Ge-On-Si LASER for Silicon Photonics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nonlinear Optical Processes for Spectral Broadening and Short Pulse Generation Hongyu Hu University of Connecticut, [email protected]
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 1-13-2017 Nonlinear Optical Processes for Spectral Broadening and Short Pulse Generation Hongyu Hu University of Connecticut, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Hu, Hongyu, "Nonlinear Optical Processes for Spectral Broadening and Short Pulse Generation" (2017). Doctoral Dissertations. 1353. https://opencommons.uconn.edu/dissertations/1353 Nonlinear Optical Processes for Spectral Broadening and Short Pulse Generation Hongyu Hu, PhD University of Connecticut, 2017 The dramatic progress in optical communication is attributed to the development of wavelength- division multiplexing and time-division multiplexing technologies, which employ broadband light source and ultrashort optical pulses respectively to carry signals in optical fibers. Supercontinuum generation is the spectral broadening of narrow-band incident pulses by the propagation through optical waveguides made of nonlinear materials. In this PhD dissertation, I show the design of a tapered lead-silicate optical fiber for supercontinuum generation. The physical mechanisms of optical pulse evolution are explained, which involve various nonlinear optical effects including self-phase and cross-phase modulation, stimulated Raman scattering, four-wave mixing, modulation instability and optical soliton dynamics. I have also proposed planar waveguides with longitudinally varying structure to manage chromatic dispersion, and numerically simulated the generation of (1) broadband and (2) flat octave-spanning supercontinuum output. The coherence property and noise sensitivity of supercontinuum are also investigated in this dissertation, which depend strongly on pumping conditions. A hybrid mode- locked erbium-doped fiber ring laser, which combines rational harmonic active mode-locking technique and graphene saturable absorber, has been designed and experimentally demonstrated to produce optical pulse train. -
CHAPTER 8: Diffusion
1 Chapter 8 CHAPTER 8: Diffusion Diffusion and ion implantation are the two key processes to introduce a controlled amount of dopants into semiconductors and to alter the conductivity type. Figure 8.1 compares these two techniques and the resulting dopant profiles. In the diffusion process, the dopant atoms are introduced from the gas phase of by using doped-oxide sources. The doping concentration decreases monotonically from the surface, and the in-depth distribution of the dopant is determined mainly by the temperature and diffusion time. Figure 8.1b reveals the ion implantation process, which will be discussed in Chapter 9. Generally speaking, diffusion and ion implantation complement each other. For instance, diffusion is used to form a deep junction, such as an n-tub in a CMOS device, while ion implantation is utilized to form a shallow junction, like a source / drain junction of a MOSFET. Boron is the most common p-type impurity in silicon, whereas arsenic and phosphorus are used extensively as n-type dopants. These three elements are highly soluble in silicon with solubilities exceeding 5 x 1020 atoms / cm3 in the diffusion temperature range (between 800oC and 1200oC). These dopants can be introduced via several means, including solid sources (BN for B, As2O3 for As, and P2O5 for P), liquid sources (BBr3, AsCl3, and POCl3), and gaseous sources (B2H6, AsH3, and PH3). Usually, the gaseous source is transported to the semiconductor surface by an inert gas (e.g. N2) and is then reduced at the surface. 2 Chapter 8 Figure 8.1: Comparison of (a) diffusion and (b) ion implantation for the selective introduction of dopants into a semiconductor substrate. -
Contactless, Nondestructive Determination of Dopant Profiles Of
www.nature.com/scientificreports OPEN Contactless, nondestructive determination of dopant profles of localized boron-difused regions in Received: 11 November 2018 Accepted: 9 July 2019 silicon wafers at room temperature Published: xx xx xxxx Hieu T. Nguyen , Zhuofeng Li, Young-Joon Han , Rabin Basnet, Mike Tebyetekerwa , Thien N. Truong , Huiting Wu, Di Yan & Daniel Macdonald We develop a photoluminescence-based technique to determine dopant profles of localized boron- difused regions in silicon wafers and solar cell precursors employing two excitation wavelengths. The technique utilizes a strong dependence of room-temperature photoluminescence spectra on dopant profles of difused layers, courtesy of bandgap narrowing efects in heavily-doped silicon, and diferent penetration depths of the two excitation wavelengths in silicon. It is fast, contactless, and nondestructive. The measurements are performed at room temperature with micron-scale spatial resolution. We apply the technique to reconstruct dopant profles of a large-area (1 cm × 1 cm) boron-difused sample and heavily-doped regions (30 μm in diameter) of passivated-emitter rear localized-difused solar cell precursors. The reconstructed profles are confrmed with the well- established electrochemical capacitance voltage technique. The developed technique could be useful for determining boron dopant profles in small doped features employed in both photovoltaic and microelectronic applications. An attractive approach for improving light-to-electricity power conversion efciencies of crystalline silicon (c-Si) solar cells is to minimize surface areas of heavily-doped layers. Tis is due to the high recombination-active nature of the heavily-doped layers, causing a signifcant loss of photo-induced electrons and holes. Several solar cell designs employing this concept have been proved to achieve efciencies over 24% such as interdigitated back-contact (IBC)1–3 and passivated-emitter rear localized-difused (PERL)4–6 cell structures. -
Gain in Polycrystalline Nd-Doped Alumina: Leveraging Length Scales to Create a New Class of High-Energy, Short Pulse, Tunable Laser Materials Elias H
Penilla et al. Light: Science & Applications (2018) 7:33 Official journal of the CIOMP 2047-7538 DOI 10.1038/s41377-018-0023-z www.nature.com/lsa ARTICLE Open Access Gain in polycrystalline Nd-doped alumina: leveraging length scales to create a new class of high-energy, short pulse, tunable laser materials Elias H. Penilla1,2,LuisF.Devia-Cruz1, Matthew A. Duarte1,2,CoreyL.Hardin1,YasuhiroKodera1,2 and Javier E. Garay1,2 Abstract Traditionally accepted design paradigms dictate that only optically isotropic (cubic) crystal structures with high equilibrium solubilities of optically active ions are suitable for polycrystalline laser gain media. The restriction of symmetry is due to light scattering caused by randomly oriented anisotropic crystals, whereas the solubility problem arises from the need for sufficient active dopants in the media. These criteria limit material choices and exclude materials that have superior thermo-mechanical properties than state-of-the-art laser materials. Alumina (Al2O3)isan ideal example; it has a higher fracture strength and thermal conductivity than today’s gain materials, which could lead to revolutionary laser performance. However, alumina has uniaxial optical proprieties, and the solubility of rare earths (REs) is two-to-three orders of magnitude lower than the dopant concentrations in typical RE-based gain media. We present new strategies to overcome these obstacles and demonstrate gain in a RE-doped alumina (Nd:Al2O3) for the first time. The key insight relies on tailoring the crystallite size to other important length scales—the wavelength of 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; light and interatomic dopant distances, which minimize optical losses and allow successful Nd doping. -
Effects of Dopant Additions on the High Temperature Oxidation Behavior of Nickel-Based Alumina- Forming Alloys
Effects of Dopant Additions on the High Temperature Oxidation Behavior of Nickel-based Alumina- forming Alloys by Talia L. Barth A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science and Engineering) in the University of Michigan 2020 Doctoral Committee: Professor Emmanuelle Marquis, Chair Assistant Professor John Heron Professor Krishna Garikipati Professor Alan Taub Talia L. Barth [email protected] ORCID iD: 0000-0001-8266-7447 © Talia L. Barth 2020 ACKNOWLEDGEMENTS I would like to first offer my heartfelt thanks to my advisor, Professor Emmanuelle Marquis, without whom this work would not have been possible. Her exceptional mentorship has had an immense impact on my development as a researcher and a person, and her support and guidance along my journey have been invaluable. I would also like to express my appreciation for the rest of my committee, Professor Alan Taub, Assistant Professor John Heron, and Professor Krishna Garikipati for providing valuable advice and support for the completion of this work. I am grateful to the staff at the Michigan Center for Materials Characterization (MC)2, especially to Allen Hunter, Bobby Kerns, Haiping Sun, and Nancy Muyanja whose training enabled me to work confidently on the characterization instruments essential to this dissertation, and were always eager to lend their expertise with data collection and analysis. My colleagues in the Marquis group over the years were also important to this work and to my professional and personal development. I would like to thank Kevin Fisher, Ellen Solomon, Elaina Reese, and Peng-Wei Chu for getting me up to speed in the lab and for being there as mentors and friends in my first years as a grad student. -
FABRICATION of SU-8 MICROSTRUCTURES for ANALYTICAL MICROFLUIDIC APPLICATIONS Doctoral Dissertation
TKK Dissertations 58 Espoo 2007 FABRICATION OF SU-8 MICROSTRUCTURES FOR ANALYTICAL MICROFLUIDIC APPLICATIONS Doctoral Dissertation Santeri Tuomikoski Helsinki University of Technology Department of Electrical and Communications Engineering Micro and Nanosciences Laboratory TKK Dissertations 58 Espoo 2007 FABRICATION OF SU-8 MICROSTRUCTURES FOR ANALYTICAL MICROFLUIDIC APPLICATIONS Doctoral Dissertation Santeri Tuomikoski Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the Department of Electrical and Communications Engineering for public examination and debate in Large Seminar Hall of Micronova at Helsinki University of Technology (Espoo, Finland) on the 2nd of February, 2007, at 12 noon. Helsinki University of Technology Department of Electrical and Communications Engineering Micro and Nanosciences Laboratory Teknillinen korkeakoulu Sähkö- ja tietoliikennetekniikan osasto Mikro- ja nanotekniikan laboratorio Distribution: Helsinki University of Technology Department of Electrical and Communications Engineering Micro and Nanosciences Laboratory P.O. Box 3500 FI - 02015 TKK FINLAND URL: http://www.micronova.fi/units/mfg/ Tel. +358-9-4511 Fax +358-9-451 6080 E-mail: [email protected] © 2007 Santeri Tuomikoski ISBN 978-951-22-8606-5 ISBN 978-951-22-8607-2 (PDF) ISSN 1795-2239 ISSN 1795-4584 (PDF) URL: http://lib.tkk.fi/Diss/2007/isbn9789512286072/ TKK-DISS-2260 Picaset Oy Helsinki 2007 AB HELSINKI UNIVERSITY OF TECHNOLOGY ABSTRACT OF DOCTORAL DISSERTATION P. O. BOX 1000, FI-02015 -
Proceedings & Detailed Participants List
EPIC World Photonics Technology Summit Berlin, Germany | 29–30 August 2019 HOSTED BY GOLD SPONSOR SILVER SPONSORS MIRPHAB BRONZE SPONSORS The place to be for photonics and microsystems technology. www.photonics-bb.com Programme EPIC World Photonics Technology Summit Wednesday 28 August 2019 14:00 Departure from Hyatt Hotel 14:30 – 16:00 Company visit Fraunhofer HHI 16:30 – 18:00 Company visit Fraunhofer IZM 18:30 – 22:00 Networking Reception at Jamboree bar at Hyatt Hotel Thursday 29 August 2019 07:00 EPIC traditional walk/run 3-6 kilometers + Networking breakfast Departure from Hyatt Hotel lobby 08:30 Registration and Welcome Coffee 09:00 – 09:15 WELCOME Gerrit Roessler, Head of Unit Photonics, Berlin Partners Jose Pozo, CTO, EPIC – European Photonics Industry Consortium SESSION 1 – NEXT CHALLENGES IN INTEGRATED OPTICS 09:15 Silicon Photonics: State of the Ecosystem Michael Hochberg, CTO, Elenion (USA) 09:35 Integrated Microsystems: From MEMS to Photonics Simon Schneider, Corporate Sector Research and Advance Engineering, Bosch (GERMANY) 09:55 Pitch Reducing Optical Fiber Array – Bridging the Gap Between Fiber Infrastructure and Dense Multichannel Optical Interfaces Victor Kopp, Director of R&D, Chiral Photonics (USA) 11:15 Highly Integrated Optics and Electronics for Sensor and Communication Applications Tobias Lamprecht, CTO, vario-optics (SWITZERLAND) 11:35 Enabling Optical Components and PICs for Emerging Applications Milan Mashanovitch, CEO, Freedom photonics (USA) 10:55 – 11:40 Networking Coffee Break SESSION 2 – PHOTONICS-ENABLED -
ECE 493-Lasers
Lasers L.A.S.E.R. LIGHT AMPLIFICATION by STIMULATED EMISSION of RADIATION History of Lasers and Related Discoveries 1917 Stimulated emission proposed by Einstein 1947 Holography (Gabor, Physics Nobel Prize 1971) 1954 MASER (Townes, Basov, Prokhorov, Physics Nobel Prize 1964) but 1 st maser constructed by Maiman in 1960 1958 LASER: optical maser (Laser spectroscopy by Schawlow, Bloembergen, Physics Nobel Prize 1981) 1960 Ruby Laser: 1 st laser 1963 Semiconductor heterostructures (Alferov, Kroemer, Physics Nobel Prize 2000) 1970 Corning glass (optical fiber) 1980 Laser cooling of atoms (Chu, Cohen-Tannoudki, Phillips, Physics Nobel Prize 1997) Applications of Lasers CD Countermeasures DVD Dazzler Blu-Ray Surgery Bar code Laser welding Internet Engraving Laser pointer Curing (dentistry) Laser sight (targeting) Optical tweezer Speed measurement Laser printing Laser distance meter Alignment LIDAR (light detection and Holography ranging) Laser bonding Projection display Free space communications Spectroscopy (Raman, PL…) Microscopy WHAT ELSE, WHAT CAN YOU Laser cooling ADD TO THE LIST? … Nuclear fusion Spectral Range of Existing Lasers Types of Lasers Gas Lasers (1 m) Solid State Lasers (1 cm) Semiconductor (Diode) Lasers (1 µm) Types of Lasers Continuous Wave Operation Pulse Mode Operation Pout Pout Pulse width Ppeak 0t 0 t Period • Higher peak powers • Duty cycle (%) • Average powers Green Laser Pointer • Green light is from frequency doubling (2 photons combine energy into 1) • More generally: non linear optical effects i.e. add or subtract frequencies How a CD/DVD Laser Works http://micro.magnet.fsu.edu/primer/java/lasers/compactdisk/index.html Fundamentals of Lasers Consider a two-level system (excited level state and ground level state). -
Segmented Solid State Laser Gain Media with Gradient
Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 655 170 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: H01S 3/07, H01S 3/094, of the grant of the patent: H01S3/16 18.12.1996 Bulletin 1996/51 (86) International application number: (21) Application number: 93918690.4 PCT/US93/07423 Date of 05.08.1993 (22) filing: (87) International publication number: WO 94/05062 (03.03.1994 Gazette 1994/06) (54) SEGMENTED SOLID STATE LASER GAIN MEDIA WITH GRADIENT DOPING LEVEL SEGMENTIERTES VERSTAERKUNGSMEDIUM FUER FESTKOERPERLASER MIT GRADIENTENFOERMIGER DOTIERUNGSSTAERKE MILIEUX DE GAIN SEGMENTES A LASER A SOLIDE PRESENTANT UN NIVEAU DE DOPAGE A GRADIENT (84) Designated Contracting States: • SHAND, Michael, L. FR Morristown, NJ 07962 (US) (30) Priority: 17.08.1992 US 930256 (74) Representative: Hucker, Charlotte Jane et al Gill Jennings & Every (43) Date of publication of application: Broadgate House, 31.05.1995 Bulletin 1995/22 7 Eldon Street London EC2M 7LH (GB) (73) Proprietor: AlliedSignal Inc. Morristown, New Jersey 07962-2245 (US) (56) References cited: EP-A- 0 454 865 US-A-3 626 318 (72) Inventors: US-A- 4 860 301 US-A- 5 105 434 • RAPOPORT, William, R. Bridgewater, NJ 08807 (US) DO o lO CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. opposition a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. -
1 Laser-Doping of Crystalline Silicon Substrates Using Doped Silicon Nanoparticles by Martin Meseth , Kais Lamine , Martin Dehne
Laser-Doping of Crystalline Silicon Substrates using Doped Silicon Nanoparticles By Martin Meseth1, Kais Lamine1, Martin Dehnen1, Sven Kayser2, Wolfgang Brock3, Dennis Behrenberg4, Hans Orthner1, Anna Elsukova5, Nils Hartmann4, Hartmut Wiggers1, Tim Hülser6, Hermann Nienhaus5, Niels Benson1,* and Roland Schmechel1,* 1 University of Duisburg-Essen and CeNIDE, Faculty of Engineering, Bismarckstr. 81, Duisburg, Germany 2 ION-TOF GmbH, Heisenbergstr. 15, Münster, Germany 3 Tascon GmbH, Heisenbergstr. 15, Münster, Germany 4 University of Duisburg-Essen and CeNIDE, Faculty of Chemistry, Universitätsstr. 5, Essen, Germany 5 University of Duisburg-Essen and CeNIDE, Faculty of Physics, Lotharstr. 1, Duisburg, Germany 6 IUTA, Bliersheimer Str. 58-60, Duisburg, Germany [*] Prof. Dr. R. Schmechel, Dr. N. Benson E-mail: [email protected], [email protected] Adress: University of Duisburg-Essen, NST, Bismarckstr. 81, 47057 Duisburg, Germany Fax: +49 (0) 203 379 3268 Phone: +49 (0) 203 379 3347, +49 (0) 203 379 1058 Abstract: Crystalline Si substrates are doped by laser annealing of solution processed Si. For this experiment, dispersions of highly B‐doped Si nanoparticles (NPs) are deposited onto intrinsic Si and laser processed using an 807.5 nm cw‐laser. During laser processing the particles as well as a surface‐near substrate layer are melted to subsequently crystallize in the same orientation as the substrate. The doping profile is investigated by secondary ion mass spectroscopy revealing a constant B concentration of 2x1018 cm‐3 throughout the entire analyzed depth of 5 µm. Four‐point probe measurements demonstrate that the effective conductivity of the doped sample is increased by almost two orders of magnitude. -
CHAPTER 9: Ion Implantation
1 Chapter 9 CHAPTER 9: Ion Implantation Ion implantation is a low-temperature technique for the introduction of impurities (dopants) into semiconductors and offers more flexibility than diffusion. For instance, in MOS transistors, ion implantation can be used to accurately adjust the threshold voltage. In ion implantation, dopant atoms are volatilized, ionized, accelerated, separated by the mass-to-charge ratios, and directed at a target that is typically a silicon substrate. The atoms enter the crystal lattice, collide with the host atoms, lose energy, and finally come to rest at some depth within the solid. The average penetration depth is determined by the dopant, substrate materials, and acceleration energy. Ion implantation energies range from several hundred to several million electron volts, resulting in ion distributions with average depths from < 10 nm to 10 . Doses range from 1011 atoms/cm2 for threshold adjustment to 1018 atoms/cm2 for buried dielectric formation. 9.1 Ion Stopping As each implanted ion impinges onto the target, it undergoes a series of collisions with the host atoms until it finally stops at some depth, as depicted in Figure 9.1. Since the initial ion energy, typically several tens of keV, is much higher than lattice binding energies, the ion scattering process can be simulated based on elastic collisions between pairs of nuclei while ignoring the relatively weak lattice forces. A second component of scattering comes from inelastic collisions with electrons in the target. The total stopping power S of the target, defined by the energy loss (E) per unit path length (x) of the ion, is the sum of these two terms: dE dE S (Equation 9.1) dx nuclear dx electronic Figure 9.2 shows the relative distribution to S of each of the terms over a wide energy range. -
Smart Polymer Parts. Industrialized
Smart Polymer Parts. Industrialized. biosciences.sonydadc.com Sony DADC BioSciences Meeting the challenges of today’s life science Our unique range of services & and IVD markets competencies The life sciences and IVD markets continue to grow rapidly · Design for manufacturing driven by both scientific and technological innovation, as · Mastering of micro-features such as channels, well as patient demand. Sony DADC helps companies glob- microwells, micropillars ally respond to the continuing challenges this growth brings · Plating by offering OEM development, mass manufacture and sup- · High precision optical injection molding ply of polymer-based smart consumables. · Automated bonding and lamination of Our services range from design for manufacturing to prototyping, microfluidic chips up-scaling and mass manufacturing, content filling and packaging · Electrode printing on polymers to global logistics. · Surface coating techniques Manufacturing is centered in Salzburg, Austria at our ISO 13485, · Reagent / content loading ISO 14001 and ISO 27001 certified facility. · Automated assembly Already we have delivered solutions to a number of life science · Application QC and IVD innovators, including a consumable chip for Caliper’s · Packaging LabChip®XT platform, RainDance Technologies’ Sequences Enrich- · Logistics including global warehousing, end-user ment Chip and MALDI-MS slides for Shimadzu Corporation. distribution and cash-collection The advantages of working with Sony DADC for your business We aim to help life science, diagnostics and pharmaceutical companies significantly increase their business by: · Establishing long term partnerships for the seamless supply world wide of smart consumables · Providing high quality devices to maximize the number of satisfied consumers who use your products and services · Helping you to capitalize on new and innovative technolo- gies and business models FSBIOS0114E01 ≥ DESIGN ≥ PROTOTYPING ≥ MASTERING ≥ MOLDING ≥ COATING ≥ BONDING ≥ CONTENT LOADING ≥ ASSEMBLY ≥ PACKAGING ≥ LOGISTICS Smart Polymer Parts.