Identification of New Aphid Vector Species of Blueberry Scorch Virus

Total Page:16

File Type:pdf, Size:1020Kb

Identification of New Aphid Vector Species of Blueberry Scorch Virus J. ENTOMOL. SOC. BRIT. COLUMBIA 105, DECEMBER 2008 27 Identification of new aphid vector species of Blueberry scorch virus D. THOM AS LOW ERY1, M ICHAEL G. BERNARDY1, ROBYN M . DEYOUNG1 and CHRIS J. FRENCH1 ABSTRACT Transmission of Blueberry scorch virus (BlScV) by the aphid species Ericaphis fimbri- ata (Richards), Aphis spiraecola (Patch), Aphis pomi DeGeer, Acyrthosiphon pisum (Harris), Myzus ornatus Laing, Aphis helianthi Monell, Myzus persicae (Sulzer), and Rhopalosiphum padi (L.), was studied in the laboratory using timed aphid acquisition feeding periods and known numbers of aphid vectors. Successful infection of Nicotiana occidentalis W heeler (Solanaceae), a newly identified herbaceous host, and highbush blueberry, Vaccinium corymbosum L. (Ericaceae), following brief virus-acquisition feeds lasting less than 5 min, demonstrated that BlScV was transmitted in a non- persistent, non-circulative manner. Based on transfer of 10 aphids per plant, the most efficient vector of BlScV from infected to healthy N. occidentalis was M. ornatus. Com- pared with this herbaceous host, infection rates for blueberry were much lower even though higher numbers of aphids (25/plant) were used. The highest rate of infection for blueberry (20%) was achieved when the green colour form of E. fimbriata was used to transmit the virus. The relatively low rate of transmission from infected to healthy blue- berry suggests that BlScV would spread slowly in the field. Planting of certified virus- free nursery material and aggressive removal of infected plants should help control this economically important disease of highbush blueberries. Key W ords: Blueberry scorch virus, aphid vectors, virus transmission INTRODUCTION Blueberry scorch virus (BlScV) was sis of new leaves, twigs and flower clusters first reported in New Jersey in the late and almost complete loss of yield over time 1970's as Sheep Pen Hill disease of (Martin and Bristow 1988, Catlin and highbush blueberry, Vaccinium corymbo- Schloemann 2004, W egener et al. 2006). sum (L.) (Ericaceae) (Podleckis and Davis The latent period between infection and 1989). Several distinct strains infect development of symptoms for established highbush blueberry in the northeastern and plants is thought to be one to two years northwestern United States and southwest- (Caruso and Ramsdell 1995). ern British Columbia (Cavileer et al. 1994, There are relatively few previous studies Catlin and Schloemann 2004, Bernardy et on BlScV; these mostly relate to detection, al. 2005, W egener et al. 2006). BlScV has symptomology and strain differentiation. also been recently reported from Europe Although little is currently known about the (Ciuffo et al. 2005). Depending on the virus insect vectors of BlScV, carlaviruses as a strain and blueberry cultivar, infection can group are transmitted primarily by aphids in result in a wide range of symptoms. W hile a non-persistent, non-circulative manner some varieties are tolerant to certain strains (Ng and Perry 2004). Non-persistent virus and display no visible symptoms, infection transmission is characterized by short ac- with other strains can result in severe necro- quisition and inoculation feeding times, 1 Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, 4200 Hwy 97, Box 5000, Sum- merland, British Columbia, Canada V0H 1Z0 28 J. ENTOMOL. SOC. BRIT. COLUMBIA 105, DECEMBER 2008 lasting from several seconds to a few min- studies were not designed to determine if utes in duration (Raccah 1986). In uncon- BlScV was transmitted by aphids in a semi- trolled cage studies, Hillman et al. (1995) persistent or non-persistent manner. Two were the first to demonstrate aphid trans- carlaviruses vectored by aphids are thought mission of BlScV. An unidentified aphid to be transmitted in a semi-persistent man- collected from blueberry and placed on ner (Bristow et al. 2000). infected Chenopodium quinoa W illd. A better understanding of BlScV epide- (Chenopodiaceae), an alternate herbaceous miology will aid in the development of ef- host for the New Jersey strain of BlScV, fective control measures. To this end, the was shown to transmit the virus to unin- purpose of our study was to determine the fected C. quinoa. In a similar manner, Bris- mode of transmission of BlScV and com- tow et al. (2000) were able to demonstrate pare aphid transmission efficiencies of E. infection of containerized highbush blue- fimbriata, a species that colonizes blue- berry plants in cages supplied with diseased berry, with transmission by several non- blueberry leaves infested with Ericaphis colonizing aphid species. Identification of fimbriata (Richards). In the same study, effective aphid vectors will also assist in transfer of individual aphids from infected future laboratory investigations to deter- blueberry leaves to containerized potted test mine biological differences between the plants resulted in a very low rate of infec- various strains of BlScV. tion, less than one percent. These previous M ATERIALS AND M ETHODS Plant and aphid culture. Large Oregon) and grown in the greenhouse in highbush blueberry plants from two com- 3.8-litre plastic pots under the same condi- mercial fields near Abbotsford, British Co- tions. lumbia (BC), that had previously tested Aphids were maintained in vented, positive for BlScV by ELISA using poly- Plexiglas ® cages (50 cm x 50 cm x 33 cm clonal antibodies (Agdia, Elkhart, Indiana) wide) in a growth room (18 EC, 16-h photo- were potted into large (~ 60 cm x 43 cm phase) on suitable host plants as follows: deep) plastic pots and moved to a green- red and green forms of E. fimbriata on house at the Pacific Agri-Food Research strawberry, Fragaria x ananassa Duchesne Centre, Summerland, BC. These plants also (Rosaceae); spirea aphid, Aphis spiraecola formed the basis for the isolation and mo- (Patch) and apple aphid, A. pomi DeGeer, lecular characterization of two major strains on apple, Malus domestica L. (Rosaceae); of BlScV (Bernardy et al. 2005). pea aphid, Acyrthosiphon pisum (Harris), Nicotiana occidentalis W heeler, re- on garden pea, Pisum sativum L. cently identified as a herbaceous host for (Fabaceae); violet aphid, Myzus ornatus BlScV (Lowery et al. 2005), was grown in Laing, and Aphis helianthi Monell on sun- the greenhouse in 20-cm plastic containers flower, Helianthus annuus L. (Asteraceae); in a 1:1:5 mixture of steam-sterilized field green peach aphid, Myzus persicae (Sulzer), soil, perlite, and commercial potting soil on bok-choi, Brassica rapa L. (Pro-Mix BX, Premier Horticulture Ltd., (Brassicaceae); and the bird cherry-oat Dorval, Quebec). Temperatures were vari- aphid, Rhopalosiphum padi (L.), on barley, able and ranged from daytime highs of 25 E Hordeum vulgare L. (Poaceae). Host plants C to nighttime lows of 15 EC, with supple- were reared in the greenhouse under condi- mental lighting supplied by sodium vapour tions outlined above. lamps to provide a 16-h photophase. Plants Except for E. fimbriata that were origi- were used at the four- or five-true-leaf nally collected from commercial fields of stage. Small BlScV-free blueberry plants cv highbush blueberry in the Fraser Valley and ”Berkeley‘ were acquired from a commer- provided by Dr. D.A. Raworth (Agriculture cial supplier (Fall Creek Nurseries, Lowell, and Agri-Food Canada, Pacific Agri-Food J. ENTOMOL. SOC. BRIT. COLUMBIA 105, DECEMBER 2008 29 Research Centre, Agassiz, BC), all of the Clark and Adams (1977). All reagents were aphid species used in these studies, other added at 100 Fl per well in microtitre than A. pisum, were collected in Summer- plates. Microtitre plates (EIA Microplate, land, BC, from the hosts on which they ICN Biomedicals, Irvine, California) were were reared. Acyrthosiphon pisum was col- coated with purified immunoglobulin (IgG) lected from garden peas in Armstrong, BC. (Agdia, Elkhart, Indiana) diluted (5 Fl ml-1) Aphids were identified by Dr. R.G. Foottit in phosphate-buffered saline (PBS) for 4 h (Agriculture and Agri-Food Canada, East- at 37 EC. Plates were washed three times ern Cereals and Oilseeds Research Centre, with PBS. Plant samples (0.25 g) were thor- Ottawa, Ontario). oughly ground in Bioreba bags (Bioreba Aphid transmission studies. Fourth AG, Reinach, Switzerland) with 1.5 ml instar and adult apterous aphids from the borate buffer (0.1 M boric acid, 0.01 M laboratory colonies were placed in small sodium borate, 2% polyvinylpyrolidine self-sealing petri dishes containing mois- (PVP 44,000), 0.2% non-fat milk powder, tened filter paper for a 2- to 3-h pre- 0.05% Tween-20, 0.5% nicotine), and the acquisition starvation period. Aphids were bags briefly centrifuged at 2000 rpm to aid allowed to feed for 5 min on BlScV- pipetting. The liquid extract (25 Fl) and infected leaf pieces in groups of 10 aphids/ borate buffer (75 Fl) were added to the mi- petri dish, and then transferred, 25 aphids/ crotitre plates, which were covered in cello- plant for blueberry and 10 aphids/plant for phane and placed overnight on an orbital N. occidentalis, to BlScV-free test plants, shaker at 600 rpm. After washing the plates which were then sealed in plastic bags to with PBS-Tween and adding a dilute (5 Fl prevent the aphids from escaping. Fine, ml-1) IgG-enzyme conjugate in PBS- moistened natural fibre brushes were used Tween-BSA-polyvinylpyrolidine, plates to transfer aphids. At least 1 h after the final were incubated at 37 EC for 2 h. After transfer, plants were sprayed with the aphi- plates were washed with buffer, a dilute cide pirimicarb (Pirimor 50W P, Chipman (0.5 mg ml-1) solution of p-nitrophenyl Chemicals Ltd., Stoney Creek, Ontario) to phosphate buffer was added. Plates were kill any remaining aphids. Plants were held incubated at room temperature on an orbital in the bags for a further 24 h to ensure that shaker (600 rpm) for about 1 hr and absorb- all aphids were dead.
Recommended publications
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • Anatomical Investigations of the Male Reproductive System of Selected Species of Macrosiphini
    Bulletin of Insectology 61 (1): 179, 2008 ISSN 1721-8861 Anatomical investigations of the male reproductive system of selected species of Macrosiphini Karina WIECZOREK Department of Zoology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland Abstract Histological sections and whole mount preparations of five species of Macrosiphini [Impatientinum asiaticum Nevsky, Hypero- myzus (Hyperomyzus) pallidus Hille Ris Lambers, Myzus (Myzus) cerasi (F.), Rhopalomyzus (Judenkoa) loniceare (Siebold) and Uroleucon obscurum (Koch)] were examined. Key words: Hemiptera, Aphidoidea, Aphididae, Macrosiphini, male reproductive system. In previous research on the structure of the male repro- References ductive system of aphids, about 70 species from various subfamilies have been described, mainly Lachninae BLACKMAN R. L., 1987.- Reproduction cytogenetics and de- (Wojciechowski, 1977), Chaitophorinae (Wieczorek and velopment, pp 163-191. In: Aphids, their biology, natural Wojciechowski, 2004), and Calaphidinae (Głowacka et. enemies and control (MINKS A. K., HARREWIJN P., Ed).- El- sevier, Amsterdam, The Netherland. al., 1974; Wieczorek and Wojciechowski, 2001; Wiec- BOCHEN K., KLIMASZEWSKI S. M., WOJCIECHOWSKI W., zorek, 2006). 1975.- Budowa męskiego układu rozrodczego Macrosipho- In contrast, Aphidinae are the largest and most diverse niella artemisiae (B.De Fonsc.) i M. millefolli (De Geer) group of aphids whose male reproductive system is least (Homoptera, Aphididae).- Acta Biologica Uniwersytet Slaski studied. In Pterocommatini the structure of the male re- w Katowicach, 90: 73-81. productive system has been analysed in Pterocomma GŁOWACKA E., KLIMASZEWSKI S. M., SZELEGIEWICZ H., WOJ- populeum (Kaltenbach) (Wieczorek and Wo- CIECHOWSKI W., 1974.- Uber den Bau des mannlichen Fort- jciechowski, 2005) and Pterocomma salicis (L.) (Wiec- pflanzungssystems der Aphiden (Homoptera, Aphidoidea).- zorek and Mróz, 2006), in Aphidini in Rhopalosiphum Annales Universitas Mariae Curie-Skłodowska, 29C: 133-138.
    [Show full text]
  • Effects of Habitat Fragmentation and Disturbance on Biodiversity and Ecosystem Functions
    Effects of habitat fragmentation and disturbance on biodiversity and ecosystem functions Inauguraldissertation der Philosophisch-naturwissenschaftlichen Fakultät der Universität Bern vorgelegt von Christof Schüepp von Eschlikon TG Leiter der Arbeit: Prof. Dr. M. H. Entling Institut für Ökologie und Evolution | downloaded: 13.3.2017 Von der Philosophisch-naturwissenschaftlichen Fakultät angenommen. Bern, 14. Mai 2013 Der Dekan: Prof. Dr. S. Decurtins Originaldokument gespeichert auf dem Webserver der Universitätsbibliothek Bern Dieses Werk ist unter einem https://doi.org/10.7892/boris.54819 Creative Commons Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz Lizenzvertrag lizenziert. Um die Lizenz anzusehen, gehen Sie bitte zu http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ oder schicken Sie einen Brief an Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA. source: Effects of habitat fragmentation and disturbance on biodiversity and ecosystem functions Creative Commons Licence Urheberrechtlicher Hinweis Dieses Dokument steht unter einer Lizenz der Creative Commons Namensnennung- Keine kommerzielle Nutzung-Keine Bearbeitung 2.5 Schweiz. http://creativecommons.org/licenses/by-nc-nd/2.5/ch/ Sie dürfen: dieses Werk vervielfältigen, verbreiten und öffentlich zugänglich machen Zu den folgenden Bedingungen: Namensnennung. Sie müssen den Namen des Autors/Rechteinhabers in der von ihm festgelegten Weise nennen (wodurch aber nicht der Eindruck entstehen darf, Sie oder die Nutzung des Werkes durch Sie würden entlohnt). Keine kommerzielle Nutzung. Dieses Werk darf nicht für kommerzielle Zwecke verwendet werden. Keine Bearbeitung. Dieses Werk darf nicht bearbeitet oder in anderer Weise verändert werden. Im Falle einer Verbreitung müssen Sie anderen die Lizenzbedingungen, unter welche dieses Werk fällt, mitteilen. Jede der vorgenannten Bedingungen kann aufgehoben werden, sofern Sie die Einwilligung des Rechteinhabers dazu erhalten.
    [Show full text]
  • Aphid Species (Hemiptera: Aphididae) Infesting Medicinal and Aromatic Plants in the Poonch Division of Azad Jammu and Kashmir, Pakistan
    Amin et al., The Journal of Animal & Plant Sciences, 27(4): 2017, Page:The J.1377 Anim.-1385 Plant Sci. 27(4):2017 ISSN: 1018-7081 APHID SPECIES (HEMIPTERA: APHIDIDAE) INFESTING MEDICINAL AND AROMATIC PLANTS IN THE POONCH DIVISION OF AZAD JAMMU AND KASHMIR, PAKISTAN M. Amin1, K. Mahmood1 and I. Bodlah 2 1 Faculty of Agriculture, Department of Entomology, University of Poonch, 12350 Rawalakot, Azad Jammu and Kashmir, Pakistan 2Department of Entomology, PMAS-Arid Agriculture University, 46000 Rawalpindi, Pakistan Corresponding Author Email: [email protected] ABSTRACT This study conducted during 2015-2016 presents first systematic account of the aphids infesting therapeutic herbs used to cure human and veterinary ailments in the Poonch Division of Azad Jammu and Kashmir, Pakistan. In total 20 aphid species, representing 12 genera, were found infesting 35 medicinal and aromatic plant species under 31 genera encompassing 19 families. Aphis gossypii with 17 host plant species was the most polyphagous species followed by Myzus persicae and Aphis fabae that infested 15 and 12 host plant species respectively. Twenty-two host plant species had multiple aphid species infestation. Sonchus asper was infested by eight aphid species and was followed by Tagetes minuta, Galinosoga perviflora and Chenopodium album that were infested by 7, 6 and 5 aphid species respectively. Asteraceae with 11 host plant species under 10 genera, carrying 13 aphid species under 8 genera was the most aphid- prone plant family. A preliminary systematic checklist of studied aphids and list of host plant species are provided. Key words: Aphids, Medicinal/Aromatic plants, checklist, Poonch, Kashmir, Pakistan.
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
    Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture.
    [Show full text]
  • Raport Tehnic Privind Metodologia Utilizată Pentru Alcătuirea Bazei
    Cod și Nume proiect: POIM 2014+ 120008 Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive Raport tehnic privind metodologia utilizată pentru alcătuirea bazei de date cu căile de pătrundere identificate cel puțin pentru speciile selectate din lista DAISE – 100 of the Worst Activitatea 2.1. Căi de introducere prioritare a speciilor alogene din România Subactivitatea 2.1.1. Identificarea căilor de introducere prioritare a speciilor alogene din România Proiect cofinanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Infrastructură Mare 2014-2020 Titlul proiectului: Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive Cod proiect: POIM2014+ 120008 Obiectivul general al proiectului este de a crea instrumentele științifice și administrative necesare pentru managementul eficient al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 privind prevenirea si gestionarea introducerii si răspândirii speciilor alogene invazive. Data încheierii contractului: 27 noiembrie 2018 Valoarea totală a contractului: 29.507.870,54 lei Contractant: Ministerul Mediului Apelor și Pădurilor Echipa de experți: • POPA Oana Paula– Coordonator activitate / Expert specii invazive • COGĂLNICEANU Dan - Expert coordonator național specii invazive
    [Show full text]
  • Aphid–Plant–Phytovirus Pathosystems: Influencing Factors from Vector Behaviour to Virus Spread
    agriculture Review Aphid–Plant–Phytovirus Pathosystems: Influencing Factors from Vector Behaviour to Virus Spread Junior Corneille Fingu-Mabola * and Frédéric Francis Entomologie Fonctionnelle et Évolutive, Terra, Gembloux Agro-Bio Tech, Liège-Université, Passage des Déportés 2, 5030 Gembloux, Belgium; [email protected] * Correspondence: jcfi[email protected] Abstract: Aphids are responsible for the spread of more than half of the known phytovirus species. Virus transmission within the plant–aphid–phytovirus pathosystem depends on vector mobility which allows the aphid to reach its host plant and on vector efficiency in terms of ability to transmit phytoviruses. However, several other factors can influence the phytoviruses transmission process and have significant epidemiological consequences. In this review, we aimed to analyse the aphid behaviours and influencing factors affecting phytovirus spread. We discussed the impact of vector host-seeking and dispersal behaviours mostly involved in aphid-born phytovirus spread but also the effect of feeding behaviours and life history traits involved in plant–aphid–phytovirus relationships on vector performances. We also noted that these behaviours are influenced by factors inherent to the interactions between pathosystem components (mode of transmission of phytoviruses, vector efficiency, plant resistance, ... ) and several biological, biochemical, chemical or physical factors related to the environment of these pathosystem components, most of them being manipulated as means to control vector-borne diseases in the crop fields. Citation: Fingu-Mabola, J.C.; Francis, Keywords: host selection; plant–aphid–virus pathosystem; vector activity; vector-born virus; F. Aphid–Plant–Phytovirus vectorial transmission efficiency Pathosystems: Influencing Factors from Vector Behaviour to Virus Spread. Agriculture 2021, 11, 502.
    [Show full text]
  • Aphid Hyperparasites of the Genus Dendrocerus Ratzeburg Occurring in Japan (Hymenoptera: Ceraphronidae)
    STUDIES ON APHID HYPERPARASITES OF JAPAN, 1 - APHID HYPERPARASITES OF THE GENUS Title DENDROCERUS RATZEBURG OCCURRING IN JAPAN (HYMENOPTERA : CERAPHRONIDAE) - Author(s) Takada, Hajimu Insecta matsumurana. New series : journal of the Faculty of Agriculture Hokkaido University, series entomology, 2, 1- Citation 37 Issue Date 1973-11 Doc URL http://hdl.handle.net/2115/9772 Type bulletin (article) File Information 2_p1-37.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INSECTA MATSUMURANA NEW SERIES 2: 1-37 NOVEMBER, 1973 STUDIES ON APHID HYPERPARASITES OF JAPAN, I APHID HYPERPARASITES OF THE GENUS DENDROCERUS RATZEBURG OCCURRING IN JAPAN (HYMENOPTERA: CERAPHRONIDAE) By HAJIMU T AKADA Abstract TAKADA, H. 1973. Studies on aphid hyperparasites of Japan, 1. Aphid hyperparasites of the genus Dendrocerus Ratzeburg occurring in Japan (Hymenoptera: Ceraphronidae). Ins. matsum. n. s. 2: 1-37, 3 tabs., 47 figs. (1 text-fig., 6 pis.). Six aphid-hyperparasitic species of Dendrocerus occurring in Japan are dealt with. A key to the species, redescriptions, illustrations and biological notes are given on the basis of about 1,300 specimens reared. Host aphid-hyperparasite/primary parasite and primary j)arasite/host aj>hid-hyperparasite lists are added. D. laticeps (Hedicke), D. laevis (Ratze­ burg) and D. bicolor (Kieffer) are new to Japan. Lygocerus koebelei Ashmead is synonymized with D. carpenteri (Curtis), and L. jaj>onicus Ashmead and D. ratzeburgi Ashmead with D. ramicornis (Boheman). D. laevis is recorded as an aphid hyperparasite for the first time. As hosts of these hyperparasites 50 species of aphids in 35 genera and 36 species of aphidiids in 12 genera are recorded, and 118 different host aphid-primary parasite­ hyperparasite relationships are recognized.
    [Show full text]
  • The Hemiptera-Sternorrhyncha (Insecta) of Hong Kong, China—An Annotated Inventory Citing Voucher Specimens and Published Records
    Zootaxa 2847: 1–122 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2847 The Hemiptera-Sternorrhyncha (Insecta) of Hong Kong, China—an annotated inventory citing voucher specimens and published records JON H. MARTIN1 & CLIVE S.K. LAU2 1Corresponding author, Department of Entomology, Natural History Museum, Cromwell Road, London SW7 5BD, U.K., e-mail [email protected] 2 Agriculture, Fisheries and Conservation Department, Cheung Sha Wan Road Government Offices, 303 Cheung Sha Wan Road, Kowloon, Hong Kong, e-mail [email protected] Magnolia Press Auckland, New Zealand Accepted by C. Hodgson: 17 Jan 2011; published: 29 Apr. 2011 JON H. MARTIN & CLIVE S.K. LAU The Hemiptera-Sternorrhyncha (Insecta) of Hong Kong, China—an annotated inventory citing voucher specimens and published records (Zootaxa 2847) 122 pp.; 30 cm. 29 Apr. 2011 ISBN 978-1-86977-705-0 (paperback) ISBN 978-1-86977-706-7 (Online edition) FIRST PUBLISHED IN 2011 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2011 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use.
    [Show full text]
  • POIM 2014+ 120008 Managementul Adecvat Al Speciilor Invazive Din
    Cod și Nume proiect: POIM 2014+ 120008 Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive PROTOCOL DE INVENTARIERE ȘI CARTARE A DISTRIBUȚIEI SPECIILOR INVAZIVE ȘI POTENȚIAL INVAZIVE DE NEVERTEBRATE TERESTRE DIN ROMÂNIA, CU DOUĂ VARIANTE DE LUCRU Activitatea 1.5. Inventarierea – cartarea speciilor alogene invazive de nevertebrate terestre și elaborarea listei naționale a speciilor alogene invazive de nevertebrate terestre Subactivitatea 1.5.3. Realizarea unui protocol de inventariere și cartare a distribuției speciilor invazive și potențial invazive de nevertebrate terestre din România, inclusiv a celor aflate pe lista speciilor de interes pentru Uniune Proiect cofinanțat din Fondul European de Dezvoltare Regională prin Programul Operațional Infrastructură Mare 2014-2020 1 Titlul proiectului: Managementul adecvat al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 referitor la prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive Cod proiect: POIM2014+ 120008 Obiectivul general al proiectului este de a crea instrumentele ştiinţifice şi administrative necesare pentru managementul eficient al speciilor invazive din România, în conformitate cu Regulamentul UE 1143/2014 privind prevenirea și gestionarea introducerii și răspândirii speciilor alogene invazive. Data încheierii contractului: 27 noiembrie 2018 Valoarea totală a contractului: 29.507.870,54
    [Show full text]
  • A Review of Novel and Alternative Approaches to Aphid Control on Soft Fruit
    A review of novel and alternative approaches to aphid control on soft fruit Carolyn Mitchell and Alison Karley, the James Hutton Institute, Invergowrie, Dundee, DD2 5DA Background Soft-fruit growers are finding it increasingly difficult to gain control of aphids. Losses of effective spray control products in recent years, combined with further pending revocations, make it increasingly difficult to gain control, particularly close to harvest. Novel and alternative approaches will be required in future. AHDB has already funded several projects to identify and investigate some such methods, but this desk study aims to identify additional ideas. Summary of main findings • Alternative chemical control strategies o Aphid alarm pheromone could be used in future control strategies and studies are needed to assess the effects on aphid behaviour in field conditions o Sex pheromones can attract aphid parasitoids and may be useful for manipulating parasitoid populations to improve their success as a control strategy o Insect growth regulators can inhibit aphid growth and reduce fecundity o Mineral oils might be useful in combination with insecticides or plant-derived antifeedants to maximise aphid control • Biological controls o A mix of six parasitoid species gives best control of strawberry aphid (Chaetosiphon fragaefolii) and this is now commercially available for use by growers o Augmented release of multiple parasitoid species can be compatible with the use of certain biopesticides for suppression of aphid populations o Among aphid predators,
    [Show full text]