Mathematics and Music: Using Group Theory to Qualify N-Note Tonal Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 17-Tone Puzzle — and the Neo-Medieval Key That Unlocks It
The 17-tone Puzzle — And the Neo-medieval Key That Unlocks It by George Secor A Grave Misunderstanding The 17 division of the octave has to be one of the most misunderstood alternative tuning systems available to the microtonal experimenter. In comparison with divisions such as 19, 22, and 31, it has two major advantages: not only are its fifths better in tune, but it is also more manageable, considering its very reasonable number of tones per octave. A third advantage becomes apparent immediately upon hearing diatonic melodies played in it, one note at a time: 17 is wonderful for melody, outshining both the twelve-tone equal temperament (12-ET) and the Pythagorean tuning in this respect. The most serious problem becomes apparent when we discover that diatonic harmony in this system sounds highly dissonant, considerably more so than is the case with either 12-ET or the Pythagorean tuning, on which we were hoping to improve. Without any further thought, most experimenters thus consign the 17-tone system to the discard pile, confident in the knowledge that there are, after all, much better alternatives available. My own thinking about 17 started in exactly this way. In 1976, having been a microtonal experimenter for thirteen years, I went on record, dismissing 17-ET in only a couple of sentences: The 17-tone equal temperament is of questionable harmonic utility. If you try it, I doubt you’ll stay with it for long.1 Since that time I have become aware of some things which have caused me to change my opinion completely. -
Unified Music Theories for General Equal-Temperament Systems
Unified Music Theories for General Equal-Temperament Systems Brandon Tingyeh Wu Research Assistant, Research Center for Information Technology Innovation, Academia Sinica, Taipei, Taiwan ABSTRACT Why are white and black piano keys in an octave arranged as they are today? This article examines the relations between abstract algebra and key signature, scales, degrees, and keyboard configurations in general equal-temperament systems. Without confining the study to the twelve-tone equal-temperament (12-TET) system, we propose a set of basic axioms based on musical observations. The axioms may lead to scales that are reasonable both mathematically and musically in any equal- temperament system. We reexamine the mathematical understandings and interpretations of ideas in classical music theory, such as the circle of fifths, enharmonic equivalent, degrees such as the dominant and the subdominant, and the leading tone, and endow them with meaning outside of the 12-TET system. In the process of deriving scales, we create various kinds of sequences to describe facts in music theory, and we name these sequences systematically and unambiguously with the aim to facilitate future research. - 1 - 1. INTRODUCTION Keyboard configuration and combinatorics The concept of key signatures is based on keyboard-like instruments, such as the piano. If all twelve keys in an octave were white, accidentals and key signatures would be meaningless. Therefore, the arrangement of black and white keys is of crucial importance, and keyboard configuration directly affects scales, degrees, key signatures, and even music theory. To debate the key configuration of the twelve- tone equal-temperament (12-TET) system is of little value because the piano keyboard arrangement is considered the foundation of almost all classical music theories. -
An Exploration of the Relationship Between Mathematics and Music
An Exploration of the Relationship between Mathematics and Music Shah, Saloni 2010 MIMS EPrint: 2010.103 Manchester Institute for Mathematical Sciences School of Mathematics The University of Manchester Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK ISSN 1749-9097 An Exploration of ! Relation"ip Between Ma#ematics and Music MATH30000, 3rd Year Project Saloni Shah, ID 7177223 University of Manchester May 2010 Project Supervisor: Professor Roger Plymen ! 1 TABLE OF CONTENTS Preface! 3 1.0 Music and Mathematics: An Introduction to their Relationship! 6 2.0 Historical Connections Between Mathematics and Music! 9 2.1 Music Theorists and Mathematicians: Are they one in the same?! 9 2.2 Why are mathematicians so fascinated by music theory?! 15 3.0 The Mathematics of Music! 19 3.1 Pythagoras and the Theory of Music Intervals! 19 3.2 The Move Away From Pythagorean Scales! 29 3.3 Rameau Adds to the Discovery of Pythagoras! 32 3.4 Music and Fibonacci! 36 3.5 Circle of Fifths! 42 4.0 Messiaen: The Mathematics of his Musical Language! 45 4.1 Modes of Limited Transposition! 51 4.2 Non-retrogradable Rhythms! 58 5.0 Religious Symbolism and Mathematics in Music! 64 5.1 Numbers are God"s Tools! 65 5.2 Religious Symbolism and Numbers in Bach"s Music! 67 5.3 Messiaen"s Use of Mathematical Ideas to Convey Religious Ones! 73 6.0 Musical Mathematics: The Artistic Aspect of Mathematics! 76 6.1 Mathematics as Art! 78 6.2 Mathematical Periods! 81 6.3 Mathematics Periods vs. -
Shifting Exercises with Double Stops to Test Intonation
VERY ROUGH AND PRELIMINARY DRAFT!!! Shifting Exercises with Double Stops to Test Intonation These exercises were inspired by lessons I had from 1968 to 1970 with David Smiley of the San Francisco Symphony. I don’t have the book he used, but I believe it was one those written by Dounis on the scientific or artist's technique of violin playing. The exercises were difficult and frustrating, and involved shifting and double stops. Smiley also emphasized routine testing notes against other strings, and I also found some of his tasks frustrating because I couldn’t hear intervals that apparently seemed so familiar to a professional musician. When I found myself giving violin lessons in 2011, I had a mathematical understanding of why it was so difficult to hear certain musical intervals, and decided not to focus on them in my teaching. By then I had also developed some exercises to develop my own intonation. These exercises focus entirely on what is called the just scale. Pianos use the equal tempered scale, which is the predominate choice of intonation in orchestras and symphonies (I NEED VERIFICATION THAT THIS IS TRUE). It takes many years and many types of exercises and activities to become a good violinist. But I contend that everyone should start by mastering the following double stops in “just” intonation: 1. Practice the intervals shown above for all possible pairs of strings on your violin or viola. Learn the first two first, then add one interval at a time. They get harder to hear as you go down the list for reasons having to do with the fractions: 1/2, 2/3, 3/4, 3/5, 4/5, 5/6. -
CIRCLE of FIFTHS WORKSHOP a Useful Concept for When You Want to Jam with Other Instruments Or Write a Song!
CIRCLE OF FIFTHS WORKSHOP A useful concept for when you want to jam with other instruments or write a song! The Circle of Fifths shows the relationships among the twelve tones of the Chromatic Scale, their corresponding key signatures and the associated Major and Minor keys. The word "chromatic" comes from the Greek word chroma meaning "color." The chromatic scale consists of 12 notes each a half step or “semi-tone” apart. It is from the chromatic scale that every other scale or chord in most Western music is derived. Here’s the C chromatic scale going up as an example: C C# D D# E F F# G G# A A# B C In everyday terms: The Circle of Fifths is useful if you’re playing in an open jam with other instruments, e.g., guitars or fiddles around a campfire, or when you’re trying to figure out the chords of a song from scratch, or write your own song. The Circle of Fifths is a music theory picture. Each “segment” on the circle represents a note, a chord, and a key. Why is it called the Circle of Fifths? When going clockwise, each key is a fifth above the last. When going counter-clockwise, each key is a fourth above the last, so you may also hear it called the “circle of fourths”. The perfect fifth interval is said to be consonant, meaning it is a typical “pleasant sound” and sounds stable within music (the groundwork for this concept was set by Pythagoras and based on the sound frequency ratios). -
Hexatonic Cycles
CHAPTER Two H e x a t o n i c C y c l e s Chapter 1 proposed that triads could be related by voice leading, independently of roots, diatonic collections, and other central premises of classical theory. Th is chapter pursues that proposal, considering two triads to be closely related if they share two common tones and their remaining tones are separated by semitone. Motion between them thus involves a single unit of work. Positioning each triad beside its closest relations produces a preliminary map of the triadic universe. Th e map serves some analytical purposes, which are explored in this chapter. Because it is not fully connected, it will be supplemented with other relations developed in chapters 4 and 5. Th e simplicity of the model is a pedagogical advantage, as it presents a circum- scribed environment in which to develop some central concepts, terms, and modes of representation that are used throughout the book. Th e model highlights the central role of what is traditionally called the chromatic major-third relation, although that relation is theorized here without reference to harmonic roots. It draws attention to the contrary-motion property that is inherent in and exclusive to triadic pairs in that relation. Th at property, I argue, underlies the association of chromatic major-third relations with supernatural phenomena and altered states of consciousness in the early nineteenth century. Finally, the model is suffi cient to provide preliminary support for the central theoretical claim of this study: that the capacity for minimal voice leading between chords of a single type is a special property of consonant triads, resulting from their status as minimal perturbations of perfectly even augmented triads. -
Interval Cycles and the Emergence of Major-Minor Tonality
Empirical Musicology Review Vol. 5, No. 3, 2010 Modes on the Move: Interval Cycles and the Emergence of Major-Minor Tonality MATTHEW WOOLHOUSE Centre for Music and Science, Faculty of Music, University of Cambridge, United Kingdom ABSTRACT: The issue of the emergence of major-minor tonality is addressed by recourse to a novel pitch grouping process, referred to as interval cycle proximity (ICP). An interval cycle is the minimum number of (additive) iterations of an interval that are required for octave-related pitches to be re-stated, a property conjectured to be responsible for tonal attraction. It is hypothesised that the actuation of ICP in cognition, possibly in the latter part of the sixteenth century, led to a hierarchy of tonal attraction which favoured certain pitches over others, ostensibly the tonics of the modern major and minor system. An ICP model is described that calculates the level of tonal attraction between adjacent musical elements. The predictions of the model are shown to be consistent with music-theoretic accounts of common practice period tonality, including Piston’s Table of Usual Root Progressions. The development of tonality is illustrated with the historical quotations of commentators from the sixteenth to the eighteenth centuries, and can be characterised as follows. At the beginning of the seventeenth century multiple ‘finals’ were possible, each associated with a different interval configuration (mode). By the end of the seventeenth century, however, only two interval configurations were in regular use: those pertaining to the modern major- minor key system. The implications of this development are discussed with respect interval cycles and their hypothesised effect within music. -
Chords Employed in Twentieth Century Composition
Ouachita Baptist University Scholarly Commons @ Ouachita Honors Theses Carl Goodson Honors Program 1967 Chords Employed in Twentieth Century Composition Camille Bishop Ouachita Baptist University Follow this and additional works at: https://scholarlycommons.obu.edu/honors_theses Part of the Composition Commons, and the Music Theory Commons Recommended Citation Bishop, Camille, "Chords Employed in Twentieth Century Composition" (1967). Honors Theses. 456. https://scholarlycommons.obu.edu/honors_theses/456 This Thesis is brought to you for free and open access by the Carl Goodson Honors Program at Scholarly Commons @ Ouachita. It has been accepted for inclusion in Honors Theses by an authorized administrator of Scholarly Commons @ Ouachita. For more information, please contact [email protected]. Chords Formed By I nterval s Of A Third The traditional tr i ~d of t he eigh te8nth aDd n i neteenth centuries t ends to s~ un 1 trite i n t he su r roundin~s of twen tieth century d i ss onance. The c o ~poser f aces the nroble~ of i magi native us e of th e trla1 s o as t o a d d f reshness to a comnosition. In mod ern c Dmn:;sition , rna i or 8.nd minor triads are usually u s ed a s ooints of r e l axation b e f ore a nd a fter sections o f tension. Progressions of the eighte enth and n inete enth c en t u r i es we re built around t he I, IV, and V chords. All other c hords we re considered as incidenta l, serving to provide vari e t y . -
Consonance & Dissonance
UIUC Physics 406 Acoustical Physics of Music Consonance & Dissonance: Consonance: A combination of two (or more) tones of different frequencies that results in a musically pleasing sound. Why??? Dissonance: A combination of two (or more) tones of different frequencies that results in a musically displeasing sound. Why??? n.b. Perception of sounds is also wired into (different of) our emotional centers!!! Why???/How did this happen??? The Greek scholar Pythagoras discovered & studied the phenomenon of consonance & dissonance, using an instrument called a monochord (see below) – a simple 1-stringed instrument with a movable bridge, dividing the string of length L into two segments, x and L–x. Thus, the two string segments can have any desired ratio, R x/(L–x). (movable) L x x L When the monochord is played, both string segments vibrate simultaneously. Since the two segments of the string have a common tension, T, and the mass per unit length, = M/L is the same on both sides of the string, then the speed of propagation of waves on each of the two segments of the string is the same, v = T/, and therefore on the x-segment of string, the wavelength (of the fundamental) is x = 2x = v/fx and on the (L–x) segment of the string, we have Lx = 2(L–x) = v/fLx. Thus, the two frequencies associated with the two vibrating string segments x and L – x on either side of the movable bridge are: v f x 2x v f Lx 2L x - 1 - Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2002 - 2017. -
The Perception of Pure and Mistuned Musical Fifths and Major Thirds: Thresholds for Discrimination, Beats, and Identification
Perception & Psychophysics 1982,32 (4),297-313 The perception ofpure and mistuned musical fifths and major thirds: Thresholds for discrimination, beats, and identification JOOS VOS Institute/or Perception TNO, Soesterberg, TheNetherlands In Experiment 1, the discriminability of pure and mistuned musical intervals consisting of si multaneously presented complex tones was investigated. Because of the interference of nearby harmonics, two features of beats were varied independently: (1) beat frequency, and (2) the depth of the level variation. Discrimination thresholds (DTs) were expressed as differences in level (AL) between the two tones. DTs were determined for musical fifths and major thirds, at tone durations of 250, 500, and 1,000 msec, and for beat frequencies within a range of .5 to 32 Hz. The results showed that DTs were higher (smaller values of AL) for major thirds than for fifths, were highest for the lowest beat frequencies, and decreased with increasing tone duration. Interaction of tone duration and beat frequency showed that DTs were higher for short tones than for sustained tones only when the mistuning was not too large. It was concluded that, at higher beat frequencies, DTs could be based more on the perception of interval width than on the perception of beats or roughness. Experiments 2 and 3 were designed to ascertain to what extent this was true. In Experiment 2, beat thresholds (BTs)for a large number of different beat frequencies were determined. In Experiment 3, DTs, BTs, and thresholds for the identifica tion of the direction of mistuning (ITs) were determined. For mistuned fifths and major thirds, sensitivity to beats was about the same. -
The Consecutive-Semitone Constraint on Scalar Structure: a Link Between Impressionism and Jazz1
The Consecutive-Semitone Constraint on Scalar Structure: A Link Between Impressionism and Jazz1 Dmitri Tymoczko The diatonic scale, considered as a subset of the twelve chromatic pitch classes, possesses some remarkable mathematical properties. It is, for example, a "deep scale," containing each of the six diatonic intervals a unique number of times; it represents a "maximally even" division of the octave into seven nearly-equal parts; it is capable of participating in a "maximally smooth" cycle of transpositions that differ only by the shift of a single pitch by a single semitone; and it has "Myhill's property," in the sense that every distinct two-note diatonic interval (e.g., a third) comes in exactly two distinct chromatic varieties (e.g., major and minor). Many theorists have used these properties to describe and even explain the role of the diatonic scale in traditional tonal music.2 Tonal music, however, is not exclusively diatonic, and the two nondiatonic minor scales possess none of the properties mentioned above. Thus, to the extent that we emphasize the mathematical uniqueness of the diatonic scale, we must downplay the musical significance of the other scales, for example by treating the melodic and harmonic minor scales merely as modifications of the natural minor. The difficulty is compounded when we consider the music of the late-nineteenth and twentieth centuries, in which composers expanded their musical vocabularies to include new scales (for instance, the whole-tone and the octatonic) which again shared few of the diatonic scale's interesting characteristics. This suggests that many of the features *I would like to thank David Lewin, John Thow, and Robert Wason for their assistance in preparing this article. -
Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl
Science Arena Publications Specialty Journal of Humanities and Cultural Science ISSN: 2520-3274 Available online at www.sciarena.com 2018, Vol, 3 (4): 9-25 Study of Bartok's Compositions by Focusing on Theories of Lendvai, Karpati and Nettl Amir Alavi Lecturer, Tehran Art University, Tehran, Iran. Abstract: Bela Bartok is one of the most influential composers of the twentieth century whose works have been attended by many theorists. Among the most prominent musical theorists focusing on Bartok's works, Erno Lendvai, Jonas Karpati, Burno Nettl, and Milton Babbitt can be mentioned. These scholars have offered great theories by studying hidden, melodic and harmonic relations, and formal structures in the Bartok’s composition. The breadth of Bartok's works, diversity in using pitch organization, and lack of Bartok's personal views on analyzing his works, encouraged theorists to study his work more. The reason for focusing on Bartok in this research can be attributed to his prominent state as a composer in the twentieth century, as well as the way he employs folk melodies as the main component of composing structure. By focusing on tonal aspects, pitch organization, chord relations, and harmonic structures, this study deals with melodic lines and formal principles, and then dissects the theories and indicators in accordance with the mentioned theorists’ views. Keywords: Bartok, Axis System, Pole and Counter Pole, Overtone. INTRODUCTION Bartok's musical structure was initially influenced by the folk music of Eastern Europe. However, he has not provided any explanation with regard to his music. John Vinton's paper titled “Bartok in His Own Music” can be considered as the main source of reflection of Bartok's thoughts.