1.4 Climate Change and Aphids

Total Page:16

File Type:pdf, Size:1020Kb

1.4 Climate Change and Aphids Chapter 1: General Introduction 1.1 Predicted impacts of climate change Climate change is a major current and future threat to agroecosystems. It is already modifying, and will continue to modify, species’ geographical ranges, structure of community and ecosystems; as well as increase the range of pest species and potentially will reduce natural enemy effectiveness (Andrew and Hill 2017). To properly assess the direct and indirect effects of climate change, critical observational and experimental data on both populations and species needs to be collected, and then be embedded into predictive models to assess responses of species to rapid changes into the future (McCarty 2001). For Australia, recent evidence of climate change is compelling: there have been no other warmer periods than post-1950 in the last 1000 years (Gergis and Members 2012) and the most recent decade (2000-09) was the hottest on record. In addition, 2015 was hottest year on record in Australia (Braganza and Church 2011; CSIRO-ABM. 2014; Karoly and Black, 2015). Prolonged heat exposure can have extremely detrimental impacts on animal populations. For example, during 2010 in Australia, a two-week heat wave led to the death of thousands of birds in the wild: this happened when environmental temperatures exceeded the maximum critical thermal limits of these birds (Miller and Stillman 2012; Bozinovic et al. 2013). In the wild, ectotherms are continuously exposed to several short-term variations in environmental conditions. In this context, the study of the impact of thermal conditions on the performance of individuals and their plastic responses to it, such as lethal and sub-lethal effects, are key to 1 understanding the responses of biota to the environment and to climate change (Pörtner et al. 2006; Somero 2011; Bozinovic et al. 2013). Based on climate change models, it is predicted that heatwaves (extended periods of abnormally hot weather) will be extended, more frequent and severe under continued climate change, there will be increases in mean temperatures over the next century (Parmesan 2006 ; Meehl and Tebaldi 2004; IPCC 2007; Gillespie et al. 2012; IPCC 2007; Ju et al. 2013; IPCC. 2014). With exposure to these extreme heatwave events, particularly when insects are under thermal stress at the warmest period of their life cycles (summer), ectotherms (including insects) may be highly susceptible to deleterious effects of extreme heat exposure (Musolin et al. 2010). The direct impacts of climate change including change in behaviour, physiology and ecology, and indirect effects of climate change including CO2, O3, temperature and participation will influence insect herbivore population dynamics, ecosystem function and community structure (Cornelissen 2011). Insects able to successfully adapt to host plant and environmental climatic factor, can complete their life cycle, too. By understanding mechanisms behind the strategies in extreme conditions we can develop hypothesis related to impacts of climate change on insect’s life-history and responses to climatic change in the future (Bale et al. 2002). 1.2 Global climate change and insects Ectotherms are very sensitive to climate change due to vital biological characters being strongly influenced by temperature including development time, number of offspring and their locomotion (Wilson 1992). Ectothermic insects cannot regulate their temperature above and 2 below ambient temperature relative to endotherms and may consequently be more adversely influenced by climate change (Walther et al. 2002). All insects are responsive to temperature changes, so under a warming climate we would expect this to impact the lifecycle of an insect and the ecosystems they inhabit. Climate change has substantive impacts on physiological characteristics and habitat use by of insects (Stange and Ayres 2010). Climate change may have a variety of impacts of biotic and abiotic factors of any ecosystem, as direct and indirect effects on several aspects of the life cycle of insects including the population dynamics, physiology, distribution and abundance. To better understand current and future impacts of climate change on insects we need to consider the changes in climate in relation to ability and plasticity performance traits of species concurrently (Stange and Ayres 2010). Climatic warming tends to influence (and frequently amplify) population dynamics of insects directly through effects on survival, generation time, fecundity and dispersal (Bale et al. 2002; Andrew 2013). Climatic warming also reduces or increase the risk of death in insect winter populations mortality due to extreme cold (Ayres and Lombardero 2000; Williams et al. 2014). 1.2.1 Insects at high temperature Abiotic factors such as extreme high and low temperature are major threat to insects, and can change their distribution by influence on development time , number of offspring and life span (Hutchinson and Bale 1994; Colinet et al. 2015). 3 Thermal mean and variability at local scales interact in a non-additive way to determine physiological performance thermal and thermal tolerance . This occur via change in performance curve parameters which in consequences may produce changes in activity patterns, timing of breeding, and finally may alter synchronization between trophic levels and species community structure (Ashton et al. 2009; Bozinovic et al. 2013). A thermal ‘performance’ or ‘fitness’ curve serves as a convenient descriptor of how a change in body temperature (Tb) influences physiological sensitivity and fitness of ectotherms (Huey and Stevenson 1979; Angilletta 2009). There are two endpoint temperatures for ectotherms in their performance curve. Very low and high Tb reduces an ectotherm’s performance and can be lethal in the extreme: these endpoints Tb are called the ‘critical temperatures’ (Figure 1.1; CTmax, CTmin). Within those critical limits, performance reaches a maximum at an optimal temperature region (To), and then typically plummets at higher Tb. These endpoints experimentally measured by the organism performance (Huey and Stevenson 1979; Gilchrist 1995; Frazier et al. 2006; Martin and Huey 2008) and this character in thermal performance curve can be change by acclimation time, duration and frequency of temperature exposure. The type of insect reactions and responses to climate change depend on whether a species is a thermal generalist or specialist (Janzen 1967; Huey and Slatkin 1976; Huey and Kingsolver 1993; Gilchrist 1995; Deutsch et al. 2008; Amarasekare and Savage 2012; Huey et al. 2012). For example, a given increase in Tb from warming will usually have a larger impact on a thermal specialist than on a thermal generalist: specialist have narrow performance curve whereas generalists have expanded performance curve. 4 Fig 1.1 Thermal fitness (performance) curve for a hypothetical ectotherm, with key descriptive parameters CTmax, CTmin, tolerance range, performance breath and optimal temperature (To) identified (adapted from Huey et al. (2012)). Insects use different strategies to survive at unfavourable high temperatures which can be separated into chemical and behavioural responses and these strategies can induce increases in heat tolerance or to prevent exposure to unfavourable conditions). The strategies are outlined below. 1.2.2 Effective compounds in increase tolerance to high temperature Polyhydroxyl compounds play key roles in unfavourable conditions such as extreme, high and low temperatures, desiccation and toxication of which, trehalose and sucrose are major part of these molecules (Kempf and Bremer 1998; Jain and Roy 2009; Arguelles 2000). The organic compounds that dominate the plant phloem sap are sugars, commonly sucrose, and amino acids (Wilkinson et al. 2001). Sucrose is the prevailing natural compound in plant phloem sap and is an essential carbon source for phloem feeding insects such as aphids (Fisher 2000; Douglas 2003). Sucrose is the primary respiratory substrate for aphids and gives the carbon skeleton to lipid and protein-amino acid creation (Rhodes et al. 1996; Febvay et al. 1999; Salvucci and Crafts-Brandner 2000; Pescod et al. 2007). 5 Sucrose is a major and vital source of energy in respiration time in the pea aphids (Febvay et al. 1995; Rhodes et al. 1996). Sucrose can be hydrolysis by the sucrase enzyme to glucose and fructose which can be used in respiration or synthesis of osmolytes compounds such as mannitol in aphids and sorbitol in whiteflies in high temperature (Ehrhardt 1962; Febvay et al. 1995; Rhodes et al. 1996; Hendrix and Salvucci 1998; Ashford et al. 2000). Higher concentrations of sucrose in the diet delayed high-temperature mortality, possibly a reflection of the high sucrose requirement for sorbitol synthesis in whiteflies (Hendrix et al. 1998). Based on studies phloem tissue of plants are rich in carbohydrates which are necessary and important for aphids and whiteflies performance (Fisher and Gifford 1986; Winter et al. 1992). Artificial studies with radiolabel sucrose have shown that majority of carbohydrate in aphids and whiteflies are used to perform basic metabolic process (Mittler and Meikle 1991; Rhodes et al. 1996; Wilkinson and Ishikawa 1999; Salvucci and Crafts-Brandner 2000). Osmolytes compounds can stabilise the structure of proteins in high extreme temperature (Back et al. 1979). In addition, first report studies have shown that aphids and whiteflies are the examples of organisms that accumulates polyols compounds at high temperature conditions (Hendrix and Salvucci 1998 ; Henle et
Recommended publications
  • Nuisance Insects and Climate Change
    www.defra.gov.uk Nuisance Insects and Climate Change March 2009 Department for Environment, Food and Rural Affairs Nobel House 17 Smith Square London SW1P 3JR Tel: 020 7238 6000 Website: www.defra.gov.uk © Queen's Printer and Controller of HMSO 2007 This publication is value added. If you wish to re-use this material, please apply for a Click-Use Licence for value added material at http://www.opsi.gov.uk/click-use/value-added-licence- information/index.htm. Alternatively applications can be sent to Office of Public Sector Information, Information Policy Team, St Clements House, 2-16 Colegate, Norwich NR3 1BQ; Fax: +44 (0)1603 723000; email: [email protected] Information about this publication and further copies are available from: Local Environment Protection Defra Nobel House Area 2A 17 Smith Square London SW1P 3JR Email: [email protected] This document is also available on the Defra website and has been prepared by Centre of Ecology and Hydrology. Published by the Department for Environment, Food and Rural Affairs 2 An Investigation into the Potential for New and Existing Species of Insect with the Potential to Cause Statutory Nuisance to Occur in the UK as a Result of Current and Predicted Climate Change Roy, H.E.1, Beckmann, B.C.1, Comont, R.F.1, Hails, R.S.1, Harrington, R.2, Medlock, J.3, Purse, B.1, Shortall, C.R.2 1Centre for Ecology and Hydrology, 2Rothamsted Research, 3Health Protection Agency March 2009 3 Contents Summary 5 1.0 Background 6 1.1 Consortium to perform the work 7 1.2 Objectives 7 2.0
    [Show full text]
  • (Eucallipterus Tiliae L.) on the LEAVES of STREET TREES
    Proceedings of ECOpole Vol. 5, No. 1 2011 Aneta H. BACZEWSKA 1, Wojciech DMUCHOWSKI 1,2 , Dariusz GOZDOWSKI 2 Monika STYCZEK 2 and Paulina BR ĄGOSZEWSKA 1 INFLUENCE OF SALINE STRESS ON THE ABUNDANCE OF LIME APHID ( Eucallipterus tiliae L.) ON THE LEAVES OF STREET TREES - CRIMEAN LINDEN WPŁYW STRESU SOLNEGO NA LICZEBNO ŚĆ MSZYC ( Eucallipterus tiliae L.) NA LI ŚCIACH DRZEW ULICZNYCH TILIA ‘EUCHLORA’ Abstract: This publication presents the influence of soil salinity on the abundance of aphids on the leaves of street trees in cities. The objects of research were trees of Crimean Linden ( Tilia ‘Euchlora ’) planted at Zwirki and Wigury Street in Warsaw. The research included the evaluation of the trees’ condition, the counting of the number of Lime Aphid ( Eucallipterus tiliae L.), as well as the determination of chlorine and nitrogen content in the leaves. The research revealed a statistically significant influence of chlorine content in the leaves on the deterioration of their condition. The increased content of chlorine in the leaves was accompanied by a decrease in the number of aphids. This relationship was statistically significant. No nitrogen deficiency in the leaves was detected. No statistically relevant relationship between the nitrogen content and the condition of the trees was observed. There was a weak negative correlation which, however, was statistically insignificant. Using the regression function it was determined that the increase in chlorine content in leaves by 1% (from 1.0 to 2%) resulted in a decrease in the abundance of aphids by 49%. What is more, a statistically significant (p = 0.032) influence of nitrogen content on the abundance of aphids was proved.
    [Show full text]
  • The Mechanism by Which Aphids Adhere to Smooth Surfaces
    J. exp. Biol. 152, 243-253 (1990) 243 Printed in Great Britain © The Company of Biologists Limited 1990 THE MECHANISM BY WHICH APHIDS ADHERE TO SMOOTH SURFACES BY A. F. G. DIXON, P. C. CROGHAN AND R. P. GOWING School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ Accepted 30 April 1990 Summary 1. The adhesive force acting between the adhesive organs and substratum for a number of aphid species has been studied. In the case of Aphis fabae, the force per foot is about 10/iN. This is much the same on both glass (amphiphilic) and silanized glass (hydrophobic) surfaces. The adhesive force is about 20 times greater than the gravitational force tending to detach each foot of an inverted aphid. 2. The mechanism of adhesion was considered. Direct van der Waals forces and viscous force were shown to be trivial and electrostatic force and muscular force were shown to be improbable. An adhesive force resulting from surface tension at an air-fluid interface was shown to be adequate and likely. 3. Evidence was collected that the working fluid of the adhesive organ has the properties of a dilute aqueous solution of a surfactant. There is a considerable reserve of fluid, presumably in the cuticle of the adhesive organ. Introduction The mechanism by which certain insects can walk on smooth vertical and even inverted surfaces has long interested entomologists and recently there have been several studies on this subject (Stork, 1980; Wigglesworth, 1987; Lees and Hardie, 1988). The elegant study of Lees and Hardie (1988) on the feet of the vetch aphid Megoura viciae Buckt.
    [Show full text]
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Studies on the auchenorrhyncha (hemoptera insecta) of Pennine moorland with special reference to the ceropidae Whittaker, John B. How to cite: Whittaker, John B. (1963) Studies on the auchenorrhyncha (hemoptera insecta) of Pennine moorland with special reference to the ceropidae, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10475/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 ABSTRACT Studies on the Auchenorrhyncha (Heina>ptera - insecta) of Pennine Moorland with special reference to the Cercopidae. Notes on the autecology of 32 species of Auchenorrhyncha from the Moor House National Nature Reserve are given. Studies were made of the microclimates of the common vegetation types on which these occur and it is shown that the size and function as a temperature regulator of the spittle (produced by nymphs of the Cercopidae) is associated with these gradients.
    [Show full text]
  • Calosc 5..126
    Vol. 16 (2010) APHIDS AND OTHER HEMIPTEROUS INSECTS 49±57 Arthropodssettling Tilia cordata Mill. in landscape of Lublin EWA MACKOSÂ Department of Nature Preservation, The John Paul II Catholic University of Lublin KonstantynoÂw 1H, 20-708 Lublin, Poland [email protected] Abstract Observations on the presence and number of arthropods settling Tilia cordata Mill. were carried out in the city of Lublin in 2008-2009. The research was carried out in housing estate and by-the-road sites and the collected arth- ropodswere divided into trophic groupswith respectto their nutrient prefe- rences. The observations were concerned with the extent of presence of phy- tophagsand beneficial arthropodsin urban conditionsdepending on the extent of anthropopressure. From the research results it follows that herbivore arth- ropodswith a piercing-sucking mouth apparatuswere a dominating trophic group settling T. cordata. In both sites Eucallipterus tiliae (L.) wasmostnume- rous. Moreover, in the housing estate site apart from aphids, also the repre- sentatives of Thysanoptera were numerous whereas in the by-the-road site ± Tetranychidae. Among predators in both sites mites of the Phytoseiidae do- minated. The representatives of the Anthocoride family were most numerous in the housing estate site, while the Coccinellidae in the by-the-road site. Introduction Small-leaved lime tree (Tilia cordata Mill.) isone of the mostfrequent tree species in the city of Lublin, both in housing estate greenery as well as street 50 EWA MACKOSÂ greenery. In Poland in natural habitat there are two domestic species ± small- leaved lime (T. cordata) and large-leaved lime (Tilia platyphyllos Scop.). In urban plantations one plants also other species from this genus: European lime (Tilia x europaea L.) which isa natural hybrid T.
    [Show full text]
  • Tracking Vectors of Bacteria and Phytoplasmas Threatening Europe’S Major Crops (VECTRACROP)
    Euphresco Final Report Tracking vectors of bacteria and phytoplasmas threatening Europe’s major crops (VECTRACROP) Topic area Phloem and xylem feeding insect vectors, fruit and field crops, bacteria and phytoplasmas of phytosanitary concern - Topic Description 2015-D-168 Topic title Tracking vectors of bacteria and phytoplasmas threatening Europe’s major crops (VECTRACROP) 1. Administrative Details . Applicant / Coordinator – Partner 1 Organisation Institute for AgriculturaI and Fisheries Research - ILVO Name of contact Kris De Jonghe, Ph.D. Gender: M (incl. Title) Postal address Burg. Van Gansberghelaan 96, B- 9820 Merelbeke, Belgium E-mail [email protected]; [email protected] Phone ++32 9/ 272 24 48 Applicant – Partner 2 Organisation CRA-W Name of contact Thibaut Olivier, Ir Gender: M (incl. Title) Département Sciences du Vivant (CRAW), Unité Biologie des Postal address nuisibles et Biovigilance, Bâtiment Marchal, Rue de Liroux 4, B- 5030 Gembloux, Belgium E-mail [email protected] Phone ++32 81/ 62 03 39 Applicant – Partner 3 Organisation ANSES Name of contact Reynaud Philippe, Ph.D. Gender: M (incl. Title) Anses Laboratoire de la Santé des Végétaux [Plant Health Laboratory] Postal address 755 avenue du campus Agropolis CS 30016 FR-34988 Montferrier-sur-Lez Cedex E-mail [email protected] Phone + 33 (0)4 67 02 25 10 Applicant – Partner 4 Organisation INIAV Name of contact Célia Mateus- Researcher, Ph.D.; Esmeraldina Gender F (incl. Title) Sousa- Researcher, Ph.D. : Av. da República, Quinta do Marquês Postal address 2780-157 Oeiras – Portugal E-mail [email protected]; [email protected] Phone (+351) 214 403 500 Applicant – Partner 5 Organisation INRA-MOROCCO Name of contact Afechtal Mohamed, Ph.D.; Bouharroud Rachid, Gender: M (incl.
    [Show full text]
  • Aphid Species (Hemiptera: Aphididae) Infesting Medicinal and Aromatic Plants in the Poonch Division of Azad Jammu and Kashmir, Pakistan
    Amin et al., The Journal of Animal & Plant Sciences, 27(4): 2017, Page:The J.1377 Anim.-1385 Plant Sci. 27(4):2017 ISSN: 1018-7081 APHID SPECIES (HEMIPTERA: APHIDIDAE) INFESTING MEDICINAL AND AROMATIC PLANTS IN THE POONCH DIVISION OF AZAD JAMMU AND KASHMIR, PAKISTAN M. Amin1, K. Mahmood1 and I. Bodlah 2 1 Faculty of Agriculture, Department of Entomology, University of Poonch, 12350 Rawalakot, Azad Jammu and Kashmir, Pakistan 2Department of Entomology, PMAS-Arid Agriculture University, 46000 Rawalpindi, Pakistan Corresponding Author Email: [email protected] ABSTRACT This study conducted during 2015-2016 presents first systematic account of the aphids infesting therapeutic herbs used to cure human and veterinary ailments in the Poonch Division of Azad Jammu and Kashmir, Pakistan. In total 20 aphid species, representing 12 genera, were found infesting 35 medicinal and aromatic plant species under 31 genera encompassing 19 families. Aphis gossypii with 17 host plant species was the most polyphagous species followed by Myzus persicae and Aphis fabae that infested 15 and 12 host plant species respectively. Twenty-two host plant species had multiple aphid species infestation. Sonchus asper was infested by eight aphid species and was followed by Tagetes minuta, Galinosoga perviflora and Chenopodium album that were infested by 7, 6 and 5 aphid species respectively. Asteraceae with 11 host plant species under 10 genera, carrying 13 aphid species under 8 genera was the most aphid- prone plant family. A preliminary systematic checklist of studied aphids and list of host plant species are provided. Key words: Aphids, Medicinal/Aromatic plants, checklist, Poonch, Kashmir, Pakistan.
    [Show full text]
  • Coccinellidae)
    ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology.
    [Show full text]
  • A Contribution to the Aphid Fauna of Greece
    Bulletin of Insectology 60 (1): 31-38, 2007 ISSN 1721-8861 A contribution to the aphid fauna of Greece 1,5 2 1,6 3 John A. TSITSIPIS , Nikos I. KATIS , John T. MARGARITOPOULOS , Dionyssios P. LYKOURESSIS , 4 1,7 1 3 Apostolos D. AVGELIS , Ioanna GARGALIANOU , Kostas D. ZARPAS , Dionyssios Ch. PERDIKIS , 2 Aristides PAPAPANAYOTOU 1Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Nea Ionia, Magnesia, Greece 2Laboratory of Plant Pathology, Department of Agriculture, Aristotle University of Thessaloniki, Greece 3Laboratory of Agricultural Zoology and Entomology, Agricultural University of Athens, Greece 4Plant Virology Laboratory, Plant Protection Institute of Heraklion, National Agricultural Research Foundation (N.AG.RE.F.), Heraklion, Crete, Greece 5Present address: Amfikleia, Fthiotida, Greece 6Present address: Institute of Technology and Management of Agricultural Ecosystems, Center for Research and Technology, Technology Park of Thessaly, Volos, Magnesia, Greece 7Present address: Department of Biology-Biotechnology, University of Thessaly, Larissa, Greece Abstract In the present study a list of the aphid species recorded in Greece is provided. The list includes records before 1992, which have been published in previous papers, as well as data from an almost ten-year survey using Rothamsted suction traps and Moericke traps. The recorded aphidofauna consisted of 301 species. The family Aphididae is represented by 13 subfamilies and 120 genera (300 species), while only one genus (1 species) belongs to Phylloxeridae. The aphid fauna is dominated by the subfamily Aphidi- nae (57.1 and 68.4 % of the total number of genera and species, respectively), especially the tribe Macrosiphini, and to a lesser extent the subfamily Eriosomatinae (12.6 and 8.3 % of the total number of genera and species, respectively).
    [Show full text]
  • Integrating Cultural Tactics Into the Management of Bark Beetle and Reforestation Pests1
    DA United States US Department of Proceedings --z:;;-;;; Agriculture Forest Service Integrating Cultural Tactics into Northeastern Forest Experiment Station the Management of Bark Beetle General Technical Report NE-236 and Reforestation Pests Edited by: Forest Health Technology Enterprise Team J.C. Gregoire A.M. Liebhold F.M. Stephen K.R. Day S.M.Salom Vallombrosa, Italy September 1-3, 1996 Most of the papers in this publication were submitted electronically and were edited to achieve a uniform format and type face. Each contributor is responsible for the accuracy and content of his or her own paper. Statements of the contributors from outside the U.S. Department of Agriculture may not necessarily reflect the policy of the Department. Some participants did not submit papers so they have not been included. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture or the Forest Service of any product or service to the exclusion of others that may be suitable. Remarks about pesticides appear in some technical papers contained in these proceedings. Publication of these statements does not constitute endorsement or recommendation of them by the conference sponsors, nor does it imply that uses discussed have been registered. Use of most pesticides is regulated by State and Federal Law. Applicable regulations must be obtained from the appropriate regulatory agencies. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish and other wildlife - if they are not handled and applied properly.
    [Show full text]
  • POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
    POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn.
    [Show full text]