Photometry of Delta Scorpii from 1996 to 2013 Using SOHO LASCO C3 Coronograph

Total Page:16

File Type:pdf, Size:1020Kb

Photometry of Delta Scorpii from 1996 to 2013 Using SOHO LASCO C3 Coronograph Photometry of Delta Scorpii from 1996 to 2013 using SOHO LASCO C3 coronograph Costantino Sigismondi 1,2,3, Graziano Ucci, Vanessa Zema, Francesco Scardino, Federico Maria Vincentelli 4 1 ICRANet, International Center for Relativistic Astrophysics Network, Rome (Italy) 2 Galileo Ferraris Institute and Pontifical Athenaeum Regina Apostolorum, Rome (Italy) 3 Observatorio Nacional and Universidade Federal do Rio de Janeiro (Brazil) 4 Department of Physics, Sapienza University of Rome, (Italy) May 31, 2021 Abstract The variabile star Delta Scorpii is in conjunction with the Sun at the end of November each year. We studied its magnitude by averaging the observations of 28 Nov - 1 Dec from 1996 to 2013 using the coronograph LASCO C3 on-board the SOHO Satellite and we extended of four years, i.e. 25% of the total light curve, back to 1996, with respect to the present AAVSO dataset on this star. The 0.2 magnitude scatters of the single measurements have been studied and the sources of such disturbances are vignetting and diffraction patterns from the coronograph. The new data collected on Delta Scorpii show its minimum at mv=2.5 magnitudes for 1996 and 1997, confirming the values observed during the minimum of 2009, and the main periodicity of 11 years in the stellar variability. 1 Introduction Delta Scorpii is a second magnitude Be giant; it is a double star and the atmospheres are grazing at periastron. Delta Scorpii shows an irregular and eruptive variability with 11 years of main periodicity linked to the orbital period[5]. The variability of Delta Scorpii has been studied since the year 2000[4]. In this paper we examine an homogeneus dataset from SOHO arXiv:1410.8492v1 [astro-ph.SR] 30 Oct 2014 satellite to extend the study of this star back to 1996. Despite its main purpose of observing the Sun, SOHO (SOlar Heliospheric Observatory) satellite is here used to perform differential photometry in its 17◦ field of view. In the last days of November and beginning of December the Sun approaches Delta and Alpha Scorpii, and they appear in the field of view of the SOHO LASCO C3 coronograph. 1 2 The C3 Coronograph of SOHO The Large Angle and Spectrometric Coronagraph LASCO is a set of three coronagraphs (C1, C2 and C3) on-board the SOHO Satellite. Figure 1: Images recorded by LASCO C3 camera. In the left image it is possible to observe the passage of the sungrazer comet ISON at perihelion on 28 November 2013 (Taken from [7]). SOHO was launched on the 2nd of December 1995 becoming operative in 1996 in the La- grangian Point L1 of Earth’s orbit. This mission still provides images on a daily basis of the solar corona in 2014. 3 Data 3.1 Data Collecting Delta Scorpii is in the field of view of SOHO for approximately 6 days around 30th of November. We analyzed the FITS images available from November 1996 to December 2013 from LASCO C3 camera archive, namely LASCO/EIT [1]; the images are in the Clear band (see 3). Being Delta Scorpii a blue giant, we focused on the V magnitude. The quantum efficiency of the LASCO C3 camera (3) covers a wider range of wavelenghts than the Johnson V-band; the conversion between Johnson V magnitude and LASCO C3 one has been numercally evaluated as MV = MC3 + 0:093 for a 27000 K black body[13]. 2 Figure 2: Optical scheme of C3 coronograph. Top diagram: the image paths. Bottom diagram: raytracing for the suppression of straylights. Adapted from [2]. Figure 3: C: Clear band Quantum Efficiency of SOHO LASCO/C3; V: Johnson V-band; R: Johnson R-band; I: Johnson I-band. 3 FITS are not elaborated images, without loss of information due to image compression. Approximately 2400 images have been analyzed for making differential photometry, using Beta Scorpii and Pi Scorpii as reference stars because their color index B-V is similar to the one of Delta Scorpii, avoiding data within the solar Corona because of the poorer contrast. Figure 4: Magnitudes in Johnson V-band vs year. Each point is the mean of the magnitudes aquired from the 28th of November to the 1st of December of each year with its standard deviation. Figure 5: Comparison of SOHO LASCO C3 data on Delta Scorpii with the AAVSO data in the V-band. Green dots: AAVSO data. Blue crosses: C3 data. 4 3.2 Dispersion in magnitude, vignetting and diffraction in C3 Between the 28th of November and the 1st of December, the data show a typical 0.2 mag- nitudes dispersion. A plot shows eventually the presence of significant trends. Their absence validates the use of the average value. Figure 6: V magnitude of Delta Scorpii measured during four days. The line represents the arithmetical mean. Data from 28 Nov 2007. Vignetting and diffraction caused by the coronograph are responsible for the magnitude dispersion. The presence of a stop in an optical system causes the vignetting effect, namely the progressive darkening on the edge of an image (See Fig. 7). 5 Figure 7: The vignetting of oblique beams of light by a lens. As not all the oblique rays reach the focal plane, we have a progressive darkening of the image at the edges [9]. To measure this effect, we studied the motion of Pi Scorpii across the image (always centered on the Sun) towards the edge of the field of view, measuring its magnitude at every step. In Fig. 8 it is plotted the magnitude of Pi Scorpii in function of its distance from the edge. Figure 8: Effect of vignetting on the images: Pi Scorpii magnitude vs its normalized radial distance; the edge is at d=1. (a) Data relative to year 2004. (b) Data relative to year 2005. Different years are in order to exclude possible spurious random effects. From the Fig. 8 we see that vignetting produces a 0.15 magnitudes scatter in our data. Since the coronograph includes various obstacles and stops between the detector and the light source, they cause appreciable diffraction patterns according to the Babinet’s principle. In a generic image in the left panel of Fig. 9, after enhancing the contrast as in the right panel of Fig. 9, we traced various intensity profiles, all passing from the centre of the image, with different azimuth. The mean of these profiles is a clean representation of this diffraction pattern, obtained by using the Sun as a source. 6 Figure 9: Left panel: FITS image not elaborated. Right panel: The same image after enhancing the contrast. The average azimuthal diffraction pattern is shown in Fig.10. Figure 10: Diffraction profile due to the coronograph. In the graph it is plotted the intensity I (from 0 to 255) vs radial coordinate d from the center. Measuring the magnitude of a star in two different regions: m where the effect of diffraction is negligible and m0 where the effect is strong we evaluated the difference δm = m0 − m ' 0:154mag. The contribution of both vignetting and diffraction accounts for the spread of our experi- mental data. 7 3.3 Conclusions We analyzed Delta Scorpii data from SOHO from November 1996 to December 2013, using FITS images of LASCO C3 camera. As reference stars we used Beta and Pi Scorpii because of their color index B-V and their closeness to Delta Scorpii. We discarded the images when the stars were too close to the solar corona and to the regions with maximum vignetting and diffraction. Their combined effect to the magnitude estimates of the star produce a scatter within 0.2 magnitudes. The extension back to 1996 of Delta Scorpii allows to know 25% more of its intriguing light curve thanks to these reliable satellite data. The minimum of 1996-1997 at 2.5 magni- tude observed with SOHO enforces the 11 year periodicity related to the orbital period of the companion[5]. Using SOHO satellite to study other zodiacal stars, during their period of conjunction with the Sun, may open new perspectives in the domain of stellar variability, filling the yearly gap of usual unobservability of the stars. Acknowledgments: Costantino Sigismondi is grateful to Alexandre Amorim, astronomer of Florianopolis, Brazil. He drove my attention to the comet ISON during the IAU/LARIM 2013 meeting, showing the image of SOHO with delta Scorpii. Our observations of the comet ISON during its grazing perihelion of Nov 28, 2013 documented in Fig.1 are described in the number of December 2013 of the bulletin Observe![8] References [1] LASCO/EIT Images Query Form http://sharpp.nrl.navy.mil/cgi-bin/swdbi/lasco/img-short/form. [2] Homepage LASCO http://lasco-www.nrl.navy.mil. [3] Homepage SOHO http://sohowww.nascom.nasa.gov. [4] S. Otero http://www.aavso.org/vsots_delsco. [5] C. Sigismondi, Delta Scorpii 2011 periastron: worldwide observational campaign and preliminary photometric analysis, arXiv:1107.1107v1. [6] G. E. Brueckner et al., The large angle spectroscopic coronograph (LASCO), Solar Physics, Dec 1995, Volume 162, Issue 1-2, pp 357-402. [7] SOHO data retrieval http://sohodata.nascom.nasa.gov/cgi-bin/data_query. [8] Observe! Bulletin http://www.geocities.ws/costeira1/neoa/observe.htm 8 [9] R. Kingslake, Lenses in Photography, Garden City Books, New York, 1951; Second Edition, A. S. Barnes, New York, 1963. [10] General Catalogue of Variable Stars http://www.sai.msu.su/gcvs/gcvs/index.htm. [11] http://varsao.com.ar/delta_Sco.htm. [12] http://www.mindspring.com/∼feez/Star.htm. [13] D. P. K. Banerjee, P. Janardhan, and N. M. Ashok, Near infra-red and optical spectroscopy of Delta Scorpii, India, Physical Research Laboratory, Navrang- pura, 2001.
Recommended publications
  • Astronomie in Theorie Und Praxis 8. Auflage in Zwei Bänden Erik Wischnewski
    Astronomie in Theorie und Praxis 8. Auflage in zwei Bänden Erik Wischnewski Inhaltsverzeichnis 1 Beobachtungen mit bloßem Auge 37 Motivation 37 Hilfsmittel 38 Drehbare Sternkarte Bücher und Atlanten Kataloge Planetariumssoftware Elektronischer Almanach Sternkarten 39 2 Atmosphäre der Erde 49 Aufbau 49 Atmosphärische Fenster 51 Warum der Himmel blau ist? 52 Extinktion 52 Extinktionsgleichung Photometrie Refraktion 55 Szintillationsrauschen 56 Angaben zur Beobachtung 57 Durchsicht Himmelshelligkeit Luftunruhe Beispiel einer Notiz Taupunkt 59 Solar-terrestrische Beziehungen 60 Klassifizierung der Flares Korrelation zur Fleckenrelativzahl Luftleuchten 62 Polarlichter 63 Nachtleuchtende Wolken 64 Haloerscheinungen 67 Formen Häufigkeit Beobachtung Photographie Grüner Strahl 69 Zodiakallicht 71 Dämmerung 72 Definition Purpurlicht Gegendämmerung Venusgürtel Erdschattenbogen 3 Optische Teleskope 75 Fernrohrtypen 76 Refraktoren Reflektoren Fokus Optische Fehler 82 Farbfehler Kugelgestaltsfehler Bildfeldwölbung Koma Astigmatismus Verzeichnung Bildverzerrungen Helligkeitsinhomogenität Objektive 86 Linsenobjektive Spiegelobjektive Vergütung Optische Qualitätsprüfung RC-Wert RGB-Chromasietest Okulare 97 Zusatzoptiken 100 Barlow-Linse Shapley-Linse Flattener Spezialokulare Spektroskopie Herschel-Prisma Fabry-Pérot-Interferometer Vergrößerung 103 Welche Vergrößerung ist die Beste? Blickfeld 105 Lichtstärke 106 Kontrast Dämmerungszahl Auflösungsvermögen 108 Strehl-Zahl Luftunruhe (Seeing) 112 Tubusseeing Kuppelseeing Gebäudeseeing Montierungen 113 Nachführfehler
    [Show full text]
  • Mathématiques Et Espace
    Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • September 2020 BRAS Newsletter
    A Neowise Comet 2020, photo by Ralf Rohner of Skypointer Photography Monthly Meeting September 14th at 7:00 PM, via Jitsi (Monthly meetings are on 2nd Mondays at Highland Road Park Observatory, temporarily during quarantine at meet.jit.si/BRASMeets). GUEST SPEAKER: NASA Michoud Assembly Facility Director, Robert Champion What's In This Issue? President’s Message Secretary's Summary Business Meeting Minutes Outreach Report Asteroid and Comet News Light Pollution Committee Report Globe at Night Member’s Corner –My Quest For A Dark Place, by Chris Carlton Astro-Photos by BRAS Members Messages from the HRPO REMOTE DISCUSSION Solar Viewing Plus Night Mercurian Elongation Spooky Sensation Great Martian Opposition Observing Notes: Aquila – The Eagle Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Baton Rouge Astronomical Society Newsletter, Night Visions Page 2 of 27 September 2020 President’s Message Welcome to September. You may have noticed that this newsletter is showing up a little bit later than usual, and it’s for good reason: release of the newsletter will now happen after the monthly business meeting so that we can have a chance to keep everybody up to date on the latest information. Sometimes, this will mean the newsletter shows up a couple of days late. But, the upshot is that you’ll now be able to see what we discussed at the recent business meeting and have time to digest it before our general meeting in case you want to give some feedback. Now that we’re on the new format, business meetings (and the oft neglected Light Pollution Committee Meeting), are going to start being open to all members of the club again by simply joining up in the respective chat rooms the Wednesday before the first Monday of the month—which I encourage people to do, especially if you have some ideas you want to see the club put into action.
    [Show full text]
  • Design of Three-Dimensional, Path Length Matched Optical Waveguides
    COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subjec t this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright Master’s Thesis Ned Charles Design of Three-Dimensional, Path Length Matched Optical Waveguides Arbitrary Design of Three-Dimensional, Path Length Matched Waveguides Abstract A method for designing physically path length matched, three-dimensional photonic circuits is described. These waveguides, with arbitrary endpoints, were fabricated via the femtosecond laser direct-write technique. The focus is specifically on the case where all waveguides are uniquely routed from the input to output; a problem which has not been addressed to date and allows for the waveguides to be used in interferometric measurements.
    [Show full text]
  • The Brightest Stars Seite 1 Von 9
    The Brightest Stars Seite 1 von 9 The Brightest Stars This is a list of the 300 brightest stars made using data from the Hipparcos catalogue. The stellar distances are only fairly accurate for stars well within 1000 light years. 1 2 3 4 5 6 7 8 9 10 11 12 13 No. Star Names Equatorial Galactic Spectral Vis Abs Prllx Err Dist Coordinates Coordinates Type Mag Mag ly RA Dec l° b° 1. Alpha Canis Majoris Sirius 06 45 -16.7 227.2 -8.9 A1V -1.44 1.45 379.21 1.58 9 2. Alpha Carinae Canopus 06 24 -52.7 261.2 -25.3 F0Ib -0.62 -5.53 10.43 0.53 310 3. Alpha Centauri Rigil Kentaurus 14 40 -60.8 315.8 -0.7 G2V+K1V -0.27 4.08 742.12 1.40 4 4. Alpha Boötis Arcturus 14 16 +19.2 15.2 +69.0 K2III -0.05 -0.31 88.85 0.74 37 5. Alpha Lyrae Vega 18 37 +38.8 67.5 +19.2 A0V 0.03 0.58 128.93 0.55 25 6. Alpha Aurigae Capella 05 17 +46.0 162.6 +4.6 G5III+G0III 0.08 -0.48 77.29 0.89 42 7. Beta Orionis Rigel 05 15 -8.2 209.3 -25.1 B8Ia 0.18 -6.69 4.22 0.81 770 8. Alpha Canis Minoris Procyon 07 39 +5.2 213.7 +13.0 F5IV-V 0.40 2.68 285.93 0.88 11 9. Alpha Eridani Achernar 01 38 -57.2 290.7 -58.8 B3V 0.45 -2.77 22.68 0.57 144 10.
    [Show full text]
  • More Than a Vulture: a Response to Sweatman and Tsikritsis
    Mediterranean Archaeology and Archaeometry, Vol. 17, No 2, (2017), pp. 57-74 Copyright © 2017 MAA Open Access. Printed in Greece. All rights reserved. DOI: 10.5281/zenodo.581724 MATTERS ARISING DECODING GÖBEKLI TEPE WITH ARCHAEOASTRONOMY: WHAT DOES THE FOX SAY?” by Sweatman, M.B. and D. Tsikritsis MORE THAN A VULTURE: A RESPONSE TO SWEATMAN AND TSIKRITSIS By Jens Notroff, Oliver Dietrich, Laura Dietrich, Cecilie Lelek Tvetmarken, Moritz Kinzel, Jonas Schlindwein, Devrim Sönmez, Lee Clare CRITICAL EVALUATION OF THE PAPER BY SWEATMAN, M. B. AND D. TSIKRITSIS, “DECODING GÖBEKLI TEPE WITH ARCHAEOASTRONOMY: WHAT DOES THE FOX SAY?” by Paul D. Burley MORE THAN A VULTURE: A RESPONSE TO SWEATMAN AND TSIKRITSIS Jens Notroff1, Oliver Dietrich1, Laura Dietrich1, Cecilie Lelek Tvetmarken1, Moritz Kinzel2, Jonas Schlindwein1, Devrim Sönmez3, Lee Clare1 1Deutsches Archäologisches Institut, Orient-Abteilung, Podbielskiallee 69–71, D-14195 Berlin, Germany 2Carsten Niebuhr Centre for Multicultural Heritage Department of Cross-Cultural and Regional Studies – ToRS University of Copenhagen, Karen Blixen Plads 8, DK-2300 Copenhagen S, Denmark 3Deutsches Archäologisches Institut, Abteilung Istanbul, Inönü Caddesi 10 TR-34437 Gümüssuyu-Istanbul, Turkey Received: 28/04/2017 Accepted: 01/05/2017 Corresponding author: Jens Notroff ([email protected]) ABSTRACT In a paper recently published in this journal, Martin B. Sweatman and Dimitrios Tsikritsis from the Universi- ty of Edinburgh (School of Engineering) have suggested an interpretation for the early Neolithic monumen- tal enclosures at Göbekli Tepe as space observatories and the site's complex iconography the commemora- tion of a catastrophic astronomical event ('Younger Dryas Comet Impact'). As the archaeologists excavating this site, we would like to comment on a few points that we feel require consideration in this discussion.
    [Show full text]
  • Solar Writer Report for Abraham Lincoln
    FIXED STARS A Solar Writer Report for Abraham Lincoln Written by Diana K Rosenberg Compliments of:- Stephanie Johnson Seeing With Stars Astrology PO Box 159 Stepney SA 5069 Australia Tel/Fax: +61 (08) 8331 3057 Email: [email protected] Web: www.esotech.com.au Page 2 Abraham Lincoln Natal Chart 12 Feb 1809 12:40:56 PM UT +0:00 near Hodgenville 37°N35' 085°W45' Tropical Placidus 22' 13° 08°ˆ ‡ 17' ¾ 06' À ¿É ‰ 03° ¼ 09° 00° 06° 09°06° ˆ ˆ ‡ † ‡ 25° 16' 41'08' 40' † 01' 09' Œ 29' ‰ 9 10 23° ¶ 8 27°‰ 11 Ï 27° 01' ‘ ‰02' á 7 12 ‘ áá 23° á 23° ¸ 23°Š27' á Š à „ 28' 28' 6 18' 1 10°‹ º ‹37' 13° 05' ‹ 5 Á 22° ½ 27' 2 4 01' Ü 3 07° Œ ƒ » 09' 23° 09° Ý Ü 06° 16' 06' Ê 00°ƒ 13° 22' Ý 17' 08°‚ Page 23 Astrological Summary Chart Point Positions: Abraham Lincoln Planet Sign Position House Comment The Moon Capricorn 27°Cp01' 12th The Sun Aquarius 23°Aq27' 12th read into 1st House Mercury Pisces 10°Pi18' 1st Venus Aries 7°Ar27' 1st read into 2nd House Mars Libra 25°Li29' 8th Jupiter Pisces 22°Pi05' 1st Saturn Sagittarius 3°Sg08' 9th read into 10th House Uranus Scorpio 9°Sc40' 8th Neptune Sagittarius 6°Sg41' 9th read into 10th House Pluto Pisces 13°Pi37' 1st The North Node Scorpio 6°Sc09' 8th The South Node Taurus 6°Ta09' 2nd The Ascendant Aquarius 23°Aq28' 1st The Midheaven Sagittarius 8°Sg22' 10th The Part of Fortune Capricorn 27°Cp02' 12th Chart Point Aspects Planet Aspect Planet Orb App/Sep The Moon Square Mars 1°32' Separating The Moon Conjunction The Part of Fortune 0°00' Applying The Sun Trine Mars 2°02' Applying The Sun Conjunction The Ascendant
    [Show full text]
  • Source of Knowledge, Techniques and Skills That Go Into the Development of Technology, and Prac- Tical Applications
    DOCUMENT RESUME ED 027 216 SE 006 288 By-Newell, Homer E. NASA's Space Science and Applications Program. National Aeronautics and Space Administration, Washington, D.C. Repor t No- EP -47. Pub Date 67 Note-206p.; A statement presented to the Committee on Aeronautical and Space Sciences, United States Senate, April 20, 1967. EDRS Price MF-$1.00 HC-$10.40 Descriptors-*Aerospace Technology, Astronomy, Biological Sciences, Earth Science, Engineering, Meteorology, Physical Sciences, Physics, *Scientific Enterprise, *Scientific Research Identifiers-National Aeronautics and Space Administration This booklet contains material .prepared by the National Aeronautic and Space AdMinistration (NASA) office of Space Science and Applications for presentation.to the United States Congress. It contains discussion of basic research, its valueas a source of knowledge, techniques and skillsthat go intothe development of technology, and ioractical applications. A series of appendixes permitsa deeper delving into specific aspects of. Space science. (GR) U.S. DEPARTMENT OF HEALTH, EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVEDFROM THE PERSON OR ORGANIZATION ORIGINATING IT.POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OMCE OFEDUCATION POSITION OR POLICY. r.,; ' NATiONAL, AERONAUTICS AND SPACEADi4N7ISTRATION' , - NASNS SPACE SCIENCE AND APPLICATIONS PROGRAM .14 A Statement Presented to the Committee on Aeronautical and Space Sciences United States Senate April 20, 1967 BY HOMER E. NEWELL Associate Administrator for Space Science and Applications National Aeronautics and Space Administration Washington, D.C. 20546 +77.,M777,177,,, THE MATERIAL in this booklet is a re- print of a portion of that which was prepared by NASA's Office of Space Science and Ap- -olications for presentation to the Congress of the United States in the course of the fiscal year 1968 authorization process.
    [Show full text]
  • Spectroscopic Observations of the Delta Scorpii Binary During Its Recent Periastron Passage
    Spectroscopic observations of the δ Scorpii binary during its recent periastron passage By: A. S. Miroshnichenko, J. Fabregat, K. S. Bjorkman, D. C. Knauth, N. D. Morrison, A. E. Tarasov, P. Reig, I. Negueruela, and P. Blay Miroshnichenko, A.S., Fabregat, J., Bjorkman, K.S., Knauth, D.C., Morrison, N.D., Tarasov, A.E., Reig, P., Negueruela, I., Blay, P., 2001. A&A, 377, 485-495. Spectroscopic observations of the Delta Scorpii binary during its recent periastron passage. Made available courtesy of EDP Sciences: http://publications.edpsciences.org/ *** Note: Figures may be missing from this format of the document Abstract: The bright star δ Sco has been considered a typical B0-type object for many years. Spectra of the star published prior to 1990 showed no evidence of emission, but only of short-term line profile variations attributed to nonradial pulsations. Speckle interferometric observations show that δ Sco is a binary system with a highly-eccentric orbit and a period of ~10.6 years. Weak emission in the Hα line was detected in its spectrum for the first time during a periastron passage in 1990. Shortly before the next periastron passage in the summer of 2000, the binary entered a strong Hα emission and enhanced mass-loss phase. We monitored the spectroscopic development of the Be outburst from July 2000 through March 2001. In this paper we present results from our spectroscopy, refine elements of the binary orbit, and discuss possible mechanisms for the mass loss. Key words. stars: emission-line, Be – binaries: close – individual: δ Sco – techniques: spectroscopic Article: 1.
    [Show full text]
  • Symposium on Telescope Science
    Proceedings for the 26th Annual Conference of the Society for Astronomical Sciences Symposium on Telescope Science Editors: Brian D. Warner Jerry Foote David A. Kenyon Dale Mais May 22-24, 2007 Northwoods Resort, Big Bear Lake, CA Reprints of Papers Distribution of reprints of papers by any author of a given paper, either before or after the publication of the proceedings is allowed under the following guidelines. 1. The copyright remains with the author(s). 2. Under no circumstances may anyone other than the author(s) of a paper distribute a reprint without the express written permission of all author(s) of the paper. 3. Limited excerpts may be used in a review of the reprint as long as the inclusion of the excerpts is NOT used to make or imply an endorsement by the Society for Astronomical Sciences of any product or service. Notice The preceding “Reprint of Papers” supersedes the one that appeared in the original print version Disclaimer The acceptance of a paper for the SAS proceedings can not be used to imply or infer an endorsement by the Society for Astronomical Sciences of any product, service, or method mentioned in the paper. Published by the Society for Astronomical Sciences, Inc. First printed: May 2007 ISBN: 0-9714693-6-9 Table of Contents Table of Contents PREFACE 7 CONFERENCE SPONSORS 9 Submitted Papers THE OLIN EGGEN PROJECT ARNE HENDEN 13 AMATEUR AND PROFESSIONAL ASTRONOMER COLLABORATION EXOPLANET RESEARCH PROGRAMS AND TECHNIQUES RON BISSINGER 17 EXOPLANET OBSERVING TIPS BRUCE L. GARY 23 STUDY OF CEPHEID VARIABLES AS A JOINT SPECTROSCOPY PROJECT THOMAS C.
    [Show full text]
  • Supernova Star Maps
    Supernova Star Maps Which Stars in the Night Sky Will Go Su pernova? About the Activity Allow visitors to experience finding stars in the night sky that will eventually go supernova. Topics Covered Observation of stars that will one day go supernova Materials Needed • Copies of this month's Star Map for your visitors- print the Supernova Information Sheet on the back. • (Optional) Telescopes A S A Participants N t i d Activities are appropriate for families Cre with children over the age of 9, the general public, and school groups ages 9 and up. Any number of visitors may participate. Location and Timing This activity is perfect for a star party outdoors and can take a few minutes, up to 20 minutes, depending on the Included in This Packet Page length of the discussion about the Detailed Activity Description 2 questions on the Supernova Helpful Hints 5 Information Sheet. Discussion can start Supernova Information Sheet 6 while it is still light. Star Maps handouts 7 Background Information There is an Excel spreadsheet on the Supernova Star Maps Resource Page that lists all these stars with all their particulars. Search for Supernova Star Maps here: http://nightsky.jpl.nasa.gov/download-search.cfm © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Star Maps: Stars likely to go Supernova! Leader’s Role Participants’ Role (Anticipated) Materials: Star Map with Supernova Information sheet on back Objective: Allow visitors to experience finding stars in the night sky that will eventually go supernova.
    [Show full text]