Efficient Algorithms with Asymmetric Read and Write Costs
Efficient Algorithms with Asymmetric Read and Write Costs Guy E. Blelloch1, Jeremy T. Fineman2, Phillip B. Gibbons1, Yan Gu1, and Julian Shun3 1 Carnegie Mellon University 2 Georgetown University 3 University of California, Berkeley Abstract In several emerging technologies for computer memory (main memory), the cost of reading is significantly cheaper than the cost of writing. Such asymmetry in memory costs poses a fun- damentally different model from the RAM for algorithm design. In this paper we study lower and upper bounds for various problems under such asymmetric read and write costs. We con- sider both the case in which all but O(1) memory has asymmetric cost, and the case of a small cache of symmetric memory. We model both cases using the (M, ω)-ARAM, in which there is a small (symmetric) memory of size M and a large unbounded (asymmetric) memory, both random access, and where reading from the large memory has unit cost, but writing has cost ω 1. For FFT and sorting networks we show a lower bound cost of Ω(ωn logωM n), which indicates that it is not possible to achieve asymptotic improvements with cheaper reads when ω is bounded by a polynomial in M. Moreover, there is an asymptotic gap (of min(ω, log n)/ log(ωM)) between the cost of sorting networks and comparison sorting in the model. This contrasts with the RAM, and most other models, in which the asymptotic costs are the same. We also show a lower bound for computations on an n × n diamond DAG of Ω(ωn2/M) cost, which indicates no asymptotic improvement is achievable with fast reads.
[Show full text]