Review RNA Viruses As Virotherapy Agents Stephen J Russell Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55905, USA

Total Page:16

File Type:pdf, Size:1020Kb

Review RNA Viruses As Virotherapy Agents Stephen J Russell Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55905, USA Cancer Gene Therapy (2002) 9, 961 – 966 D 2002 Nature Publishing Group All rights reserved 0929-1903/02 $25.00 www.nature.com/cgt Review RNA viruses as virotherapy agents Stephen J Russell Molecular Medicine Program, Mayo Clinic, Rochester, Minnesota 55905, USA. RNA viruses are rapidly emerging as extraordinarily promising agents for oncolytic virotherapy. Integral to the lifecycles of all RNA viruses is the formation of double-stranded RNA, which activates a spectrum of cellular defense mechanisms including the activation of PKR and the release of interferon. Tumors are frequently defective in their PKR signaling and interferon response pathways, and therefore provide a relatively permissive substrate for the propagation of RNA viruses. For most of the oncolytic RNA viruses currently under study, tumor specificity is either a natural characteristic of the virus, or a serendipitous consequence of adapting the virus to propagate in human tumor cell lines. Further refinement and optimization of these oncolytic agents can be achieved through virus engineering. This article provides a summary of the current status of oncolytic virotherapy efforts for seven different RNA viruses, namely, mumps, Newcastle disease virus, measles virus, vesicular stomatitis virus, influenza, reovirus, and poliovirus. Cancer Gene Therapy (2002) 9, 961–966 doi:10.1038/sj.cgt.7700535 he majority of significant human and animal pathogenic double-stranded RNA is to stimulate release of interferons, Tviruses have RNA genomes. Influenza, measles, which activate PKR in adjacent uninfected cells, thereby mumps, rubella, polio, rabies, yellow fever, dengue, and protecting them from virus infection. Tumors are frequently Ebola hemorrhagic fever are among the better known human defective in their PKR signaling pathway, and therefore examples. However, for the field of oncolytic virotherapy, provide a relatively permissive substrate for the propagation RNA viruses present a vast and largely untapped resource. of RNA viruses. RNA virus specificity for tumor cells may RNA virus genomes range in size from 7 to 30 kb and may also be a consequence of specific receptor usage for virus be single-stranded (positive or negative polarity) or entry or for cell-to-cell fusion or, alternatively, may be due double-stranded, nonsegmented or segmented, with genome to the specific activity of a viral internal ribosome entry replication taking place in the cytoplasm or nucleus. At the site. time of writing this review, the most promising oncolytic For most of the oncolytic RNA viruses discussed in this RNA viruses are attenuated strains of mumps virus, review, tumor specificity is either a natural characteristic of Newcastle disease virus (NDV), measles virus, vesicular the virus, or a serendipitous consequence of adapting the stomatitis virus, human reovirus, poliovirus, and influenza virus to propagate in human tumor cell lines. However, virus. further refinement and optimization of oncolytic potency, The most important characteristic of an oncolytic virus is specificity, and therapeutic utility can be achieved through that it propagates more efficiently in tumors than in normal virus engineering. ‘‘Reverse genetics’’ systems for the rescue host tissues. For oncolytic DNA viruses, this tumor of positive-strand RNA viruses (e.g., poliovirus) from specificity is often determined at the transcriptional level complementary DNA are relatively simple because infec- and is ultimately dependent on the interactions between tious viruses can be generated from mRNA. In contrast, nuclear transcription factors and viral promoter/enhancer rescue systems from negative-strand RNA viruses (e.g., elements. Obviously, RNA viruses are not subject to the measles virus, influenza virus) are highly complex and have influence of nuclear transcription factors, and must rely on only recently become available because the minimal an alternative mechanistic basis for their preferential infectious unit for these viruses is the ribonucleoprotein replication in tumor cells. Integral to the life cycles of all polymerase complex. For segmented double-stranded RNA RNA viruses is the formation of double-stranded RNA, a viruses (e.g., reovirus), the problems are even more for- potent stimulator of PKR, a protein kinase that inhibits midable, and convenient strategies for virus engineering do protein synthesis and promotes apoptosis, thereby control- not yet exist. In general, there are three approaches to the ling the spread of the virus infection. Another action of engineering of RNA viruses that have been adopted in order to enhance their utility as oncolytic agents. First is to engineer the viral envelope or capsid proteins in an attempt to redirect virus entry through receptors expressed at high Received September 12, 2002. levels on the tumor cell surface. The second is to disable Address correspondence and reprint requests to: Dr Stephen J Russell, viral genes whose encoded proteins counter the cellular Molecular Medicine Program, Mayo Clinic, 200 First Street, SW Rochester, responses to double-stranded RNA and to interferon. The MN 55905, USA. E-mail: [email protected] third engineering strategy is to add into the viral genome RNA viruses as virotherapy agents SJ Russell 962 additional cistrons coding either for proteins that faci- fluid experienced complete disappearance with no recur- litate virus tracking or proteins that enhance the potential rence after intracavitary mumps virus administration. for killing of uninfected bystander tumor cells. In the In summary, attenuated mumps remains a highly promis- remainder of this article, we review the current status of ing oncolytic virus for the treatment of human malig- oncolytic virotherapy efforts for seven different RNA nancy, and further studies utilizing this agent are eagerly viruses, namely, mumps, NDV, measles virus, vesicular anticipated. stomatitis virus, influenza, reovirus, and poliovirus. How- ever, the reader is reminded that this list of seven is by no means exhaustive and that virtually any RNA virus may, with Newcastle disease virus appropriate engineering, have potential as an antitumor agent. NDV belongs to the Rubulavirus genus of the Paramyxovir- idae family.4 NDV is an economically important avian pathogen causing severe respiratory and central nervous Mumps virus system disease.6 However, tissue culture–adapted strains of the virus not only show greatly reduced virulence, but also Oncolytic virotherapy was very much in vogue in the 1950s, exhibit potent oncolytic activity. NDV strain 73-T has been 1960s, and early 1970s. At that time, numerous viruses were shown to replicate selectively in human tumor cells, inducing administered by several different routes to hundreds of rapid cell-to-cell fusion and tumor cell death.7 It has been patients with various treatment-refractory malignancies.1,2 suggested that NDV’s tumor cell activity is based on cancer- In general, the results were tantalizing, but ultimately specific defects in the interferon pathway,8 but formal proof disappointing. However, the most promising clinical study is lacking for this hypothesis. performed during that era was a study conducted in Japan The oncolytic potency of NDV strain 73-T has been very and reported in 1974 using a tissue culture adapted strain of convincingly demonstrated in several human tumor xeno- mumps virus.3 Mumps virus is a member of the genus graft models. Thus, a single local injection of NDV strain Paramyxovirus in the family Paramyxoviridae4 and was 73-T caused durable, complete regression of human neuro- selected for cancer virotherapy trials based on its propensity blastoma and fibrosarcoma xenografts grown in athymic to flourish in actively multiplying germ cells, causing mice.9,10 Also, in a more recent study,8 locally administered postpubertal mumps orchitis. As the virus is otherwise of virus was shown to inhibit the growth of epidermoid, colon, low pathogenicity (mumps is not fatal) and most adults have lung, breast, and prostate xenografts. Furthermore, intra- antibodies against mumps virus, it was considered reason- peritoneal virus was effective against subcutaneous IMR-32 able to test its therapeutic potential in human subjects with neuroblastoma xenografts. advanced cancer. A tissue culture suspension of the virus Based in part on the aforementioned mouse efficacy was, therefore, administered to 90 patients with various studies, a highly purified isolate of the naturally attenuated terminal malignancies, either by local application to the MK 107 vaccine strain of NDV was tested in a phase I tumor surface, intratumoral inoculation, oral, rectal, or clinical study in patients with advanced solid cancers.11 The intravenous route, or by inhalation. Toxicity was minimal strain of NDV used for this study was named PV 701 and is — limited to occasional febrile reactions, but the clinical distinct from the 73-T strain discussed above. The purpose responses were most encouraging. In 37 of 90 patients, the of the phase I study was to define the maximum tolerated tumor disappeared or decreased to less than half of its dose (MTD) and safety of single and multiple intravenous original size. Minor regressions were observed in an doses of PV 701 as a single agent in patients with cancer. additional of 42 patients. Tumor destruction was maximal Seventy-nine patients with advanced solid cancer, unre- several days after the virus was administered, but was often sponsive to standard therapy, were enrolled into the study, followed by long-term suppression
Recommended publications
  • 1 Systemic Combination Virotherapy for Melanoma with Tumor Antigen-Expressing Vesicular Stomatitis Virus and Adoptive T Cell
    Author Manuscript Published OnlineFirst on July 26, 2012; DOI: 10.1158/0008-5472.CAN-12-0600 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Systemic Combination Virotherapy For Melanoma With Tumor Antigen-Expressing Vesicular Stomatitis Virus And Adoptive T Cell Transfer Diana M. Rommelfanger1,2, Phonphimon Wongthida1, Rosa M. Diaz1,3, Karen M. Kaluza1,3, Jill M. Thompson1, Timothy J. Kottke1, and Richard G. Vile1,3 1Department of Molecular Medicine, 2Department of Molecular Pharmacology and Experimental Therapeutics, 3Department of Immunology, Mayo Clinic, Rochester, MN 55905 Running title: Antitumor effects of systemic combination viro-immunotherapy Keywords: vesicular stomatitis virus, adoptive cell transfer, melanoma, virotherapy, tumor- associated antigen This work was supported by the Richard M. Schulze Family Foundation, the Mayo Foundation, and by NIH grants CA107082, CA130878, and CA132734. Correspondence: Richard Vile, Ph.D. / Mayo Clinic / 200 First St SW / Rochester, MN 55905 Phone: 507-284-9941 / Fax: 507-266-2122 / Email: [email protected] The authors declare no conflict of interest. 1 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2012 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 26, 2012; DOI: 10.1158/0008-5472.CAN-12-0600 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Oncolytic virotherapy offers the potential to treat tumors both as a single agent and in combination with traditional modalities such as chemotherapy and radiotherapy. Here we describe an effective, fully systemic treatment regimen, which combines virotherapy, acting essentially as an adjuvant immunotherapy, with adoptive cell transfer (ACT).
    [Show full text]
  • The Positive Rhinovirus/Enterovirus Detection and SARS-Cov-2 Persistence Beyond the Acute Infection Phase: an Intra-Household Surveillance Study
    viruses Communication The Positive Rhinovirus/Enterovirus Detection and SARS-CoV-2 Persistence beyond the Acute Infection Phase: An Intra-Household Surveillance Study Pedro Brotons 1,2,3, Iolanda Jordan 1,3,4, Quique Bassat 3,5,6,7,8 , Desiree Henares 1,3, Mariona Fernandez de Sevilla 1,3,5, Sara Ajanovic 7, Alba Redin 1,2, Vicky Fumado 1,5, Barbara Baro 7 , Joana Claverol 9, Rosauro Varo 7 , Daniel Cuadras 9 , Jochen Hecht 10, Irene Barrabeig 3,11, Juan Jose Garcia-Garcia 1,3,5, Cristian Launes 1,3,5,† and Carmen Muñoz-Almagro 1,2,3,12,*,† 1 Pediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain; [email protected] (P.B.); [email protected] (I.J.); [email protected] (D.H.); [email protected] (M.F.d.S.); [email protected] (A.R.); [email protected] (V.F.); [email protected] (J.J.G.-G.); [email protected] (C.L.) 2 Department of Medicine, School of Medicine, Universitat Internacional de Catalunya, Sant Cugat, 08195 Barcelona, Spain 3 Consorcio de Investigacion Biomédica en Red Epidemiologia y Salud Pública (CIBERESP), 28029 Madrid, Spain; [email protected] (Q.B.); [email protected] (I.B.) 4 Pediatric Intensive Care Unit, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain 5 Pediatrics Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain 6 Centro de Investigação em Saúde de Manhiça (CISM), Manhiça 1929, Mozambique Citation: Brotons, P.; Jordan, I.; 7 ISGlobal, Hospital Clínic-Universitat de Barcelona, 08036 Barcelona, Spain; [email protected] (S.A.); Bassat, Q.; Henares, D.; Fernandez de [email protected] (B.B.); [email protected] (R.V.) Sevilla, M.; Ajanovic, S.; Redin, A.; 8 Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain Fumado, V.; Baro, B.; Claverol, J.; et al.
    [Show full text]
  • Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: a Review
    viruses Review Antiviral Bioactive Compounds of Mushrooms and Their Antiviral Mechanisms: A Review Dong Joo Seo 1 and Changsun Choi 2,* 1 Department of Food Science and Nutrition, College of Health and Welfare and Education, Gwangju University 277 Hyodeok-ro, Nam-gu, Gwangju 61743, Korea; [email protected] 2 Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daeduck-myun, Anseong-si, Gyeonggi-do 17546, Korea * Correspondence: [email protected]; Tel.: +82-31-670-4589; Fax: +82-31-676-8741 Abstract: Mushrooms are used in their natural form as a food supplement and food additive. In addition, several bioactive compounds beneficial for human health have been derived from mushrooms. Among them, polysaccharides, carbohydrate-binding protein, peptides, proteins, enzymes, polyphenols, triterpenes, triterpenoids, and several other compounds exert antiviral activity against DNA and RNA viruses. Their antiviral targets were mostly virus entry, viral genome replication, viral proteins, and cellular proteins and influenced immune modulation, which was evaluated through pre-, simultaneous-, co-, and post-treatment in vitro and in vivo studies. In particular, they treated and relieved the viral diseases caused by herpes simplex virus, influenza virus, and human immunodeficiency virus (HIV). Some mushroom compounds that act against HIV, influenza A virus, and hepatitis C virus showed antiviral effects comparable to those of antiviral drugs. Therefore, bioactive compounds from mushrooms could be candidates for treating viral infections. Citation: Seo, D.J.; Choi, C. Antiviral Bioactive Compounds of Mushrooms Keywords: mushroom; bioactive compound; virus; infection; antiviral mechanism and Their Antiviral Mechanisms: A Review.
    [Show full text]
  • Trunkloads of Viruses
    COMMENTARY Trunkloads of Viruses Philip E. Pellett Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA Elephant populations are under intense pressure internationally from habitat destruction and poaching for ivory and meat. They also face pressure from infectious agents, including elephant endotheliotropic herpesvirus 1 (EEHV1), which kills ϳ20% of Asian elephants (Elephas maximus) born in zoos and causes disease in the wild. EEHV1 is one of at least six distinct EEHV in a phylogenetic lineage that appears to represent an ancient but newly recognized subfamily (the Deltaherpesvirinae) in the family Herpesviridae. lephant endotheliotropic herpesvirus 1 (EEHV1) causes a rap- the Herpesviridae (the current complete list of approved virus tax- Downloaded from Eidly progressing and usually fatal hemorrhagic disease that ons is available at http://ictvonline.org/). In addition, approxi- occurs in the wild in Asia and affects ϳ20% of Asian elephant mately 200 additional viruses detected using methods such as (Elephas maximus) calves born in zoos in the United States and those described above await formal consideration (V. Lacoste, Europe (1). About 60% of juvenile deaths of captive elephants are personal communication). With very few exceptions, the amino attributed to such infections. Development of control measures acid sequence of a small conserved segment of the viral DNA poly- has been hampered by the lack of systems for culture of the virus in merase (ϳ150 amino acids) is sufficient to not only reliably iden- laboratories. Its genetic study has been restricted to analysis of tify a virus as belonging to the evolutionary lineage represented by blood, trunk wash fluid, and tissue samples collected during nec- the Herpesviridae, but also their subfamily, and in most cases a http://jvi.asm.org/ ropsies.
    [Show full text]
  • Detection of Astrovirus in a Cow with Neurological Signs by Nanopore Technology, Italy
    viruses Article Detection of Astrovirus in a Cow with Neurological Signs by Nanopore Technology, Italy Guendalina Zaccaria 1, Alessio Lorusso 1,*, Melanie M. Hierweger 2,3, Daniela Malatesta 1, Sabrina VP Defourny 1, Franco Ruggeri 4, Cesare Cammà 1 , Pasquale Ricci 4, Marco Di Domenico 1 , Antonio Rinaldi 1, Nicola Decaro 5 , Nicola D’Alterio 1, Antonio Petrini 1 , Torsten Seuberlich 3 and Maurilia Marcacci 1,5 1 Istituto Zooprofilattico Sperimentale dell’Abruzzo e Molise, 64100 Teramo, Italy; [email protected] (G.Z.); [email protected] (D.M.); [email protected] (S.V.D.); [email protected] (C.C.); [email protected] (M.D.D.); [email protected] (A.R.); [email protected] (N.D.); [email protected] (A.P.); [email protected] (M.M.) 2 NeuroCenter, Department of Clinical Research and Veterinary Public Health, University of Bern, 3012 Bern, Switzerland; [email protected] 3 Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland; [email protected] 4 Unità Operativa Complessa Servizio di Sanità Animale, ASL Pescara, 65100 Pescara, Italy; [email protected] (F.R.); [email protected] (P.R.) 5 Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70010 Valenzano, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0861-332440 Received: 23 April 2020; Accepted: 9 May 2020; Published: 11 May 2020 Abstract: In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered.
    [Show full text]
  • Global Distribution of Novel Rhinovirus Genotype
    DISPATCHES in resource-poor regions (1). Streptococcus pneumoniae Global Distribution and Haemophilus infl uenzae are important bacterial causes of ARI, although their impact is expected to decline with of Novel Rhinovirus increasing vaccine coverage. Collectively, however, virus- es dominate as causative agents in ARI. Viruses frequently Genotype implicated in ARI include infl uenza virus, respiratory syn- Thomas Briese,* Neil Renwick,* Marietjie Venter,† cytial virus, metapneumovirus, parainfl uenza virus, human Richard G. Jarman,‡ Dhrubaa Ghosh,§ enterovirus (HEV), and human rhinovirus (HRV). Sophie Köndgen,¶ Sanjaya K. Shrestha,# HRVs are grouped taxonomically into Human rhinovi- A. Mette Hoegh,** Inmaculada Casas,†† Edgard rus A (HRV-A) and Human rhinovirus B (HRV-B), 2 spe- Valerie Adjogoua,‡‡ cies within the family Picornaviridae (International Com- Chantal Akoua-Koffi ,‡‡ Khin Saw Myint,‡ David T. mittee on Taxonomy of Viruses database [ICTVdb]; http:// Williams,§§ Glenys Chidlow,¶¶ phene.cpmc.columbia.edu). These nonenveloped, positive- Ria van den Berg,† Cristina Calvo,## sense, single-stranded RNA viruses have been classifi ed se- Orienka Koch,† Gustavo Palacios,* rologically and on the basis of antiviral susceptibility pro- Vishal Kapoor,* Joseph Villari,* fi le, nucleotide sequence relatedness, and receptor usage (2). Samuel R. Dominguez,*** Kathryn V. Holmes,*** Phylogenetic analyses of viral protein VP4/VP2 and VP1 Gerry Harnett,¶¶ David Smith,¶¶ coding regions indicate the presence of 74 serotypes in ge- John S. Mackenzie,§§ Heinz Ellerbrok,¶ netic group A and 25 serotypes in genetic group B (2). Brunhilde Schweiger,¶ Kristian Schønning,** Isolated in the 1950s from persons with upper respi- Mandeep S. Chadha,§ Fabian H. Leendertz,¶ A.C. ratory tract symptoms (2,3), HRVs have become known Mishra,§ Robert V.
    [Show full text]
  • Detection of Respiratory Viruses and Subtype Identification of Inffuenza a Viruses by Greenechipresp Oligonucleotide Microarray
    JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 2007, p. 2359–2364 Vol. 45, No. 8 0095-1137/07/$08.00ϩ0 doi:10.1128/JCM.00737-07 Copyright © 2007, American Society for Microbiology. All Rights Reserved. Detection of Respiratory Viruses and Subtype Identification of Influenza A Viruses by GreeneChipResp Oligonucleotide Microarrayᰔ† Phenix-Lan Quan,1‡ Gustavo Palacios,1‡ Omar J. Jabado,1 Sean Conlan,1 David L. Hirschberg,2 Francisco Pozo,3 Philippa J. M. Jack,4 Daniel Cisterna,5 Neil Renwick,1 Jeffrey Hui,1 Andrew Drysdale,1 Rachel Amos-Ritchie,4 Elsa Baumeister,5 Vilma Savy,5 Kelly M. Lager,6 Ju¨rgen A. Richt,6 David B. Boyle,4 Adolfo Garcı´a-Sastre,7 Inmaculada Casas,3 Pilar Perez-Bren˜a,3 Thomas Briese,1 and W. Ian Lipkin1* Jerome L. and Dawn Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, New York, New York1; Stanford School of Medicine, Palo Alto, California2; Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain3; CSIRO Livestock Industries, Australian Animal Health Laboratory, Victoria, Australia4; Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbra´n, Buenos Aires, Argentina5; National Animal Disease Center, USDA, Ames, Iowa6; and Department of Microbiology and Emerging Pathogens Institute, 7 Mount Sinai School of Medicine, New York, New York Downloaded from Received 4 April 2007/Returned for modification 15 May 2007/Accepted 21 May 2007 Acute respiratory infections are significant causes of morbidity, mortality, and economic burden worldwide. An accurate, early differential diagnosis may alter individual clinical management as well as facilitate the recognition of outbreaks that have implications for public health.
    [Show full text]
  • Atomic Structure of a Rhinovirus C, a Virus Species Linked to Severe
    Atomic structure of a rhinovirus C, a virus species SEE COMMENTARY linked to severe childhood asthma Yue Liua, Marchel G. Hillb, Thomas Klosea, Zhenguo Chena, Kelly Wattersb, Yury A. Bochkovc, Wen Jianga, Ann C. Palmenbergb,1, and Michael G. Rossmanna,1 aDepartment of Biological Sciences, Purdue University, West Lafayette, IN 47907; bInstitute for Molecular Virology, University of Wisconsin, Madison, WI 53706; and cDepartment of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved June 7, 2016 (received for review April 25, 2016) Isolates of rhinovirus C (RV-C), a recently identified Enterovirus Picornavirus capsids are assembled from 60 copies of biolog- (EV) species, are the causative agents of severe respiratory infec- ical protomers, each composed of four proteins: VP1, VP2, VP3, tions among children and are linked to childhood asthma exacer- and VP4 (2). The three large surface polypeptides, VP1, VP2, bations. The RV-C have been refractory to structure determination and VP3, are folded into eight-stranded antiparallel “jelly rolls.” because they are difficult to propagate in vitro. Here, we report During the assembly process, autocatalytic cleavage of precursor the cryo-EM atomic structures of the full virion and native empty VP0 into VP2 and VP4 in the presence of viral RNA results in particle (NEP) of RV-C15a. The virus has 60 “fingers” on the virus the formation of full infectious virions (20). The arrangement of outer surface that probably function as dominant immunogens. jelly rolls in the virions exhibits pseudo T = 3 icosahedral sym- Because the NEPs also display these fingers, they may have utility metry with an outer diameter of ∼300 Å (2, 3).
    [Show full text]
  • 2020 Taxonomic Update for Phylum Negarnaviricota (Riboviria: Orthornavirae), Including the Large Orders Bunyavirales and Mononegavirales
    Archives of Virology https://doi.org/10.1007/s00705-020-04731-2 VIROLOGY DIVISION NEWS 2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales Jens H. Kuhn1 · Scott Adkins2 · Daniela Alioto3 · Sergey V. Alkhovsky4 · Gaya K. Amarasinghe5 · Simon J. Anthony6,7 · Tatjana Avšič‑Županc8 · María A. Ayllón9,10 · Justin Bahl11 · Anne Balkema‑Buschmann12 · Matthew J. Ballinger13 · Tomáš Bartonička14 · Christopher Basler15 · Sina Bavari16 · Martin Beer17 · Dennis A. Bente18 · Éric Bergeron19 · Brian H. Bird20 · Carol Blair21 · Kim R. Blasdell22 · Steven B. Bradfute23 · Rachel Breyta24 · Thomas Briese25 · Paul A. Brown26 · Ursula J. Buchholz27 · Michael J. Buchmeier28 · Alexander Bukreyev18,29 · Felicity Burt30 · Nihal Buzkan31 · Charles H. Calisher32 · Mengji Cao33,34 · Inmaculada Casas35 · John Chamberlain36 · Kartik Chandran37 · Rémi N. Charrel38 · Biao Chen39 · Michela Chiumenti40 · Il‑Ryong Choi41 · J. Christopher S. Clegg42 · Ian Crozier43 · John V. da Graça44 · Elena Dal Bó45 · Alberto M. R. Dávila46 · Juan Carlos de la Torre47 · Xavier de Lamballerie38 · Rik L. de Swart48 · Patrick L. Di Bello49 · Nicholas Di Paola50 · Francesco Di Serio40 · Ralf G. Dietzgen51 · Michele Digiaro52 · Valerian V. Dolja53 · Olga Dolnik54 · Michael A. Drebot55 · Jan Felix Drexler56 · Ralf Dürrwald57 · Lucie Dufkova58 · William G. Dundon59 · W. Paul Duprex60 · John M. Dye50 · Andrew J. Easton61 · Hideki Ebihara62 · Toufc Elbeaino63 · Koray Ergünay64 · Jorlan Fernandes195 · Anthony R. Fooks65 · Pierre B. H. Formenty66 · Leonie F. Forth17 · Ron A. M. Fouchier48 · Juliana Freitas‑Astúa67 · Selma Gago‑Zachert68,69 · George Fú Gāo70 · María Laura García71 · Adolfo García‑Sastre72 · Aura R. Garrison50 · Aiah Gbakima73 · Tracey Goldstein74 · Jean‑Paul J. Gonzalez75,76 · Anthony Grifths77 · Martin H. Groschup12 · Stephan Günther78 · Alexandro Guterres195 · Roy A.
    [Show full text]
  • An Introduction to the Viruses
    Chapter 1 An introduction to the viruses Viruses are obligate intracellular parasites of man, other animals, plants and bacteria. They can only multiply within cells, and thus differ from bacteria, which can multiply in tissues in an extracellular position, and also in artificial culture media in the laboratory. It has always been recognized that viruses are distinct from the bacteria, but originally other groups of infective agents were included among the viruses which are now known to be organisms of a different and more complex nature. These included the Chlamydiae, organisms causing diseases such as lymphogranuloma venereum and trachoma, and the Rickettsiae, the causative agents of typhus and related infections. The specific treatment of infections caused by these two groups of agents will not be considered in this work, which is restricted to the chemotherapy of infections caused by the true viruses. The Chlamydiae and Rickettsiae are complete organisms, with cell walls, which possess both types of nucleic acid, enzyme systems which function within their cytoplasm, and a number of cell organelles. The viruses, on the other hand, possess either DNA or RNA as their genetic material, but not both. In some cases they contain enzymes, but these exert their functions within the host cell after the virus particle has under­ gone a process of dissolution during the early stage of infection. Except in the case of the arenaviruses, a group which contains the virus of Lassa fever, the virus particles do not contain organelles. A virus is thus much more rudimentary in structure, and relies upon the host cell to provide the systems for synthesizing its components which it does not possess itself.
    [Show full text]
  • A Persistent Giant Algal Virus, with a Unique Morphology, Encodes An
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 A persistent giant algal virus, with a unique morphology, encodes an 2 unprecedented number of genes involved in energy metabolism 3 4 Romain Blanc-Mathieu1,2, Håkon Dahle3, Antje Hofgaard4, David Brandt5, Hiroki 5 Ban1, Jörn Kalinowski5, Hiroyuki Ogata1 and Ruth-Anne Sandaa6* 6 7 1: Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011, Japan 8 2: Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, 9 CNRS, INRA, IRIG, Grenoble, France 10 3: Department of Biological Sciences and K.G. Jebsen Center for Deep Sea Research, 11 University of Bergen, Bergen, Norway 12 4: Department of Biosciences, University of Oslo, Norway 13 5: Center for Biotechnology, Universität Bielefeld, Bielefeld, 33615, Germany 14 6: Department of Biological Sciences, University of Bergen, Bergen, Norway 15 *Corresponding author: Ruth-Anne Sandaa, +47 55584646, [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.30.228163; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Abstract 17 Viruses have long been viewed as entities possessing extremely limited metabolic 18 capacities.
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]