Toxicology Effects of Berberis Vulgaris (Barberry) and Its Active Constituent, Berberine: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Toxicology Effects of Berberis Vulgaris (Barberry) and Its Active Constituent, Berberine: a Review Iranian Journal of Basic Medical Sciences ijbms.mums.ac.ir Special issue Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review Seyede Zohre Kamrani Rad 1, Maryam Rameshrad 1, 2, Hossein Hosseinzadeh 1, 2* 1 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran 2 Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran A R T I C L E I N F O A B S T R A C T Article type: Berberis vulgaris and berberine, its main component, traditionally have been used for treatment of Reivew article various disorders. The pharmacological properties of them have been investigated using different in vivo and in vitro models. In spite of beneficial effects of B. vulgaris on different cell lines, there are Article history: documents have revealed negative impacts of it on animal and human. In this regards, the Received: Dec 5, 2016 determination of its toxicity in a scientific view is necessary. In current report, we provide classified Accepted: Apr 13, 2017 information about the toxicity of B. vulgaris and berberine in different conditions consist of acute, sub- acute, sub-chronic and chronic state. Besides, it discusses the cytotoxicity, genotoxicity, mutagenicity, Keywords: and carcinogenicity of B. vulgaris and berberine as well as developmental toxicity and clinical studies. Acute toxicity Data from the present study indicate that their toxicity is depending on the route and duration of Berberine administration. According to present study, they could induce GI upset and ulceration, immunotoxicity, Berberis vulgaris phototoxicity, neurotoxicity, cardiotoxicity and jaundice in a dose dependent manner. They should be Cancer cell used with caution in pregnancy, neonatal and G6PD deficiency. Besides, consideration should be taken Chronic toxicity in co-administration of berberine with drugs that are metabolized with CYP enzymes due their CYP enzyme inhibitory effects on these enzymes. Furthermore, they evoke cytotoxicity on both normal and cancer Developmental toxicity cell line which is time and concentration dependent. Pregnancy ►Please cite this article as: Kamrani Rad SZ, Rameshrad M, Hosseinzadeh H. Toxicology effects of Berberis vulgaris (barberry) and its active constituent, berberine: a review Iran J Basic Med Sci 2017; 20:516-529. doi: 10.22038/IJBMS.2017.8676 Introduction goldthread). Berberine widely consumed in Ayurvedic The genus Berberis with more than 500 species and Chinese medicine. (4, 6, 7). Berberine has been belongs to Berberidaceae family (1). Berberis vulgaris isolated from various parts of these species such as which is known as barberry, common or European root, stem, bark, fruit and rhizome (6). barberry (2) is an evergreen shrub which possesses Traditional use of root, bark, leaf and fruits yellow, spiny, angled or sulcated bark, oblong, obovate, of barberry as an immunemodulator and anti-microbial or elliptic leaves, yellow flowers and red, oblong agent as well as a treatment for central nervous system, fruits (3). It grows in Asia and Europe and is a cardiovascular, gastrointestinal, endocrine, and well-known herb in Iran (4). The main isolated renal problems have been proved with so many compounds from B. vulgaris are tannins, phenolic pharmacological studies (4, 8). Recently published compounds, triterpenes (lupeol, oleanolic acid), sterols articles demonstrated that barberry and berberine (its (stigmasterol, stigmasterol glucoside) and alkaloids main constituents) have anti-oxidant (9), anti- (berberamine, palmatine, berberine, oxyberberine, inflammatory (10), anti-tumor (11), anti-mutagenic (12) columbamine, isocorydine,Archive lambertinea and magniflo- and antiof-diabetic (9)SID effects. Their hypoglycemic and rine). Besides, bisbenzlisoquinolines (oxycanthine), cholesterol lowering properties (13), neuroprotective N-(p-trans- coumaroyl) tyramine, cannabisin G and (14), and hepatoprotective (15-17), effects have (±)-lyoniresinol have been isolated from this plant (5). scientifically been proved by numerous studies. B. Berberine, an isoquinoline alkaloid, is a member of vulgaris may possesses preventive effects in relapse of naturally occurring protoberberines class (Figure 1). morphine consumption in addicted individuals (18). It This alkaloid is present in plants of Berberidaceae, has been demonstrated that B. vulgaris and berberine Papaveraceae and Ranunculaceae families including induces inhibitory effects on Leishmania species (19-21). Arcangelisia flava (menispermaceae), B. vulgaris Also, it has been reported as an anti-fungal compound (barberry), B. aristata (tree turmeric), B. aquifolium (20). There are evidences in vivo and in vitro that (Oregon prape), B. lyceum, B. crataegina, Hydrastis berberine hydrochloride has beneficial effects on colitis (22). canadensis (goldenseal) and Coptis chinensis (Chinese *Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251; email: [email protected] www.SID.ir Toxicology of barberry and berberine Kamrani Rad et al Berberine Oral administration Absorption Poor oral bioavailability and low plasma level Distribution Extensive tissue cocentration more than plasma Metabolism Intestine Liver Excretion Feces, urine and bile Figure 1. Chemical structure of berberine and its metabolites Berberine could be absorbed from the gastrointes- Figure 2. Schematic diagram of berberine pharmacokinetic tinal (GI) however; its oral bioavailability and its plasma level are very low. It should be noticed that derivative, in terms of acute, sub-acute, sub-chronic, berberine converted to ionized form in the physiolo- chronic toxicity with a mention on their develop- gical conditions and self-aggregated in low pH mental and mutagenic toxicity as evidenced from the conditions. Self-aggregation decreases its solubility in scientific literature in animal and human assays. the GI track and its permeability. The other barriers of berberine oral bioavailability are P-glycoprotein (P- Methods gp) mediated efflux, hepatobiliary re-extraction and A literature search was conducted and the available metabolization by CYP2D6 and CYP3A4 in the intestine information on toxicology and pharmacological proper- (23). It has been shown that berberine is converted to ties of B. vulgaris and berberine was collected via dihydroberberine form by gut flora, which has higher relevant keywords including B. vulgaris, barberry, intestine-absorbable rate in comparison berberine berberine, acute toxicity, sub-acute toxicity, sub-chronic (24). Berberine is distributed in the liver, kidneys, toxicity, chronic toxicity, mutagenic, developmental, muscle, lungs, brain, heart, pancreas and fat. Strikingly, miscarriage, cancer, and clinical trial in the following tissue concentration of berberine and its metabolites is databases: PubMed, Scopus, Google Scholar and Web of higher than plasma concentration (25). Berberine is Science. All kinds of relevant articles, abstracts or books metabolized in the liver by oxidative demethylation and were included. Furthermore, the reference lists of key glucuronidation to berberrubine (M1), thalifendine papers for further leads were searched. No time (M2), demethyleneberberine (M3), and jatrorrhizine limitation was considered in this review. Besides, no (M4) and their glucoronide forms (Figure 1). CYP2D6, constraint was accounted about including all kinds of 1A2, 3A4, 2E1 and CYP2C19 are the main CYPs in berberine containing herbs. Both in vivo and in vitro berberine metabolisms Archive(26). Finally, berberine studies ofwere included SID to this investigation. The toxic metabolites are excreted through feces, urine, and bile effects of barberry and berberine were categorized in (Figure 2). It is important to notice that there are some following main headings: toxicological findings, pharmacokinetic interactions in co-adminstration of developmental toxicity, cytotoxicity, genotoxicity, berberine with metformin, ketoconazole, digoxin and mutagenicity, carcinogenicity and clinical toxicity cyclosporine A (8). (Figure 3). In spite of the panoramic use of barberry in different folklores as an herbal medicine, there is Toxicol ogical findings no comprehensive study which categorized the toxic Acute toxicity effects of barberry in animal models and human Acute toxicity test is the first toxicity assessment studies. Hence, this review discusses on the which is examined during 14 days and determined from the administration of a single exposure. It toxic effects of barberry and berberine, as its main Iran J Basic Med Sci, Vol. 20, No. 5, May 2017 517 www.SID.ir Kamrani Rad et al Toxicology of barberry and berberine Figure 3. Number of published articles which are cited in each field estimates approximate lethal dose or concentration The oral LD50 of isolated berberine from Rhizoma (e.g., LD50 or LC50) as an intrinsic toxicity of coptidis is 713.58 mg/kg in mice that is classified in substance. The most often used species are mouse slight toxicity rank (35, 36). The comparison of and rat (27). fibrous root of Rhizoma coptidis (FRC) with Rhizoma B. vulgaris is moderately toxic. The oral LD50 value coptidis (RC) revealed LD50 value of FRC and RC were for powdered root of B. vulgaris in mice is 2600 mg/kg greater than 7 and 4.89 g/kg in mice, respectively. (28). In “The Essential
Recommended publications
  • Boletín De Pasuchaca Patentes Extranjeras
    BOLETÍN DE PASUCHACA Septiembre 2014 PATENTES EXTRANJERAS Número de solicitud: JP200173253A Título: COMPOSITION FOR ENHANCING GLTATHIONE | The composition for a glutathione increase|augmentation Fecha de solicitud: 2001-03-15 Solicitante: FANCL CORP Abstract: Compositions for increasing glutathione are new. Compositions for increasing glutathione contain at least one of Filipendula ulmaria, Valeriana fauriei, Sanbucus nigra, Granium dielsianum, Carthamus tinctorius, Foeniculum vulgare, Eriobotrya japonica, Phyllostachys bambusoides, Coriandrum sativum, Satureja hortensis, Zanthoxylum piperitum, Eucommia ulmoides, Olea europaea, Camellia japonica, Agaricus blasei, Actinidia polygama, Glehnia littoralis, Althaea rosea, Crataegus cuneate, Coixlachryma- jobi, Centaurea cyanus, Gentianella alborocea, Allium cepa, Sesamum indicum, Illicium verum, Anethum graveolens, Beta vulgaris, Trigonella foenum-graecum, Lonicera caerulea, Glycine max, Lactuca formosana, Lepidiemmeyenii, Malva sylvestris, Dioscorea batatas, Phaseolus vulgaris, Allium fistulosum, Capsicum annuum, Brassica oleracea, and Cannabis sativa. The compositions are useful as foods and pharmaceuticals especially for liver diseases, e.g., alcoholic liver disease, pulmonary diseases, and cataracts. The compositions increase supply of glutathione in vivo, and the glutathione increasing activity largely increases when using with cysteine. Número de solicitud: JP2002241369A Título: AGENT FOR INHIBITING DIFFERENTIATION OF LIPOCYTE | Fat-cell differential inhibition agent Fecha de solicitud:
    [Show full text]
  • Colorado Agricultural College I EXTENSION SERVICE Fort Collin •• Colorado
    mmm.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_IIIIID"iiii"" !iif!!i!!m'IIII1_IIIIIIIIIIIIIIII_IIIIIIII_lIIImmlll = February, 1919 Extension Bulletin Series I, No. 155-A 1= Reprint of Extension Bulletin No. 147 1I Colorado Agricultural College I EXTENSION SERVICE Fort Collin •• Colorado H. T. FRENCH. Dir~ct()r 1IIIIIIII1IIIIIIIII'lIIIii!!iDIII""lIIIIII'IIIImIllllii"IIIIIIIIIIIIIIIIIIII"lIIIiiiillllii"'lIIIiiiillllhiiilllll!iiilllll!iiilllll!!!!1III"IIImmI,jjii!!iiiiiiiii!ii!,i!i!ii 'iiii"!!I!ii!iiii!mih_mlll'" !!Iiii'''' IIII IIII i1/1 IIII ID IIII D I ~ R I c::=::::aU:=U:::::UI:I!II::C:::=:::I"IIIIl":IIII!iiiIllllii!i:llll!!iiIlllli!iiIlll!iiiillll"'.IIIIIIIIIIIIIIIiIII"'IiIC ·!i:::;:·3:1111!!iiIl:!·:::l'::::,lII:w:::::a'mmlmDlIII"a:'IIIiIj,jIli:" m'" ~. CO·OPERATIV. aXTENSION aERY.ell IN AGRICULTUA. AND HOME ECONOMIC.- a COLORADO AOIIICULTURAL COLLEGE AND U . S. DEPARTMENT OF' D IIII AGRICULTUR~ Co-OP."ATING III IIIl11allllii!iIlll"":IIII!llIIIIIIIlIIIIIIIlIIIIIIIlIIIlmmm"'lIIl11l111i! j~· i!~, :IIII!iiiDlllli lilllli!"IIII"!ii1llll'IIIIIIII:IIII!!iU"illlli!!iIlll!i"~'::::I"IIII... gmm"i!lIIIl!.i!lIIIij,:::I'1III!ii·:IIII!iiiIlll!!i1lllllll1lllllll1llllm1ll1ll1ll Colorado Agricultural College FORT COLLINS. COLORADO Term Expires THE STATE BOARD OF AGRICULTURE HON. CHAS. PEARSON ..................................... Durango. 1919 HON. R. W. CORWIN ........................................ Pueblo. 1919 HON. A. A. EDWARDS. President. ....................... Fort Collins. 1921 RON.. T. S. CALKTNS ................................... Westmlnster. 1921 HON. H. D. PARKER ........................................ Greeley. 1923 MRS. AGNES L. RIDDLE .................................... Denver. 1923 HON. J. C. BELL .......................................... Montrose. 1926 HON. E. M. AMMONS ......................................... Denver. 1926 PRESIDENT CHAS. A. LORY \, Ex-otl'lcio GOVERNOR .JULTUS C. GUNTER. --- L. M. TAYLOR. Secretary CHAS. H. SHELDON. Treasurer EXECUTIVE CO:nMITTEE A. A. EDWARDS. Chairman Eo M. AMMONS H.D. PARKER EXTENSION SERVICE CHAS. A.
    [Show full text]
  • Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
    REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects.
    [Show full text]
  • Botanical Name Common Name
    Approved Approved & as a eligible to Not eligible to Approved as Frontage fulfill other fulfill other Type of plant a Street Tree Tree standards standards Heritage Tree Tree Heritage Species Botanical Name Common name Native Abelia x grandiflora Glossy Abelia Shrub, Deciduous No No No Yes White Forsytha; Korean Abeliophyllum distichum Shrub, Deciduous No No No Yes Abelialeaf Acanthropanax Fiveleaf Aralia Shrub, Deciduous No No No Yes sieboldianus Acer ginnala Amur Maple Shrub, Deciduous No No No Yes Aesculus parviflora Bottlebrush Buckeye Shrub, Deciduous No No No Yes Aesculus pavia Red Buckeye Shrub, Deciduous No No Yes Yes Alnus incana ssp. rugosa Speckled Alder Shrub, Deciduous Yes No No Yes Alnus serrulata Hazel Alder Shrub, Deciduous Yes No No Yes Amelanchier humilis Low Serviceberry Shrub, Deciduous Yes No No Yes Amelanchier stolonifera Running Serviceberry Shrub, Deciduous Yes No No Yes False Indigo Bush; Amorpha fruticosa Desert False Indigo; Shrub, Deciduous Yes No No No Not eligible Bastard Indigo Aronia arbutifolia Red Chokeberry Shrub, Deciduous Yes No No Yes Aronia melanocarpa Black Chokeberry Shrub, Deciduous Yes No No Yes Aronia prunifolia Purple Chokeberry Shrub, Deciduous Yes No No Yes Groundsel-Bush; Eastern Baccharis halimifolia Shrub, Deciduous No No Yes Yes Baccharis Summer Cypress; Bassia scoparia Shrub, Deciduous No No No Yes Burning-Bush Berberis canadensis American Barberry Shrub, Deciduous Yes No No Yes Common Barberry; Berberis vulgaris Shrub, Deciduous No No No No Not eligible European Barberry Betula pumila
    [Show full text]
  • Berberis Vulgaris
    Berberis vulgaris INTRODUCTORY DISTRIBUTION AND OCCURRENCE BOTANICAL AND ECOLOGICAL CHARACTERISTICS FIRE EFFECTS AND MANAGEMENT MANAGEMENT CONSIDERATIONS APPENDIX: FIRE REGIME TABLE REFERENCES INTRODUCTORY AUTHORSHIP AND CITATION FEIS ABBREVIATION NRCS PLANT CODE COMMON NAMES TAXONOMY SYNONYMS LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS Photo © Gerald A. Mulligan AUTHORSHIP AND CITATION: Gucker, Corey L. 2009. Berberis vulgaris. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2009, October 19]. FEIS ABBREVIATION: BERVUL NRCS PLANT CODE [91]: BEVU COMMON NAMES: common barberry European barberry TAXONOMY: The scientific name of common barberry is Berberis vulgaris L. (Berberidaceae) [27,42]. Hybrid: Berberis × ottawaensis (Schneid.), a cross between common barberry and Japanese barberry (B. thunbergerii), occurs in Europe and North America [24,60,67]. SYNONYMS: None LIFE FORM: Shrub FEDERAL LEGAL STATUS: None OTHER STATUS: Information on state-level noxious weed status of plants in the United States is available at Plants Database. DISTRIBUTION AND OCCURRENCE SPECIES: Berberis vulgaris GENERAL DISTRIBUTION HABITAT TYPES AND PLANT COMMUNITIES GENERAL DISTRIBUTION: Common barberry is a nonnative plant in North America. Its native range is Asia's middle and western mountains, and it is widely introduced throughout Europe [44,77]. Common barberry was brought to North America in the 1600s by early New England settlers (Josselyn 1672 cited in [55]),[44], and soon after its introduction, common barrberry escaped from cultivation. Soon after its introduction and escape, common barberry was linked with failing wheat crops [27]. Programs to eliminate and restrict planting of common barberry in North America began in the 18th century, but large-scale cooperative eradication did not occur until the early 1900s.
    [Show full text]
  • Noxious Weed List  Reducing Crop Yields Garden Helleborine Epipactis Helleborine  Reducing Forage Quality Non-Native Lupines Lupinus Spp
    Class A Weeds: Non-native species whose Washington distribution ■South American spongeplant Limnobium laevigatum ►knotweed, Japanese Polygonum cuspidatum common St. Johnswort Hypericum perforatum Spanish broom Spartium junceum is still limited. Prevention and eradication are the highest priorities. ►kochia Bassia scoparia ►common tansy Tanacetum vulgare Syrian beancaper Zygophyllum fabago Eradication of all Class A plants is required by law. ■►lesser celandine Ficaria verna ►common teasel Dipsacus fullonum Texas blueweed Helianthus ciliaris ►loosestrife, garden Lysimachia vulgaris curlyleaf pondweed Potamogeton crispus Class B Weeds: Non-native species presently limited to portions of thistle, Italian Carduus pycnocephalus ►loosestrife, purple Lythrum salicaria English hawthorn Crataegus monogyna the State. Species are designated for control in regions where they thistle, milk Silybum marianum ►loosestrife, wand Lythrum virgatum ►English and Irish ivy - four Hedera helix 'Baltica’, are not yet widespread. Preventing new infestations in these areas thistle, slenderflower Carduus tenuiflorus ►Malta starthistle Centaurea melitensis cultivars only 'Pittsburgh', & 'Star'; H. hibernica is a high priority. In regions where a Class B species is abundant, variable-leaf milfoil Myriophyllum heterophyllum 'Hibernica' control is decided locally and containment is the primary goal. wild four-o'clock Mirabilis nyctaginea ►parrotfeather Myriophyllum aquaticum Eurasian watermilfoil hybrid Myriophyllum spicatum x M. ►perennial pepperweed Lepidium latifolium
    [Show full text]
  • Changes in Anthocyanin and Fruit Quality Attributes of Barberry (Berberis Vulgaris L.) Grown in Diff Erent Altitude During Growth and Maturation
    The Journal of Agricultural Sciences - Sri Lanka Vol. 13, No. 3, September 2018. Pp 227-236 http://dx.doi.org/10.4038/jas.v13i3.8396 Open Access Article Changes in Anthocyanin and Fruit Quality Attributes of Barberry (Berberis vulgaris L.) Grown in Diff erent Altitude During Growth and Maturation F. Moradinezhad1, M. Khayyat1* and Z. Maraki1 Received: 18th July 2017 / Accepted: 5th December 2018 ABSTRACT Purpose: Seedless barberry is one of the economical sources of anthocyanin pigment. However, short harvesting period creates many diffi culties in harvesting and drying processes, leading to low quality. Therefore, it was very important to study diff erent barberry growing areas and also evaluating fruit quality in these regions, to propose sooner harvesting in some regions. Research Method: The study was conducted in two regions (Marack and Amirabad) of Birjand suburbs, South Khorasan, Iran, during two growing seasons (2014-2015), to investigate the major physicochemical changes of barberry fruit during diff erent growth and development stages (89, 121, 152, 183 and 214 days after full bloom (DAFB)). Findings: The results showed that fruit fresh weight and volume, pH, total soluble solids (TSS), maturity index and anthocyanin signifi cantly increased, as harvest season progressed. The region conditions also infl uenced the above-mentioned parameters. Data indicated that lower night temperatures in the Marack led to better fruit indices compared with Amirabad, which may be resulted from a higher altitude as compared to Amirabad. The better fruit maturity index and anthocyanin content obtained in Marack at the fourth harvest date (183 DAFB), compared with Amirabad, which creates a sooner harvest potential.
    [Show full text]
  • Novel Insight Into Potential Leishmanicidal
    Novel insight into Potential Leishmanicidal Activities of Transdermal Patches of Nigella Sativa: Formulation Development, Physical Characterizations and In vitro In vivo Assays Barkat Ali Khan Gomal University Yasmin Asmat Gomal University Tariq Hayat Khan Lady Reading Hospital Mughal Qayum Kohat University of Science and Technology Sultan Muhammad Alshahrani King Khalid University Ali Alqahtani King Khalid University Muhammad Khalid Khan ( [email protected] ) Gomal University Research Article Keywords: Leishmaniasis, Nigella sativa, Transdermal Patch, Leishmanicidal action Posted Date: April 2nd, 2021 DOI: https://doi.org/10.21203/rs.3.rs-352742/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Cutaneous Leishmaniasis (CL) is the most common type of Leishmaniasis which annually affects 1.5 million people worldwide. About 90% of cases are reported from countries such as Iran, Afghanistan, Pakistan, Iraq, and Saudi Arabia. The purpose of the present study was to fabricate transdermal patches of Nigella sativa (NS), characterize and to check its in vitro in vivo anti-Lieshmanial activity. Hydroalcohlic extract was analyzed for preliminary phytochemicals. Five formulations of transdermal patches (NS1, NS2, NS3, NS4 and NS5) were prepared by solvent evaporation method. The optimized formulation NS5 was characterized for FTIR, smoothness, brittleness, clarity, thickness, folding endurance, uniformity of weight, percent moisture content, in-vitro drug release, release kinetics, ex vivo drug permeation and in- vitro anti-Lieshmanial activity. In vivo anti-Lieshmanial activity was assessed in 30 patients (n = 30) suffering from CL. The FTIR studies showed no incompatibility among the active extract and polymers.
    [Show full text]
  • Common Barberry, Berberis Vulgaris Japanese Barberry, Berberis Thunbergii
    Common barberry, Berberis vulgaris Japanese barberry, Berberis thunbergii Summary of Treatment Methods: Habitat: Japanese and Common barberry can aggressively invade in diverse habitats, from wetlands to fields and pastures to upland forests, in both moist and dry soils. As birds carry barberry seeds, it is common to find plants concentrated along tree-lined roadsides and field edges where birds roost. They thrive in sunlight and are tolerant of shade, however common barberry seems to be less shade tolerant than Japanese barberry and is less likely to be found in an interior, closed-canopy forest. Plants growing in dense shade may flower and fruit less heavily than those in more open sites. Reproductive Strategy: Reproduction is mainly by seed but it can root sprout and layer. Barberry produces a large number of seeds with high germination rates, estimated at up to 90%. Fruits mature from July to October and persist well into the winter. Fruit production varies with light level, but even under very low light levels (4% full sun) some seeds are produced. Dispersal: Barberry has a very steep seed dispersal curve —most seedlings are found under or adjacent to adults, but a small number may be found tens of meters from the nearest adult. Seeds are disseminated by birds, grouse, turkey and small mammals. Species Phenology and Treatment Options: Full leaf out Phenology Flowering Seed ripening Month JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC Hand pulling and digging Manual Cutting and mowing Direct flame Follow-up direct flame Foliar herbicide
    [Show full text]
  • Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia
    molecules Article Polyphenol Composition and (Bio)Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia Melina F. Chamorro 1, Gabriela Reiner 1, Cristina Theoduloz 2, Ana Ladio 1, Guillermo Schmeda-Hirschmann 3 , Sergio Gómez-Alonso 4 and Felipe Jiménez-Aspee 5,* 1 Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche 8400, Río Negro, Argentina 2 Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Region del Maule, Chile 3 Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Region del Maule, Chile 4 Instituto Regional de Investigación Científica Aplicada, Departamento de Química Analítica y Tecnología de Alimentos, Universidad Castilla-La Mancha, 13005 Ciudad Real, Spain 5 Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 346000, Región del Maule, Chile * Correspondence: [email protected]; Tel.: +56-71-2200-291 Received: 5 August 2019; Accepted: 2 September 2019; Published: 12 September 2019 Abstract: The Argentinean Patagonia berries Berberis microphylla, Berberis darwinii, and Fragaria chiloensis ssp. chiloensis f. patagonica were investigated for their polyphenol content and composition by means of liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. The in vitro antioxidant activity and inhibition of metabolic syndrome-associated enzymes (α-glucosidase, α-amylase, and lipase) of the fruit extracts was assessed. The most complex polyphenol profile was found in the Berberis samples, with 10 anthocyanins, 27 hydroxycinnamic acids, 3 proanthocyanidins, 2 flavan-3-ol, and 22 flavonols. Fragaria presented four anthocyanins, nine ellagitannins, two proanthocyanidin dimers, one flavan-3-ol, and five flavonols.
    [Show full text]
  • Medicinal Potential of Berberis Aristata
    IAJPS 2018, 05 (06), 5516-5526 Sangeeta Verma et al ISSN 2349-7750 CODEN [USA]: IAJPBB ISSN: 2349-7750 INDO AMERICAN JOURNAL OF PHARMACEUTICAL SCIENCES http://doi.org/10.5281/zenodo.1296987 Available online at: http://www.iajps.com Review Article MEDICINAL POTENTIAL OF BERBERIS ARISTATA: A REVIEW Sangeeta Verma1*, Shivali Singla1, Sachin Goyal1 1School of Pharmacy, Abhilashi University, Chail Chowk, Mandi (H.P.) Abstract: Plant and their products are used from ancient time to mankind and human welfare. In old days when pharmaceutical field was not properly developed then plants were major source to cure and prevent illness. Herbal markets are globally increased due to safe drug delivery with fewer side effect compared to synthetic drugs. Cost of herbal drugs is much less than prescription medications. Research, testing, and marketing add considerably to the cost of prescription medicines. Herbs tend to be inexpensive compared to drugs. Berberis aristata, also known as Indian barberry, "chutro" or tree turmeric, is a shrub belonging to the family Berberidaceae and the genus Berberis. The plant of Berberis genus contains barberine, oxyberberine, berbamine, aromoline, karachine, palmatine, oxyacanthine and taxilamine. From different research Berberis aristata have found to be different pharmacological activities like Anti-depressant activity, Immunomodulatory activity, Antidiabetic effects, Activity against cardiovascular diseases, Antidiarrhoeal activity, Antioxidants, Anticancer, Antimicrobial, Hepatoprotective, Antipyretic activity etc. Keywords: Berberis aristata, Darhaldi, Kashmal, Barberine, Oxyberberin Corresponding author: Sangeeta Verma, QR code School of Pharmacy, Abhilashi University, Chail Chowk, Mandi (H.P.) E-Mail: [email protected] Phone: 9760949637 Please cite this article in press Sangeeta Verma et al., Medicinal Potential of Berberis Aristata: A Review, Indo Am.
    [Show full text]
  • State Weed List
    Class A Weeds: Non-native species whose distribution ricefield bulrush Schoenoplectus hoary alyssum Berteroa incana in Washington is still limited. Preventing new infestations and mucronatus houndstongue Cynoglossum officinale eradicating existing infestations are the highest priority. sage, clary Salvia sclarea indigobush Amorpha fruticosa Eradication of all Class A plants is required by law. sage, Mediterranean Salvia aethiopis knapweed, black Centaurea nigra silverleaf nightshade Solanum elaeagnifolium knapweed, brown Centaurea jacea Class B Weeds: Non-native species presently limited to small-flowered jewelweed Impatiens parviflora portions of the State. Species are designated for required knapweed, diffuse Centaurea diffusa control in regions where they are not yet widespread. South American Limnobium laevigatum knapweed, meadow Centaurea × gerstlaueri Preventing new infestations in these areas is a high priority. spongeplant knapweed, Russian Rhaponticum repens In regions where a Class B species is already abundant, Spanish broom Spartium junceum knapweed, spotted Centaurea stoebe control is decided at the local level, with containment as the Syrian beancaper Zygophyllum fabago knotweed, Bohemian Fallopia × bohemica primary goal. Please contact your County Noxious Weed Texas blueweed Helianthus ciliaris knotweed, giant Fallopia sachalinensis Control Board to learn which species are designated for thistle, Italian Carduus pycnocephalus knotweed, Himalayan Persicaria wallichii control in your area. thistle, milk Silybum marianum knotweed,
    [Show full text]