitrite, and increased nitrate by Citation: Ispolnov, K.; Aires, L.M.I.; 11%. -
Landfill Leachate Pretreatment Process Evaluation and Pilot Study
Landfill Leachate Pretreatment Process Evaluation and Pilot Study Richard Claus – Hazen and Sawyer, P.C. John Butler – Rumpke Consolidated Companies, Inc. Dan Miklos – Hazen and Sawyer, P.C. Presentation Overview Part 1 – Overview of Study, Piloting, and Design Introduction Timeline of Study, Evaluation, & Disposal Wastewater Characterization & Pretreatment Study Timeline of Piloting and Design Pretreatment Design Presentation Overview Part 2 – Pilot Treatment Sessil Media Trickling Filter Pilot Chemical Treatment Jar Testing and Pilot Considered ElectroCell Piloting Next Steps Introduction Rumpke Sanitary Landfill Cincinnati, OH, Colerain Township, Northwest Hamilton County Rumpke Consolidated Companies, Inc. Family Owned, Operated since 1945 One of the largest landfills in the nation, largest in Ohio Rumpke Colerain Township Landfill Introduction Northwest Area Landfill Portion of landfill undergoing a reaction since August, 2009 Source of extremely strong leachate Averaging 120-degrees Fahrenheit Average Volumes of 120,000 GPD (2010-2011) to 200,000 GPD (2012) Northwest Lift Station Lift Station No. 2 Pilot and Tanker Loadout Locations Northwest Area Landfill Introduction – NW Area Leachate Current Characteristics COD 30,000 to 50,000 mg/L BOD5 20,000 to 30,000 mg/L TSS 1,000 – 2,000 mg/L TKN 1,500 – 2,500 mg/L Fe 250 – 700 mg/L Ca 1,500 – 3,700 mg/L Temperature 120 degrees F Introduction – NW Area Leachate On –Going Issues Pipe scaling/clogging during conveyance Odors during handling/disposal Costs for disposal Study, Evaluation, and Disposal Timeline August, 2009 – Increasing leachate strength from Northwest Area August, 2010 to May, 2011 – Wastewater Characterization & Pretreatment Study August, 2011 to June, 2012 – Treatment Piloting and Pretreatment Design Study, Evaluation, and Disposal Timeline - Continued Historically until October 7, 2011 – “Blended” Flow Sewer Discharge into MSDGC Collection System NW Area Leachate (Approx. -
Anaerobic Digestion of Wastewater Sludge (Nazaroff & Alvarez-Cohen, Section 6.E.3)
Anaerobic Digestion of Wastewater Sludge (Nazaroff & Alvarez-Cohen, Section 6.E.3) nice, clean water going to disinfection and then to outdoor body of receiving water (stream, lake or sea) sludge in need of further treatment The goal is to reduce the amount of sludge that needs to be disposed. The most widely employed method for sludge treatment is anaerobic digestion. In this process, a large fraction of the organic matter (cells) is broken down into carbon dioxide (CO2) and methane (CH4), and this is accomplished in the absence of oxygen. About half of the amount is then converted into gases, while the remainder is dried and becomes a residual soil-like material. What the equipment looks like The tank is capped - to prevent oxygen from coming in, - to prevent odors from escaping, and - to capture the methane produced. This methane, a fuel, can be used to meet some of the energy requirements of the wastewater treatment facility (co-generation). What the sludge looks like after anaerobic digestion and subsequent drying. It is rich in nitrates and performs well as a fertilizer. (Photos from http://www.madep-sa.com/english/wwtp.html) 1 (Originally from Metcalf & Eddy, 1991) from & Metcalf Eddy, (Originally 6.E.7) Figure Alvarez-Cohen, & (Nazaroff How the system works The treatment of wastewater sludge, from both primary and secondary treatment steps, consists of two main phases. ● In the 1st step, all incoming flows of sludge are combined, and the mixture is heated to a mild temperature (about body temperature) to accelerate biological conversion. The residence time here ranges from 10 to 20 days. -
Sewage Secondary Treatment After Primary Treatment, the Sewage Water Is Subjected to the Next Phase Called Biological Treatment Or Secondary Treatment
Sewage secondary treatment After primary treatment, the sewage water is subjected to the next phase called biological treatment or secondary treatment. Dissolved and suspended biological materials are removed by indigenous microbial decomposition in a managed environment. In this treatment, BOD is reduced up to 90-95%. Biological treatment is carried out in two important phases: 1. Aerobic phase: oxidation lagoons trickling filters, activated sludge 2. Anaerobic phase: sludge digestion A. Oxidation lagoons /oxidation ponds / stabilization ponds 1. It is outdoor, simple, suspension type aerobic treatment. 2. It is suggested for small societies in rural areas where sufficient low lying land of little real state value is available. 3. It is oldest of the sewage treatment systems used in most of developing countries due to its low cost. 4. In this shallow pond is required which should be maximum of 10 feet depth having inlet and outlet. 5. It consists of three different zones as shown in the following diagram: Requirements of Oxidation pond: 1. Presence of algal growth which produces oxygen. 2. Oxygen is also available from atmosphere. 3. Heterotrophic aerobic and anaerobic microbes for decomposing sewage. 4. Sunlight required for photosynthesis, also has bactericidal properties (UV). Advantages of oxidation pond: 1. Simple 2. Inexpensive 3. Low maintenance Disadvantages of oxidation pond: 1. Effected by environment: low temperature, cloudy sky lowers efficiency 2. Takes longer time(Long retention time) 3. Gives bad odour(H2 S) 4. Not hygienic 5. Just lowers BOD by 25%to 60% B. Trickling Filter Method 1. It is also outdoor, aerobic, relatively simple but of film flow type. -
Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition
Wisconsin Department of Natural Resources Wastewater Operator Certification Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition Subclass B Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/07/12 Introduction to Trickling Filters and RBC's Study Guide - September 1995 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification". -
The Biological Treatment Method for Landfill Leachate
E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1]. -
M. Silvia Díaz Cruz Damià Barceló Editors
The Handbook of Environmental Chemistry 36 Series Editors: Damià Barceló · Andrey G. Kostianoy M. Silvia Díaz‐Cruz Damià Barceló Editors Personal Care Products in the Aquatic Environment The Handbook of Environmental Chemistry Founded by Otto Hutzinger Editors-in-Chief: Damia` Barcelo´ l Andrey G. Kostianoy Volume 36 Advisory Board: Jacob de Boer, Philippe Garrigues, Ji-Dong Gu, Kevin C. Jones, Thomas P. Knepper, Alice Newton, Donald L. Sparks More information about this series at http://www.springer.com/series/698 Personal Care Products in the Aquatic Environment Volume Editors: M. Silvia Dı´az‐Cruz Á Damia` Barcelo´ With contributions by A.G. Asimakopoulos Á M. Al Aukidy Á D. Barcelo´ Á M. Badia-Fabregat Á M.J. Bernot Á G. Caminal Á A. Chisvert Á M.M. de Oliveira e Sa´ Á K. Demeestere Á M. Di Carro Á M.S. Dı´az-Cruz Á J.C.G. Esteves da Silva Á P. Gago-Ferrero Á C. Ianni Á J.R. Justice Á K. Kannan Á M. Li Á M. Lv Á E. Magi Á M.S. Miranda Á D. Molins-Delgado Á S. Montesdeoca-Esponda Á I.N. Pasias Á B.R. Ramaswamy Á A. Salvador Á J.J. Santana-Rodrı´guez Á Z. Sosa-Ferrera Á Q. Sun Á S. Tanwar Á N.S. Thomaidis Á H. Van Langenhove Á T. Vega-Morales Á P. Verlicchi Á T. Vicent Á B. Yang Á G.-G. Ying Á C.-P. Yu Á E. Zambello Editors M. Silvia Dı´az‐Cruz Damia` Barcelo´ Department of Environmental Chemistry Department of Environmental Chemistry IDAEA-CSIC IDAEA-CSIC Barcelona Barcelona Spain Spain University of Girona ICRA Girona Spain ISSN 1867-979X ISSN 1616-864X (electronic) The Handbook of Environmental Chemistry ISBN 978-3-319-18808-9 ISBN 978-3-319-18809-6 (eBook) DOI 10.1007/978-3-319-18809-6 Library of Congress Control Number: 2015944206 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright. -
Solid Waste and Faecal Sludge Management in Situations of Rapid, Mass Displacement1
Helpdesk Report Solid waste and faecal sludge management in situations of rapid, mass displacement1 Brigitte Rohwerder Institute of Development Studies 30 October 2017 Question What lessons and evidence is there from situations of rapid, mass displacement into sites and/or camps with limited space and limited physical access options for solid waste and faecal sludge management? Contents 1. Overview 2. Solid waste management 3. Faecal sludge management 4. References 1 Part of a series of queries relating to the Bangladesh Rohingya refugee crisis (WASH series) The K4D helpdesk service provides brief summaries of current research, evidence, and lessons learned. Helpdesk reports are not rigorous or systematic reviews; they are intended to provide an introduction to the most important evidence related to a research question. They draw on a rapid desk- based review of published literature and consultation with subject specialists. Helpdesk reports are commissioned by the UK Department for International Development and other Government departments, but the views and opinions expressed do not necessarily reflect those of DFID, the UK Government, K4D or any other contributing organisation. For further information, please contact [email protected]. 1. Overview Solid waste and faecal sludge management in situations of rapid mass displacement are important to public health and providing for a better environment. Despite this, both have been neglected in WASH programmes, which tend to have a focus on water. However increasing efforts are being made -
How Is Wastewater Treated (PDF)
FOLD FOLD FOLD We Need Your Help Industrial Service Area How is Pretreatment Here are three easy things you can do to protect The City of Everett’s wastewater treatment Wastewater water quality and minimize treatment cost. plant, called the Everett Water Pollution Control unicipal treatment plants like the EWPCF are Facility (EWPCF), is located on Smith Island 1. Keep trash out of the system. designed to treat residential and commercial in North Everett. The EWPCF serves more than Treated? ■ M Put hair, feminine hygiene products, wastewater. However, some industrial 133,000 people including all of Everett and cotton swabs and grease in the wastewater contains pollutants that primary and parts of Mukilteo, Silver Lake and Alderwood. garbage. secondary treatment cannot remove. The plant treats an average of 20 million 2. Reduce your water consumption. This wastewater requires industrial pretreatment gallons of wastewater per day, although the ■ Conserving water saves money and to remove metals, acids or other chemicals, influent volume to the plant can increase to protects the environment since the less or in the case of food services, most fats almost 100 million gallons on rainy days. water you use, the less wastewater we and grease. City staff work with industrial have to treat. customers to remove these pollutants before the 3. Keep hazardous waste out of the system. wastewater is sent to the treatment plant. ■ Never put hazardous waste down the drain. Hazardous waste includes pesticides, herbicides, solvents, paint thinners and engine oil. Hazardous Biosolids waste is any material that can catch fire, Port explode, corrode or is toxic. -
Anaerobic Digestion of Primary Sewage Effluent
Anaerobic Digestion of Primary Sewage Effluent Prepared for the U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Under Cooperative Agreement No. DE-EE0003507 Hawai‘i Energy Sustainability Program Subtask 3.4: Biomass Submitted by Hawai‘i Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawai‘i September 2014 Acknowledgement: This material is based upon work supported by the United States Department of Energy under Cooperative Agreement Number DE-EE0003507. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference here in to any specific commercial product, process, or service by tradename, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. SUMMARY A hybrid system comprised an up-flow packed bed anaerobic reactor and a down-flow trickling-filter reactor connected in series was shown to effectively treat primary clarifier effluent. When a clarifier and sand filter were added to the system, the effluent water quality achieved values of BOD5 and TSS that were below the EPA’s water discharge limits of 30 mg/l and equivalent to highly efficient activated sludge systems. -
Community Wastewater Treatment by Using Vermifiltration Technique
International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017) © International Research Publication House http://www.irphouse.com Community Wastewater Treatment By Using Vermifiltration Technique Author 1 Nandini Misal Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Author 2 Mr.NitishA.Mohite Assistant Professor,Department of Civil Engineering,D.Y .Patil College of Engineering and Technology, KasabaBawada,Kolhapur Abstract cowdung,clay and loaded with vermis-Eisenia fetida Now-a-days many developing countries cannot afford the earthworms. wastewater treatment processes as they are costly,need more The wastewater is allowed to pass through the filter,the space to construct the treatment plant and in addition use of earthworms consume and metabolise oils,fats and other chemicals for the treatment.They need some more options at compounds.The water percolating through is collected in low cost,space saving and ecofriendly another container.Earlier report of Sinha et.al(2008) have techniques.Vermifiltration is one of the simple,low proved that the body of earthworms works as a “biofilter”and cost,ecofriendly,chemical free technique used to treat the the body walls absorbs the solids from wastewater.It has been canteen wastewater using the Eisenia fetida earthworm observed that the earthworms are potentially capable of species.The earthworms are potentially capable of digesting digesting the waste organic material and remove the 5days the waste organic material and reduce it through ingestion.It is BOD5 near about 90%,COD by 85-90%, TS by 90-95%,TDS considered to be an innovative ecofriendly technology that by 95%,TSS by 95-98%. -
Trickling Filters English , PDF, 1.29MB
FS-BIO-003 TECHNOLOGY FACT SHEETS FOR EFFLUENT TREATMENT PLANTS OF TEXTILE INDUSTRY TRICKLING FILTERS SERIES: SECONDARY TREATMENTS TITLE TRICKLING FILTERS (FS-BIO-003) Last update September 2015 Last revised TRICKLING FILTERS FS-BIO-003 TRICKLING FILTERS (FS-BIO-003) Date September 2015 Authors Alfredo Jácome Burgos Joaquín Suárez López Pablo Ures Rodríguez Revised by Last update Date Done by: Update main topics TRICKLING FILTERS FS-BIO-003 Page 1 of 17 INDEX 1. - INTRODUCTION 1.1.- Trickling filter classifications 1.1.1.- Standard Rate Filter 1.1.2.- Intermediate Rate Filter 1.1.3.- High Rate Filter 1.1.4.- Roughing Filter 1.1.5.- Super High Rate Filter 2.- DESCRIPTION 2.1.- Filling media characteristics 2.2.- Wastewater distribution characteristics 2.3.- Aeration characteristics 3.- DESIGN 3.1.- Design parameters 3.2.- Sizing criteria 3.2.1.- Low and medium load beds 3.2.2.- Roughing filter 3.3.- Application intensity (SK) 3.4.- Forced aeration 3.5.- Sludge production 4.- SECONDARY CLARIFIER 4.1.- Design variables 4.2.- Summary of design values 5.- SPECIFIC TECHNICAL CONDITIONS 6.- SPECIFICATIONS IN THE TREATMENT OF WASTEWATER OF TEXTILE INDUSTRY 7.- PARAMETERS AND CONTROL STRATEGIES 8.- OPERATION TROUBLESHOOTING BIBLIOGRAPHY ANNEX 1 REQUIRED SURFACE ESTIMATION ANNEX 2 GRAPHIC DESCRIPTION OF PROCESSING UNITS TRICKLING FILTERS FS-BIO-003 Page 2 of 17 1. - INTRODUCTION The operating principle of a trickling filter consists on a pre-treated or settled wastewater, flowing through a filtering bed where a bacterial culture, called biofilm, has been adhered and developed. The wastewater, thus irrigated on the filter material (or filling material), contacts with the biomass achieving pollution degradation.