Award Recipients with Citations

Total Page:16

File Type:pdf, Size:1020Kb

Award Recipients with Citations IEEE JOHN VON NEUMANN MEDAL RECIPIENTS 2020 MICHAEL I. JORDAN “For contributions to machine learning and Professor, University of California, data science.” Berkeley, California, USA 2019 EVA TARDOS “For contributions to the field of algorithms, Jacob Gould Schurman Professor of including foundational new methods in Computer Science, Cornell optimization, approximation algorithms, and University, Ithaca, New York, USA algorithmic game theory.” 2018 PATRICK COUSOT “For introducing abstract interpretation, a Professor, New York University, powerful framework for automatically New York, New York, USA calculating program properties with broad application to verification and optimization.” 2017 VLADIMIR VAPNIK “For the development of statistical learning Professor, Columbia University and theory, the theoretical foundations for Facebook AI Research, New York, machine learning, and support vector New York, USA machines.” 2016 CHRISTOS HARILAOS "For providing a deeper understanding of PAPADIMITRIOU computational complexity and its implications Professor, University of California, for approximation algorithms, artificial Berkeley, Berkeley, California, USA intelligence, economics, database theory, and biology." 2015 JAMES A. GOSLING “For the Java programming language, Java Chief Software Architect, Liquid Virtual Machine, and other contributions to Robotics, Redwood, California, USA programming languages and environments.” 2014 CLEVE MOLER “For fundamental and widely used Chief Mathematician, MathWorks, contributions to numerical linear algebra and Santa Fe, New Mexico, USA scientific and engineering software that transformed computational science.” 2013 JACK B. DENNIS “For fundamental abstractions to implement Professor Emeritus, Massachusetts protection in operating systems and for the Institute of Technology Computer dataflow programming paradigm.” Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA 2012 EDWARD McCLUSKEY “For fundamental contributions that shaped Professor Emeritus, Departments of the design and testing of digital systems.” Electrical Engineering and Computer Science, Stanford University, Stanford, CA, USA 1 of 4 IEEE JOHN VON NEUMANN MEDAL RECIPIENTS 2011 C.A.R. (TONY) HOARE “For seminal contributions to the scientific Principal Researcher, Microsoft foundation of software design.” Research Ltd.; Cambridge, UK 2010 JOHN HOPCROFT “For laying the foundations for the fields of IBM Professor of Engineering and automata and language theory and many Applied Mathematics, Cornell seminal contributions to theoretical computer University, Cornell, NY, USA science.” AND JEFFREY ULLMAN Professor Emeritus of Computer Science, Stanford University Stanford, CA, USA 2009 SUSAN L. GRAHAM “For contributions to programming language Pehong Chen Distinguished design and implementation and for Professor of Computer Science, exemplary service to the discipline of Univ of California at Berkeley, computer science.” Berkeley, CA, USA 2008 LESLIE LAMPORT “For establishment of the foundations of Researcher, Microsoft Corporation, distributed and concurrent computing.” Silicon Valley Research Center, Mountain, View, CA, USA 2007 CHARLES THACKER “For a central role in the creation of the Distinguished Engineer, Microsoft personal computer and the development of Corporation, Redmond, WA, USA networked computer systems.” 2006 EDWIN CATMULL “For fundamental contributions to computer President, Pixar Animation Studios, graphics, and a pioneering role in the use of Emeryville, CA, USA computer animation in motion pictures.” 2005 MICHAEL STONEBRAKER "For contributions to the design, Adjunct Professor, Laboratory for implementation, and commercialization of CS, Massachusetts Institute of relational and object-relational database Technology, Bedford, NH, USA systems." 2004 BARBARA H. LISKOV “For fundamental contributions to Ford Professor of Engineering and programming languages, programming Associate Head for Computer methodology, and distributed systems.” Science, Massachusetts Institute of Technology Cambridge, MA, USA 2 of 4 IEEE JOHN VON NEUMANN MEDAL RECIPIENTS 2003 ALFRED V. AHO “For contributions to the foundations of Professor, Columbia University, computer science and to the fields of New York, NY, USA algorithms and software tools.” 2002 OLE-JOHAN DAHL "For the introduction of the concepts Univ of Oslo, Oslo, Norway underlying object-oriented programming through the design and implementation of AND KRISTEN NYGAARD SIMULA 67." Univ of Oslo, Oslo, Norway 2001 BUTLER W. LAMPSON "For technical leadership in the creation of Distinguished Engineer at Microsoft timesharing, distributed computing, and Adjunct Professor at MIT networking security and program languages." 2000 JOHN L. HENNESSY “For creating a revolution in computer Stanford University architecture through their exploration, Stanford, CA, USA popularization, and commercialization of architectural innovations.” AND DAVID A. PATTERSON University of California at Berkeley Berkeley, CA, USA 1999 DOUGLAS C. ENGELBART "For creating the foundations of real time, Bootstrap Institute interactive, personal computing including Fremont, CA, USA CRT displays, windows, the mouse, hypermedia linking and conferencing, and on-line journals." 1998 IVAN EDWARD SUTHERLAND "For pioneering contributions to computer Sun Microsystems Laboratories graphics and microelectronic design, and Palo Alto, CA, USA leadership in the support of computer science and engineering research" 1997 MAURICE V. WILKES "For a lifelong career of seminal contributions Olivetti Research Ltd. to computing, including the first full-scale Cambridge, England operational stored program computer and to the foundations of programming." 1996 CARVER A. MEAD "For leadership and innovative contributions California Institute of Technology to VLSI and creative microelectronic Pasadena, CA, USA structures." 1995 DONALD E. KNUTH "For fundamental contributions to the theory Stanford University and practice of computer science and to the Stanford, CA, USA art of computer programming." 1994 JOHN COCKE "For contributions to the computer industry IBM/T.J. Watson Research Center including the invention, development and 3 of 4 IEEE JOHN VON NEUMANN MEDAL RECIPIENTS Yorktown Heights, NY, USA implementation of Reduced Instruction Set Computer (RISC) architecture and program optimization technology." 1993 FREDERICK P. BROOKS, JR. "For significant developments in computer Univ. of North Carolina architecture, insightful observations on Chapel Hill, NC, USA software engineering, and for computer science education and professional service." 1992 C. GORDON BELL "For innovative contributions to computer Stardent Computer architecture and design." Sunnyvale, CA, USA 4 of 4 .
Recommended publications
  • Efficient Algorithms with Asymmetric Read and Write Costs
    Efficient Algorithms with Asymmetric Read and Write Costs Guy E. Blelloch1, Jeremy T. Fineman2, Phillip B. Gibbons1, Yan Gu1, and Julian Shun3 1 Carnegie Mellon University 2 Georgetown University 3 University of California, Berkeley Abstract In several emerging technologies for computer memory (main memory), the cost of reading is significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fun- damentally different model from the RAM for algorithm design. In this paper we study lower and upper bounds for various problems under such asymmetric read and write costs. We con- sider both the case in which all but O(1) memory has asymmetric cost, and the case of a small cache of symmetric memory. We model both cases using the (M, ω)-ARAM, in which there is a small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random access, and where reading from the large memory has unit cost, but writing has cost ω 1. For FFT and sorting networks we show a lower bound cost of Ω(ωn logωM n), which indicates that it is not possible to achieve asymptotic improvements with cheaper reads when ω is bounded by a polynomial in M. Moreover, there is an asymptotic gap (of min(ω, log n)/ log(ωM)) between the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM, and most other models, in which the asymptotic costs are the same. We also show a lower bound for computations on an n × n diamond DAG of Ω(ωn2/M) cost, which indicates no asymptotic improvement is achievable with fast reads.
    [Show full text]
  • Tarjan Transcript Final with Timestamps
    A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated.
    [Show full text]
  • Oracle Vs. Nosql Vs. Newsql Comparing Database Technology
    Oracle vs. NoSQL vs. NewSQL Comparing Database Technology John Ryan Senior Solution Architect, Snowflake Computing Table of Contents The World has Changed . 1 What’s Changed? . 2 What’s the Problem? . .. 3 Performance vs. Availability and Durability . 3 Consistecy vs. Availability . 4 Flexibility vs . Scalability . 5 ACID vs. Eventual Consistency . 6 The OLTP Database Reimagined . 7 Achieving the Impossible! . .. 8 NewSQL Database Technology . 9 VoltDB . 10 MemSQL . 11 Which Applications Need NewSQL Technology? . 12 Conclusion . 13 About the Author . 13 ii The World has Changed The world has changed massively in the past 20 years. Back in the year 2000, a few million users connected to the web using a 56k modem attached to a PC, and Amazon only sold books. Now billions of people are using to their smartphone or tablet 24x7 to buy just about everything, and they’re interacting with Facebook, Twitter and Instagram. The pace has been unstoppable . Expectations have also changed. If a web page doesn’t refresh within seconds we’re quickly frustrated, and go elsewhere. If a web site is down, we fear it’s the end of civilisation as we know it. If a major site is down, it makes global headlines. Instant gratification takes too long! — Ladawn Clare-Panton Aside: If you’re not a seasoned Database Architect, you may want to start with my previous articles on Scalability and Database Architecture. Oracle vs. NoSQL vs. NewSQL eBook 1 What’s Changed? The above leads to a few observations: • Scalability — With potentially explosive traffic growth, IT systems need to quickly grow to meet exponential numbers of transactions • High Availability — IT systems must run 24x7, and be resilient to failure.
    [Show full text]
  • The Declarative Imperative Experiences and Conjectures in Distributed Logic
    The Declarative Imperative Experiences and Conjectures in Distributed Logic Joseph M. Hellerstein University of California, Berkeley [email protected] ABSTRACT The juxtaposition of these trends presents stark alternatives. The rise of multicore processors and cloud computing is putting Will the forecasts of doom and gloom materialize in a storm enormous pressure on the software community to find solu- that drowns out progress in computing? Or is this the long- tions to the difficulty of parallel and distributed programming. delayed catharsis that will wash away today’s thicket of im- At the same time, there is more—and more varied—interest in perative languages, preparing the ground for a more fertile data-centric programming languages than at any time in com- declarative future? And what role might the database com- puting history, in part because these languages parallelize nat- munity play in shaping this future, having sowed the seeds of urally. This juxtaposition raises the possibility that the theory Datalog over the last quarter century? of declarative database query languages can provide a foun- Before addressing these issues directly, a few more words dation for the next generation of parallel and distributed pro- about both crisis and opportunity are in order. gramming languages. 1.1 Urgency: Parallelism In this paper I reflect on my group’s experience over seven years using Datalog extensions to build networking protocols I would be panicked if I were in industry. and distributed systems. Based on that experience, I present — John Hennessy, President, Stanford University [35] a number of theoretical conjectures that may both interest the database community, and clarify important practical issues in The need for parallelism is visible at micro and macro scales.
    [Show full text]
  • Historical Perspective and Further Reading 162.E1
    2.21 Historical Perspective and Further Reading 162.e1 2.21 Historical Perspective and Further Reading Th is section surveys the history of in struction set architectures over time, and we give a short history of programming languages and compilers. ISAs include accumulator architectures, general-purpose register architectures, stack architectures, and a brief history of ARMv7 and the x86. We also review the controversial subjects of high-level-language computer architectures and reduced instruction set computer architectures. Th e history of programming languages includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C+ + , and Java, and the history of compilers includes the key milestones and the pioneers who achieved them. Accumulator Architectures Hardware was precious in the earliest stored-program computers. Consequently, computer pioneers could not aff ord the number of registers found in today’s architectures. In fact, these architectures had a single register for arithmetic instructions. Since all operations would accumulate in one register, it was called the accumulator , and this style of instruction set is given the same name. For example, accumulator Archaic EDSAC in 1949 had a single accumulator. term for register. On-line Th e three-operand format of RISC-V suggests that a single register is at least two use of it as a synonym for registers shy of our needs. Having the accumulator as both a source operand and “register” is a fairly reliable indication that the user the destination of the operation fi lls part of the shortfall, but it still leaves us one has been around quite a operand short. Th at fi nal operand is found in memory.
    [Show full text]
  • April 17-19, 2018 the 2018 Franklin Institute Laureates the 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018
    april 17-19, 2018 The 2018 Franklin Institute Laureates The 2018 Franklin Institute AWARDS CONVOCATION APRIL 17–19, 2018 Welcome to The Franklin Institute Awards, the a range of disciplines. The week culminates in a grand United States’ oldest comprehensive science and medaling ceremony, befitting the distinction of this technology awards program. Each year, the Institute historic awards program. celebrates extraordinary people who are shaping our In this convocation book, you will find a schedule of world through their groundbreaking achievements these events and biographies of our 2018 laureates. in science, engineering, and business. They stand as We invite you to read about each one and to attend modern-day exemplars of our namesake, Benjamin the events to learn even more. Unless noted otherwise, Franklin, whose impact as a statesman, scientist, all events are free, open to the public, and located in inventor, and humanitarian remains unmatched Philadelphia, Pennsylvania. in American history. Along with our laureates, we celebrate his legacy, which has fueled the Institute’s We hope this year’s remarkable class of laureates mission since its inception in 1824. sparks your curiosity as much as they have ours. We look forward to seeing you during The Franklin From sparking a gene editing revolution to saving Institute Awards Week. a technology giant, from making strides toward a unified theory to discovering the flow in everything, from finding clues to climate change deep in our forests to seeing the future in a terahertz wave, and from enabling us to unplug to connecting us with the III world, this year’s Franklin Institute laureates personify the trailblazing spirit so crucial to our future with its many challenges and opportunities.
    [Show full text]
  • Lynn Conway Professor of Electrical Engineering and Computer Science, Emerita University of Michigan, Ann Arbor, MI 48109-2110 [email protected]
    IBM-ACS: Reminiscences and Lessons Learned From a 1960’s Supercomputer Project * Lynn Conway Professor of Electrical Engineering and Computer Science, Emerita University of Michigan, Ann Arbor, MI 48109-2110 [email protected] Abstract. This paper contains reminiscences of my work as a young engineer at IBM- Advanced Computing Systems. I met my colleague Brian Randell during a particularly exciting time there – a time that shaped our later careers in very interesting ways. This paper reflects on those long-ago experiences and the many lessons learned back then. I’m hoping that other ACS veterans will share their memories with us too, and that together we can build ever-clearer images of those heady days. Keywords: IBM, Advanced Computing Systems, supercomputer, computer architecture, system design, project dynamics, design process design, multi-level simulation, superscalar, instruction level parallelism, multiple out-of-order dynamic instruction scheduling, Xerox Palo Alto Research Center, VLSI design. 1 Introduction I was hired by IBM Research right out of graduate school, and soon joined what would become the IBM Advanced Computing Systems project just as it was forming in 1965. In these reflections, I’d like to share glimpses of that amazing project from my perspective as a young impressionable engineer at the time. It was a golden era in computer research, a time when fundamental breakthroughs were being made across a wide front. The well-distilled and highly codified results of that and subsequent work, as contained in today’s modern textbooks, give no clue as to how they came to be. Lost in those texts is all the excitement, the challenge, the confusion, the camaraderie, the chaos and the fun – the feeling of what it was really like to be there – at that frontier, at that time.
    [Show full text]
  • The Best Nurturers in Computer Science Research
    The Best Nurturers in Computer Science Research Bharath Kumar M. Y. N. Srikant IISc-CSA-TR-2004-10 http://archive.csa.iisc.ernet.in/TR/2004/10/ Computer Science and Automation Indian Institute of Science, India October 2004 The Best Nurturers in Computer Science Research Bharath Kumar M.∗ Y. N. Srikant† Abstract The paper presents a heuristic for mining nurturers in temporally organized collaboration networks: people who facilitate the growth and success of the young ones. Specifically, this heuristic is applied to the computer science bibliographic data to find the best nurturers in computer science research. The measure of success is parameterized, and the paper demonstrates experiments and results with publication count and citations as success metrics. Rather than just the nurturer’s success, the heuristic captures the influence he has had in the indepen- dent success of the relatively young in the network. These results can hence be a useful resource to graduate students and post-doctoral can- didates. The heuristic is extended to accurately yield ranked nurturers inside a particular time period. Interestingly, there is a recognizable deviation between the rankings of the most successful researchers and the best nurturers, which although is obvious from a social perspective has not been statistically demonstrated. Keywords: Social Network Analysis, Bibliometrics, Temporal Data Mining. 1 Introduction Consider a student Arjun, who has finished his under-graduate degree in Computer Science, and is seeking a PhD degree followed by a successful career in Computer Science research. How does he choose his research advisor? He has the following options with him: 1. Look up the rankings of various universities [1], and apply to any “rea- sonably good” professor in any of the top universities.
    [Show full text]
  • SQL Vs Nosql
    SQL vs NoSQL By: Mohammed-Ali Khan Email: [email protected] Date: October 21, 2012 YORK UNIVERSITY Agenda ● History of DBMS – why relational is most popular? ● Types of DBMS – brief overview ● Main characteristics of RDBMS ● Main characteristics of NoSQL DBMS ● SQL vs NoSQL ● DB overview – Cassandra ● Criticism of NoSQL ● Some Predictions / Conclusions History of DBMS – why relational is most popular? ● 19th century: US Government needed reports from large datasets to conduct nation-wide census. ● 1890: Herman Hollerith creates the first automatic processing equipment which allowed American census to be conducted. ● 1911: IBM founded. ● 1960s: Efforts to standardize the database technology – US DoD: Conference on Data Systems Language (Codasyl). History of DBMS – why relational is most popular? ● 1968: IBM introduced IMS DBMS (a hierarchical DBMS). ● IBM employee Edgar Codd not satisfied, quoted as saying: – “Taking the old line view, that the burden of finding information should be placed on users...” ● Edgar Codd publishes a paper “A relational Model of Data for large shared Data Banks” – Key points: Independence of data from hardware/storage implementation – High level non-procedural language for data access – Pointers/keys (primary/secondary) History of DBMS – why relational is most popular? ● 1970s: Two database projects launched based on relational model – Ingres (Department of Defence Initiative) – System R (IBM) ● Ingres had its own query language called QUEL whereas System R used SQL. ● Larry Ellison, who worked at IBM, read publications of the System R group and eventually founded ORACLE. History of DBMS – why relational is most popular? ● 1980: IBM introduced SQL for the mainframe market. ● In a nutshell, American Government's requirements had a strong role in development of the relational DBMS.
    [Show full text]
  • AN/N LOG N ALGORITHM for MINIMIZING STATES in Kf I N ITE AUTOMATON by JOHN HOPCROFT STAN-CS-71-190 January, 1971 COMPUTER SCIENC
    AN/N LOG N ALGORITHM FOR MINIMIZING STATES IN kF I N ITE AUTOMATON BY JOHN HOPCROFT STAN-CS-71-190 January, 1971 COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UN IVERS ITY AN N LOG N ALGORITHM FOR MINIMIZING STATES IN A FINITE AUTOMATON John Hopcroft Abstract An algorithm is given for minimizing the number of states in a finite automaton or for determining if two finite automata are equivalent. The asymptotic running time of the algorithm is bounded by knlogn where k is some constant and n is the number of states. The constant k depends linearly on the size of the input alphabet. This research was supported by the National Science Foundation under grant number NSF-GJ-96, and the Office of Naval Research under grant number N-00014-67-A-0112-0057 NR 044-402. Reproduction in whole or in part is permitted for any purpose of the United States Government. AN n log n ALGORITHM FOR MINIMIZING STATES IN A FINITE AUTOMATON John Hopcroft Stanford University Introduction Most basic texts on finite automata give algorithms for minimizing the number of states in a finite automaton [l, 21. However, a worst case analysis of these algorithms indicate that they are n2 processes where n is the number of states. For finite automata with large numbers of states, these algorithms are grossly inefficient. Thus in this paper we describe an algorithm for minimizing the states in which the asymptotic running time in a worst case analysis grows as n log n . The constant of proportionality depends linearly on the number of input symbols.
    [Show full text]
  • The Computer Scientist As Toolsmith—Studies in Interactive Computer Graphics
    Frederick P. Brooks, Jr. Fred Brooks is the first recipient of the ACM Allen Newell Award—an honor to be presented annually to an individual whose career contributions have bridged computer science and other disciplines. Brooks was honored for a breadth of career contributions within computer science and engineering and his interdisciplinary contributions to visualization methods for biochemistry. Here, we present his acceptance lecture delivered at SIGGRAPH 94. The Computer Scientist Toolsmithas II t is a special honor to receive an award computer science. Another view of computer science named for Allen Newell. Allen was one of sees it as a discipline focused on problem-solving sys- the fathers of computer science. He was tems, and in this view computer graphics is very near especially important as a visionary and a the center of the discipline. leader in developing artificial intelligence (AI) as a subdiscipline, and in enunciating A Discipline Misnamed a vision for it. When our discipline was newborn, there was the What a man is is more important than what he usual perplexity as to its proper name. We at Chapel Idoes professionally, however, and it is Allen’s hum- Hill, following, I believe, Allen Newell and Herb ble, honorable, and self-giving character that makes it Simon, settled on “computer science” as our depart- a double honor to be a Newell awardee. I am pro- ment’s name. Now, with the benefit of three decades’ foundly grateful to the awards committee. hindsight, I believe that to have been a mistake. If we Rather than talking about one particular research understand why, we will better understand our craft.
    [Show full text]
  • Introducción a La Ingeniería Electrónica
    7-feb-07 MODULO INTRODUCCIÓN A LA INGENIERÍA ELECTRÓNICA MARCOS GONZÁLEZ PIMENTEL UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD BOGOTA 2006 1 ÍNDICE PRIMERA UNIDAD FUNDAMENTACIÓN DE LA INGENIERÍA ELECTRÓNICA CAPÍTULOS 0. INTRODUCCIÓN. CAPÍTULOS 1 CONCEPTUALIZACIÓN 1.1 CIENCIA 1.1.1 Definición 1.1.2 Objetivos 1.1.3 Características básicas de la ciencia . 1.1.4 Ciencia y tecnología 1.1.5 Tipos de Ciencia 1.2 Ingeniería y Tecnología 1.2.1 Definición de Ingeniería 1.2.2 Funciones de la Ingenieria 1.2.3 Ramas de la Ingeniería 1.2.4 Definición de Tecnología 1.3 Ingeniería y Tecnología Electrónica 1.3.1 Definición 1.3.2 Objetivos 1.4 Sistema 1.4.1 Definición 1.4.2 Características y clases de los sistemas CAPITULO 2 ANTECEDENTES 2.1 Historia de la Ingeniería 2.1.1. Historia de la Ingeniería en el mundo 2.1.2. Historia de la ingeniería en Colombia. 2.2 Historia de la electrónica 2.2.1. Historia de la electrónica en el mundo. 2.2.2. Historia de la electrónica en Colombia . CAPITULO 3 ACTUALIDAD 2 3.1 Actualidad de la Ingeniería . 3.1.1 Actualidad de la Ingeniería el mundo . 3.1.2 Actualidad de la Ingeniería en Colombia . 3.2 Actualidad de la electrónica 3.2.1 La Electrónica en el mundo . 3.2.2 La Electrónica en Colombia CAPITULO 4 APLICACIONES 4.1 Industriales. 4.1.1 Definición 4.1.2 Estado del arte. 4.2 Robótica. 4.2.1 Definición 4.2.2 Estado del arte . 4.3 Automatización .
    [Show full text]