QUANTUM PHYSICS EXPLORING GRAVITY IN THE OUTER SOLAR SYSTEM : THE SAGAS PROJECT P.Wolf 1,Ch.J.Bordé 1,A.Clairon 1,L.Duchayne 1,A.Landragin 1,P.Lemonde 1,G.Santarelli 1,W.Ertmer 2, E.Rasel 2,F.S.Cataliotti 3,M.Inguscio 3,G.M.Tino 3,P.Gill 4,H.Klein 4,S.Reynaud 5,C.Salomon 5,E.Peik 6, O.Bertolami 7,P.Gil 7,J.Páramos 7,C.Jentsch 8,U.Johann 8,A.Rathke 8,P.Bouyer 9,L.Cacciapuoti 10 , D.Izzo 10 ,P.DeNatale 11 ,B.Christophe 12 ,P.Touboul 12 ,S.G.Turyshev 13 ,J.D.Anderson 14 ,M.E.Tobar 15 , F.SchmidtKaler 16 ,J.Vigué 17 ,A.Madej 18 ,L.Marmet 18 ,MC.Angonin 1,P.Delva 1,P.Tourrenc 19 , G.Metris 20 ,H.Müller 21 ,R.Walsworth 22 ,Z.H.Lu 23 ,L.J.Wang 23 ,K.Bongs 24 ,A.Toncelli 25 ,M.Tonelli 25 , H.Dittus 26 ,C.Lämmerzahl 26 ,P.Laporta 27 ,J.Laskar 28 ,A.Fienga 29 ,F.Roques 30 , K.Sengstock 31 ,G.Galzerano 32 1SYRTE,Observatoirede,CNRS, 17 LCAR,UniversitéToulouseIII,CNRS,France 2LeibnizUniversitätHannover,Germany 18 NationalResearchCouncilofCanada,CNRC, 3LENS,Universita’diFirenze,INFN,Italy Canada 4NationalPhysicalLaboratory,UnitedKingdom 19 ERGA/LERMA,UniversitéParis6,France 5LaboratoireKastlerBrossel,CNRS,France 20 GéosciencesAzur,ObservatoiredelaCôte 6PhysikalischTechnischeBundesanstalt,Germany d’Azur,CNRS,France 7InstitutoSuperiorTécnico,Portugal 21 StanfordUniversity,USA 8EADSAstrium,Friedrichshafen,Germany 22 HarvardUniversity,USA 9LaboratoireCharlesFabrydel'Institutd'Optique, 23 UniversitätErlangen,Germany CNRS,France 24 UniversityofBirmingham,UnitedKingdom 10 ESA,ESTEC,TheNetherlands 25 NEST,INFMCNR,Universita’diPisa,Italy 11 INOACNR,Firenze,Italy 26 ZARM,UniversityofBremen,Germany 12 ONERA,Chatillon,France 27 PolitecnicodiMilano,Italy 13 NASA,JetPropulsionLaboratory,USA 28 IMCCE,ObservatoiredeParis,CNRS,France 14 JetPropulsionLaboratory,CaliforniaInstituteof 29 ObservatoiredeBesançon,France Technology,USA 30 LESIA,ObservatoiredeParis,CNRS,France 15 UniversityofWesternAustralia,Australia 31 UniversitätHamburg,Germany 16 UniversitätUlm,Germany 32 CNR,IFNSez.Milano,Italy Contact: [email protected] Abstract: We summarise the scientific and technological aspects of the SAGAS (Search for Anomalous GravitationusingAtomicSensors)project,submittedtoESAinJune2007inresponsetotheCosmicVision 20152025callforproposals.Theproposedmissionaimsatflyinghighlysensitiveatomicsensors(optical clock,coldatomaccelerometer,opticallink)onaSolarSystemescapetrajectoryinthe2020to2030time frame. SAGAS has numerous science objectives in fundamental physics and Solar System science, for examplenumeroustestsofgeneralrelativityandtheexplorationoftheKuiperbelt.Thecombinationof highly sensitive atomic sensors and of the laser link well adapted for large distances will allow measurementswithunprecedentedaccuracyandonscalesneverreachedbefore.Wepresenttheproposed missioninsomedetail,withparticularemphasisonthesciencegoalsandassociatedmeasurements. 1. INTRODUCTION TheSAGASmissionwillstudyallaspectsoflargescalegravitationalphenomenaintheSolarSystemusing quantumtechnology,withscienceobjectivesinfundamentalphysicsandSolarSystemexploration.Itwill contributetothesearchforanswerstosomeofthemajorquestionsofrelevancetopresentdayphysicsand spacescience:

1 • SAGASwillcarryoutalargenumberoftestsoffundamentalphysics,andgravitationinparticular, atscalesonlyattainableinadeepspaceexperiment(sect.2.2.,2.3.,2.4.,2.7.,2.8.).Giventhescale andsensitivityoftheSAGASmeasurements,thiswilldeeplyprobetheknownlawsofphysics,with thepotentialforamajordiscoveryinanareawheremanymodernunificationtheorieshinttowards new physics. The unique combination of onboard instruments (atomic clock, atomic absolute accelerometer,opticallinktoground)willallowforatwotofiveordersofmagnitudeimprovement on many tests of special and general relativity, as well as a detailed exploration of a possible anomalousscaledependenceofgravitation. • SAGASwillprovidedetailedinformationontheKuiperbeltmassandmassdistribution,thelargely unexploredremnantofthecircumsolardiskwherethegiantplanetsoftheSolarSystemformed(see sect. 2.5. and 2.5.1). Additionally it will allow the precise determination of the mass of one or severalKuiperbeltobjectsandpossiblydiscovernewones(sect.2.5.2.). • SAGASwillcarryoutameasurementofthemassandmassdistributionoftheJupitersystemwith unprecedentedaccuracy(sect.2.6.). ThislargespectrumofobjectivesmakesSAGASauniquecombinationofexplorationandscience,witha strongbasisinbothprograms.Theinvolvedlargedistances(upto53AU)andcorrespondinglargevariations of gravitational potential combined withthe high sensitivity of SAGAS instruments serve both purposes equallywell.Forthisreason,SAGASbringstogethertraditionallydistantscientificcommunitiesranging fromatomicphysicsthroughexperimentalgravitationtoplanetologyandSolarSystemscience. Thepayloadwillincludeanopticalatomicclockoptimisedforlongtermperformance,anabsolute accelerometer based on atom interferometry and a laser link for ranging, frequency comparison and communication.Thecomplementaryinstrumentswillallowhighlysensitivemeasurementsofallaspectsof gravitationviathedifferenteffectsofgravityonclocks,light,andthefreefalloftestbodies,thuseffectively providing effectively a detailed gravitational map of the outer Solar System whilst testing all aspects of gravitationtheorytounprecedentedlevels.Thedetailonthedifferentscienceobjectivescanbefoundinthe appropriatesubsectionsofsect.2. TheSAGASaccelerometerisbasedoncoldCsatomtechnologyderivedtoalargeextentfromthe PHARAOspaceclockbuiltfortheACESmission[30].ThePHARAOengineeringmodelhasrecentlybeen tested with success, demonstrating the expected performance and robustness of the technology. The accelerometer will only require parts of PHARAO (cooling and trapping region) thereby significantly reducing mass and power requirements. The expected sensitivity of the accelerometer (cf Tab. 21) is 1.3x10 9m/s 2Hz 1/2 withanabsoluteaccuracy(biasdetermination)of5x10 12 m/s 2,thelatterbeingcrucialfor manyofthescienceobjectives. TheSAGASclockwillbeanopticalclockbasedontrappedandlasercooledsingleiontechnology aspioneeredinnumerouslaboratoriesaroundtheworld.InthepresentbaselineitwillbebasedonaSr +ion withaclockwavelengthof674nm.TheassumedstabilityoftheSAGASclockis1x10 14 /√τ(with τthe integrationtime),withanaccuracyinrealisingtheunperturbedionfrequencyof1x10 17 .Thebestoptical singleiongroundclockspresentlyshowstabilitiesslightlybetter(3x10 15 /√τ)thantheoneassumedforthe SAGASclock,andonlyslightlyworseaccuracies(2x10 17 ).SothetechnologychallengesfacingSAGASare notsomuchtherequiredperformance,butthedevelopmentofreliableandspacequalifiedsystems,with reducedmassandpowerconsumption. Theopticallinkisusingahighpower(1W)laser locked to the narrow and stable frequency providedbytheopticalclock,withcoherentheterodynedetectiononthegroundandonboardtheS/C.It servesthemultiplepurposesofcomparingtheSAGASclocktogroundclocks,providinghighlysensitive Dopplermeasurementsfornavigationandscience,andallowingdatatransmissiontogetherwithtimingand coarseranging.Itisbasedona40cmspacetelescopeand1.5mgroundtelescopes(similartolunarlaser ranging stations). The main challenges of the link will be the required pointing accuracy (0.3”) and the availabilityofspacequalified,robust1Wlasersourcesat674nm.Quitegenerally,laseravailabilityand reliabilitywillbethekeytoachievingtherequiredtechnologicalperformances,fortheclockaswellasthe opticallink(seesect.6.2.). For this reason a number of different options have been considered for the clock/link laser wavelength (see sect. 3.2.), with several other ions that could be equally good candidates ( e.g. Yb + @ 435nmandCa +@729nm).Givenpresentlasertechnology,Sr +waspreferred,butthischoicecouldbe revised depending on laser developments over the next years. We also acknowledge the possibility that femtosecondlasercombsmightbedevelopedforspaceapplicationsinthenearfuture,whichwouldopenup theoptionofusingeitherionwithexistingspacequalified1064nmNd:YAGlasersforthelink.

2 More generally, SAGAS technology takes advantage of important heritage from cold atom technologyusedinPHARAOandlaserlinktechnologydesignedforLISA(LasersIneterferometricSpace Antenna).Itwillprovideanexcellentopportunitytodevelopthosetechnologiesforgeneraluse,including developmentofthegroundsegment(DeepSpaceNetworktelescopesandopticalclocks),thatwillallow such technologies to be used in many other mission configurations for precise timing, navigation and broadbanddatatransferthroughouttheSolarSystem. Insummary,SAGASoffersauniqueopportunityforahighprofiledeepspacemissionwithalarge spectrumofscienceobjectivesinSolarSystemexplorationandfundamentalphysics,andthepotentialfora majorbreakthroughinourpresentconceptionofphysics,theSolarSystemandtheuniverseasawhole. 2. SCIENCE OBJECTIVES SAGASoffersthepossibilitytoachievehighpriorityFundamentalPhysicsandSolarSystemobjectives, thuscombiningscienceandexplorationinauniqueway.Onewouldexpectthatthecorrespondinglarge number of equally important objectives will require some compromises on trajectory design and data acquisition,butitissurprisingtonotethatalmostnotradeoffsarerequired,asthedifferentrequirementsare largelycompatible. TrajectorydesignplaysanimportantroleinmanyoftheSolarSystemobjectives,butalmostnorole onmostfundamentalphysicsgoals,forwhichalargevariationofgravitationalfieldandlargedistancefrom theSunisrequired,withnoparticularpreferreddirection(apartfromaweakconstraintonthegeneralflight directionfromtheLorentzInvariance(LI)test,andtherequirementforatleastoneoccultationforthePPN test). This leaves the possibility to optimise the trajectory for the Solar System objectives without significantlyaffectingthefundamentalphysicsresults. DataanalysiswillthenbetailoredtosharethetimebetweenSolarSystemscienceandfundamental physics.ForexampleduringcloseplanetaryorKuiperBeltObject(KBO)flybys,themeasurementswill yieldinformationontheplanetorKBOwhilstleavingampletimeduringtherestofthemission(whenfar fromknownobjects)forthefundamentalphysicsobjectives.Designinganoptimaltrajectorywillbeoneof thetasksofmoredetailedstudies,butatrajectorysatisfyingallobjectivescancertainlybefound,giventhe largespaceofpossibleoptions. Inthefollowingsectionsweinvestigatethedifferentscienceobjectivesbasedon“raw”measurement uncertainties of the different observables (section 2.1.). This said, we acknowledge that the actual data analysis will consist of fitting the different models under investigation together with models for known perturbations to the measurements, thus obtaining more sensitive results on all model parameters. Corresponding simulations could yield more reliable estimates of SAGAS performance concerning the differentobjectivesandsomeinformationoncorrelationsbetweenthem.Suchsimulationsarebeyondthe scopeofthisoverview,butwenotethattheyshouldinmostcasesleadtomorefavourableestimatesonthe achievableresultsthantheroughestimatesprovidedhere. 2.1. Measurements and Observables SAGAS will provide three fundamental measurements: the accelerometer readout and the two frequency differences(measuredongroundandonboardtheS/C)betweentheincominglasersignalandthelocal opticalclock.Auxiliarymeasurementsarethetimingofarrivingsignalsonboardandonthegroundthatare usedforrangingandtimetaggingofdata.Thehighprecisionscienceobservableswillbededucedfromthe fundamentalmeasurementsbycombiningthemeasurementstoobtaininformationoneitherthefrequency differencebetweentheclocksortheDopplershiftofthetransmittedsignals(seesection3.3.).Thelatter givesaccesstotherelativegroundvelocity,fromwhichthegravitationaltrajectoryofthesatellite canbededucedbycorrectingnongravitationalaccelerations(aNG )usingtheaccelerometerreadings.Then thethreescienceobservablesare

Relative frequency: y≡∂tτS∂tτG Doppler shift: Dν≡(νr–νe)/ ν0 (21) Non-gravitational acceleration: aNG where τiispropertimeatthepositionofthespaceandgroundclockrespectively, tiscoordinatetime, νiis thereceived,emitted,andnominalproperfrequencyofaphoton,and Dνiscorrectedfornongravitational

3 satellitemotion.Fromtheobservablesweobtainthequantitiesofinterestthatgiveaccesstothescience objectives:S/Cgravitationalmotion,S/Cpropertimeevolution,andlightpropagation. Inthefollowing,weassumethatstationmotionanditslocalgravitationalpotentialcanbe knownandcorrectedtouncertaintylevelsbelow10 17 inrelativefrequency(<10cmongeocentricdistance), whichcancertainlybeachievedforthetimevaryingpartsofthepotentialandisonlyafactor3lessthanthe bestreported absolute determination [1] with still some room for improvement ( e.g. the potential on the geoidispresentlyknowntobetterthan5cm[2],withimprovementstoabout1cmexpectedfromtheGOCE mission[39]).FortheSolarSystemparametersthisrequires10 9relativeuncertaintyforthegroundclock parameters(GM and rofEarth),alsoachievedatpresent[2],andlessstringentrequirementsfortheS/C.A particularsituation,however,isthecloseapproachofplanets,treatedindetailinsect.2.6. Therawfrequencymeasurements(onboardandontheground)canbecombinedintwofundamental ways(seesection3.3.).TheirsumyieldssensitivitytotherelativeS/C–Earthvelocityviathefirstorder Dopplereffectwithsuppressedsensitivitytotheclocknoise.Theirdifferenceyieldssensitivitytotheclock frequency difference with suppressed sensitivity to the motion of the S/C and ground station. As a consequence,gravitationaltrajectoryrestitutionwillbedeterminedbytroposphericandclocknoiseathigh frequenciesandS/Caccelerometernoiseatlowfrequencies(<10 4Hz).Notethatnoiseinthedetermination ofthegroundstationmotionplaysanonnegligibleroleatintermediatefrequencies,butisbelowtheS/C acceleration noise at low frequencies, when using modern positioning techniques (Global Satellite NavigationSystems,SatelliteLaserRanging,VeryLongBaselineInterferometry).Forlongtermintegration andthedeterminationofanaccelerationbias,thelimitingfactorwillthenbetheaccelerometernoiseand absolute uncertainty (bias determination), also shown in Tab. 21. More generally, modelling of non gravitationalaccelerationswillcertainlyallowsomeimprovementonthelongtermlimitsimposedbythe accelerometernoiseandabsoluteuncertainty,butisnottakenintoaccountinTab.21. Noise PSD / Hz -1 Bias Comments y (2x10 28 +9x10 24 f 2) 10 17 Seesection3.3. 37 2 28 24 2 17 Dννν (4.5x10 f +1x10 +9x10 f ) (10 ) Biasdeterminationlimitedbyaccelerometerand orbitmodelling,10 17 isclocklimit 18 2 2 12 2 aNG 1.6x10 (m/s ) 5x10 m/s Tab. 2-1: SAGASuncertaintiesonscienceobservables.NotethatstatedPSDarevalidforintegrationdown tothebiasuncertainties.Forlongerintegration,somefurtherimprovementonnoisecanbeexpected,butwill belimitedbythetemporalvariationofsystematiceffects,atpresentlyunknownlevels. Wewillusetheexamplemissionprofileelaboratedinsect.5.withanominalmissionlifetimeof15 yearsandthepossibilityofanextendedmissionto20yearsifinstrumentperformanceandoperationallow this.Inthattimeframe,theexampletrajectoryallowstheS/Ctoreachaheliocentricdistanceof39AUin nominalmissionand53AUwithextendedduration.Mostscienceobjectivescorrespondtoslowlyvarying effects over those timescales, so sampling rates of the measurements and corresponding required data transferratescanbelow.TheonlyexceptionstothisarethePostNewtoniangravitytestduringoccultation (sect.2.3.)andthesearchforlowfrequencygravitationalwaves(sect.2.8.).Eveninthosecases,0.01Hz samplingratesshouldbesufficient,whichleadstotinysciencedataratesofthreenumbers/100s,amply accommodatedbytheopticallink(kbpscapacity,sect.3.3.). 2.2. Test of the Gravitational Redshift and of Lorentz Invariance Theuniversalredshiftofclockswhensubmittedtoagravitationalpotentialisoneofthekeypredictionsof GeneralRelativity(GR)and,moregenerally,ofallmetrictheoriesofgravitation.Itrepresentsanaspectof theEinsteinEquivalencePrinciple(EEP)oftenreferredtoasLocalPositionInvariance(LPI)[3].InGR,the frequencydifferenceoftwoidealclocksis(tofirstorderintheweakfieldapproximation) 2 2 dτ dτ w − w v − v − S − G ≈ G S + G S + O(c 4 ) (22) dt dt c 2 2c2 with wtheNewtoniangravitationalpotentialatthelocationoftheclocksand vtheircoordinatevelocity.In theoriesdifferentfromGRtherelation(22)ismodified,leadingtodifferenttimeandspacedependenceof thefrequencydifference.Thiscanbetestedbycomparingtwoclocksatdistantlocations(differentvaluesof w and v) via exchange of an electromagnetic signal. At present the most sensitive such experiment was carriedoutusingtwohydrogenmaserclocksoneonthegroundandoneonaparabolicorbitreachingupto

4 10000kmaltitude[4].ItconfirmedtheGRpredictionwitharelativeuncertaintyof7x10 5.The SAGAS trajectory(largepotentialdifference)andlowuncertaintyontheobservable y(directlythedifferencein22) allows a relative uncertainty on the redshift determination given by the 10 17 bias on y divided by the 2 maximum value of (wGwS)/c reached. For nominal mission duration this corresponds to a test with a relativeuncertaintyof1.0x10 9(withaverysimilarvalueforextendedmissionduration),whichrepresents animprovementbyafactor7x10 4,almost5ordersofmagnitude.Foracleargravitationaltestitisnecessary to measure the potential term in (22) independently of the velocity one ([4] in fact only measured the combinationofbothterms), i.e. onehastocorrectforthevelocitytermwiththerequired10 17 uncertainty. 13 Thisimpliesthat δvS/cneedstobedeterminedtoabout2x10 ( vS=13km/satendofnominalmission), whichshouldposenodifficultiesgiventhenoiselevelonthe Dνmeasurement(Tab.21).Similarly,onehas tocorrectforthepotentialfromallSolarSystemobjects(mainlytheplanets)withsufficientuncertainty. Thisshouldposenoparticulardifficultyeither,providedthemeasurementsarecarriedoutwhentheS/Cis sufficientlyfarfromanymassiveobject(seesect.2.6.fordetails). Testsoftheuniversalgravitationalredshiftasdescribed above can be viewed quite generally as comparingwhetherthegravitationalpotentialgoverningthemotionoffreelyfallingtestmassesisthesame astheonegoverningtheevolutionoftwodistantidealclocks, i.e. whetherametricdescriptionofgravityis correct.Asomewhatlessgeneralapproachistocomparetwocolocatedclocksofdifferenttype(socalled nullredshifttests)assumingthatdifferenttypesofatomictransitionsarecoupleddifferentlytotheambient gravitational field (see also sect. 2.7. for a further interpretation in terms of variation of fundamental constants).Theuncertaintyofsuchnullredshifttestsisgenerallystatedastheuncertaintywithwhichthe 2 localfrequencycomparisonlimitsaputativetemporal variation δy(t) = δwSun (t)/ c varyingatdiurnaland annualfrequencyduetotherotationoftheEarthandtheeccentricityoftheEarth’sorbit.Presently,thebest limitonnullredshifttestsis1.4x10 6,afactor1400lesssensitivethantheestimatedSAGAS sensitivity. EvenwithfurtherexpectedimprovementofgroundclocksSAGASwillconservetheadvantageofthelarge variationofgravitationalpotentialoverthemission,about30timeslargerthanattainableontheground. Additionally, SAGAS also provides the possibility of testing the velocity term in (22), which amountstoatestofSpecialRelativity(IvesStilwelltest),andthusofLorentzinvariance.Towardstheendof thenominalmission,thistermisabout4x10 9andcanthereforebemeasuredbySAGASwith3x10 9relative uncertainty.Thebestpresentlimitonthistypeoftestis2.2x10 7[6],soSAGASwillimproveonpresent knowledgebyafactor ≈70.Consideringaparticularpreferredframe,usuallytakenastheframeinwhichthe 3Kcosmicbackgroundradiationisisotropic,onecansetanevenmorestringentlimit.Inthatcaseaputative 2 effectwillbeproportionalto( vSvG). vSun /c (cf.[6]),where vSun isthevelocityoftheSunthroughtheCMB frame( ≈350km/s).ThenSAGASwillallowameasurementwithabout5x10 11 relativeuncertaintyatbest, whichcorrespondstomorethan3ordersofimprovementonthepresentlimit.Suchascenarioneedstobe furtherstudiedtodefinethebestsuitedS/Ctrajectoryandestimatetheresultinglimitforthatcase. Note that IvesStilwell experiments also provide the best present limit on a particularly elusive parameter(κtr )oftheLorentzviolatingStandardModelExtension(SME)photonsector[7],henceSAGAS alsoallowsforthesamefactor70to10 3improvementonthatparameter. 2.3. Tests of Parameterised Post-Newtonian Gravity (PPN) ThePPNformalismdescribingalargeclassofmetrictheoriesofgravitation(includingGR)intheweakfield regimeiswellknown(see e.g. [3])andhasbeenextensivelytestedinSolarSystem.Thetwomostcommon parametersofthePPNframeworkaretheEddingtonparameters βand γ,bothequalto1inGR.Withthose twoparametersthePPNmetrictofirstPNorderis β 2 + γ γ = − + 2w − 2 w = − 1(2 ) i = δ  + 2 w  g 00 1 ; g 0i w ; g ij ij 1  (23) c 2 c 4 c 3  c 2  where wand wiarethescalarandvectorpotentials,tofirstapproximation i GM A i GM Av A w = ∑ ; w = ∑ (24) A rA A rA withthesumscarriedoutoverallSolarSystembodies.

5 Theparameter βappearsonlyin g00 andhencecontributestotheequationofmotionoftestmasses. ForSAGASthecorrespondingeffectisacoordinateaccelerationof ≈1.2x10 10 m/s 2at1AUandfallingoff quickly(1/ r3dependence)asthesatellitemovesawayfromtheSun.Giventhe5x10 12 m/s 2measurement uncertaintyon aNG ,whichhastobecorrectedforinordertomeasurethegravitationalmotion,SAGASis unlikelytosetalimiton1βbetterthanabout4%.Thisisnotcompetitivewithpresentlimits( ≈10 3),sowill notbefurtherconsideredhere. Thesecondparameter γhasraisedmuchtheoreticalattention.Itcharacterisestheamountofspace timecurvatureproducedbyunitrestmass,andassuchisaffectedbymosttypesofmodificationsofGR.For example,itismodifiedatthelowenergylimitofstringtheoryincertaincosmologicalmodels,whichcan lead to deviations from unity (GR value) as large as 10 7 to 10 5 [14], well within the range of SAGAS measurement(seebelow).FurthermoreScalarTensormodelsalsoleadtoadeviationof γfromunity[15] andmayberelatedtodarkenergymattercoupling[16],ofinterestincosmologyandfundamentalphysics.

Phenomenologically,thefactthat γappearsinthe gij and g0i termsofthemetricleadstoeffectson lightpropagationandtogravitomagneticeffects.Presentlimits on γareobtainedfrommeasurementson light propagation (light deflection and Shapiro delay). The most stringent such limit was deduced from DopplerrangingtotheCassinimissionduringsolaroccultation(June2002)yielding γ=1+(2.1±2.3)x10 5 [17],inagreementwithGR. SAGAS will carry out measurements very similar to theCassinione,duringoneorseveralsolar conjunctions(dependingondetailedtrajectory)withimprovedsensitivityandatopticalratherthanradio frequencies,whichsignificantlyminimiseseffectsfromsolarcoronaandtheEarth’sionosphere.Whenthe laseroftheSAGASlinkpassesclosetotheSun,thegravitational(Shapiro)delayleadstoamodificationof theDopplerobservable δDνgivenby d  GM  4r r  GM db δ ≈ + γ S G ≈ − + γ (25) Dν (t)  1( ) 3 ln 2  1(2 ) 3 dt  c  b  c b dt where bistheimpactparameter(distanceofclosestapproach)ofthelaserbeam.Atgrazingincidence( b≈ 7x10 8m)andforadistantS/C(>1AU,thendb/d t≈30km/s;Earthorbitalvelocity)themaximumeffectis about8.5x10 10 . Whencombiningtheonboardandgroundmeasurements such thatthe“up”and “down” signals coincideatthesatellite(classical Dopplerrangingtypemeasurement)thenoisefromtheonboardclock cancels to a large extent and one is left with noise from the accelerometer, the ground clock, and the atmosphere.Weassumethatforatwentydaymeasurementaroundoccultationtheaccelerometerisoperated in1Dalongthedirectionofsignalpropagation(ofinteresthere)leadingtoafactorof √3improvementonits sensitivitygiveninsect.3.1.2.andTab.2.Weassumethatgroundopticalclocksimprovebyaboutafactor6 16 instabilitywithrespecttobestpresentperformancesto σy(τ) ≈5x10 /√τintermsofAllanvariance(very likelybythetimeSAGASislaunched).Finallyweassumeatmosphericnoisefromturbulenceandvariations in temperature, pressure and humidity as described in sect. 3.3.4. Optimal filtering of the Shapiro delay signalinthetotalnoiseduringatendaymeasurementstartingjustafteroccultationleadstoanuncertainty δ( γ )≤1.1x10 7.Consideringalsothetendaymeasurementjustbeforeoccultationallowsanother √2gain, and Noccultationsduringthe20yeardurationallowanothergainof √N.However,observationsarelikelyto be incomplete over the 20 days around occultation (data gaps due to loss oflock eg. from atmospheric fluctuations).Allowingforafactor ≈2loss(aboutafactor4lossinobservationtime)wethusconservatively estimateouroveralluncertaintyonthedetermination of γ from a single occultation at 2x10 7, with some potentialforimprovementwithseveraloccultations. Furthermore, we have assumed that the nongravitational accelerations of the S/C are simply measured and corrected without any modelling. However, it is likely that the nongravitational S/C acceleration can be modelled over the short timescales involved during occultation to better than the accelerometeruncertainty,especiallyifoccultationoccurswhentheS/Cisfaronitsoutwardjourney.Inthat casethemeasurementwillultimatelybelimitedbytheclockuncertaintyratherthantheaccelerometerand measure most of the 8.5x10 10 maximum amplitude of the effect, leading to an ultimate measurement uncertaintyon γof≤10 8. ThemajorsystematiceffecttobeaccountedforinDopplermeasurementsclosetotheSun(apart fromthenongravitationalaccelerationdiscussedabove)istheinfluenceofsolarcorona,andstraylightfrom theSun“blinding”thetelescopes.ThelatterisaddressedindetailinSect.3.3.andfoundtobenegligible

6 evenwhenpointingdirectlyintotheSun.Thedispersivenatureofthesolarcoronaleadstoatimedelayof electromagnetic signals proportional to 1/ f 2, the time variation of which shows up on the Doppler observable.IntheCassiniexperiment,thiseffectwasmeasuredandremovedusingDopplerobservationsat differentfrequencies(KaandXband).Theresidualeffectwasestimatedtobe4ordersofmagnitudesmaller than the measured effect, i.e. of order 10 14 [17]. For SAGAS at the opticalfrequency thefull effect is expected to be about 8 orders of magnitude smaller (1/ f 2 dependence) than for the Cassini Ka band. Additionally,itcanbemeasuredandremovedusing thecombinationofXbandandopticalavailableon SAGAS,thelargefrequencydifferenceallowinganevenmoreprecisemeasurementthanwiththeKa–X combinationavailableonCassini.Soweareconfidentthatsolarcoronaeffectswillplaynosignificantrole andmeasurementsdowntosolargrazingwillbepossible.Inturn,itmightbeinterestingtoinvestigatethe possibilityofstudyingthesolarcoronausingtheprecisemeasurementsavailableduringoccultation,butfor thetimebeingthisisnotincludedasascientificobjectiveofSAGAS. WenoteinpassingthatasimilartestcanbecarriedoutduringconjunctionwithJupiter(trajectory allowing)withabout100timeslesssensitivitybutimprovedanddifferentpropagationsystematicswhen grazingtheplanet.Combiningthetwowouldleadtosignificantlymoreconfidenceontheobtainedboundor ontheobservationofaGRviolation. Insummary,assumingonlyoneoccultationoverthe complete mission, we estimate that SAGAS willbeabletomeasurethePPNparameter γwithanuncertaintyofabout2x10 7,butmorelikelyinthe10 8– 10 9 region, when combining the accelerometer measurements with a model of nongravitational accelerationsovertheshorttimeoftheoccultation.Thesenumbersrepresentanimprovementby2to4 ordersofmagnitudeonbestpresentresults,andarewellintothetheoreticallyinteresting10 510 7region andbeyond[14],soshouldbeabletosignificantly constrainpresentattemptsatunificationtheories and cosmologicalmodels. 2.4. Exploring Large Scale Gravity ExperimentaltestsofgravityshowagoodagreementwithGeneralRelativity(GR)atscalesrangingfrom themillimeter(laboratoryexperiments)tothesizeofplanetaryorbits.Meanwhile,mosttheoreticalmodels aimedatinsertingGRwithinthequantumframework predict observable modificationsat smaller and/or largerscales. Anomalies observed in the rotation curves of galaxies or in the relation between redshifts and luminositiesofsupernovaeareascribedtodarkmatteranddarkenergycomponents,thenatureofwhich remainsunknown.Thesedarkcomponents,whichconstitute96%ofthecontentoftheUniverse,havenot beendetectedbynongravitationalmeanstodate.Astheobservedanomaliescouldalsobeconsequencesof modificationsofGRatgalacticorcosmologicalscales,itisextremelyimportanttotestthelawsofgravityat thelargestpossibledistances. SuchatesthasbeenperformedbyPioneer10/11probesduringtheirextendedmissions.Thislargest scaled experimental test of gravity ever performed has failed to reproduce the expected variation of the gravityforcewithdistance[18].Precisely,theanalysisoftheradiometrictrackingdatafromtheprobesat distancesbetween20 −70astronomicalunits(AU)fromtheSunhasshownthepresenceofananomalous, small,nearlyconstantDopplershiftdrift,whichcanbeinterpretedasanunexpectedaccelerationoftheorder of1nm/s 2,directedtowardstheSun.Theobservationofthis“Pioneeranomaly”hasstimulatedsignificant effortstofindexplanationsintermsofsystematiceffectsonboardthespacecraftorinitsenvironment. TheinabilitytoexplaintheanomalousbehaviorofthePioneerspacecraftwithconventionalphysics [18]hascontributedtothegrowingdiscussionaboutitsorigin,adiscussionwhichisstillongoing[41].Ithas alsomotivatedaninterestinflyingnewprobestothedistanceswheretheanomalywasfirstdiscovered,that is,beyondtheSaturnorbit,andstudyinggravitywithmoderntechniques.Aconfirmationoftheanomaly wouldconstituteabreakthroughinfundamentalphysics,whileanegativeoutputwouldalsobeimportant,by considerablyimprovingourknowledgeofgravitylawsatlargedistances. FourlettersofintenthavebeensubmittedtoESAaftertheCosmicVisioncall(DSGE,ODYSSEY, ZACUTOandSAGAS)withtheaimoftestinggravitylawsintheouterSolarSystem.Theywerebasedon differentmeasurementtechniquesandmissionscenariosandalsoshoweddifferentlevelsforthemission objectivesandtechnologyreadiness.Theproponentshaveagreedtomergethefourlettersofintenttoonly twoproposals,oneLclass(SAGAS)andoneMclass (ODYSSEY), combining and representing all four initial proposals. To that aim SAGAS has incorporated some of the ZACUTO science objectives, in particularthestudyofouterSolarSystemmassdistributions(e.g.Kuiperbelt)asdetailedinsect.2.5. Over the past years, a large number of theoretical frameworks that allow for a scale (distance) dependent modification of GR have been suggested, e.g. generalized metric extensions of GR, Modified

7 Newtonian Dynamics, TensorVectorScalartheory, MetricSkewTensor Gravity, f(R) modified gravity theories,StringtheoryandCosmologymotivatedframeworks,Braneworldscenarios,andmanyothers.Itis farbeyondthescopeofthepresentproposaltoevenlistallexistingmodels,letalonedescribeandcalculate thevariousobservableeffectsonewouldexpectforamissionlikeSAGAS.Thattypeofactivityhastobe the subject of a dedicated theoretical study by a specific working group once the mission is at a more advanced stage and more details, in particular on mission profile and payload performance are known. However,itisverylikelythatformanyofthosetheoriesSAGASwillcontributetoclosinganobservational gapsituatedatdistancescoveredbyneitherprecisionEarthbasedobservation( e.g. LLR, i.e. Earthmoon distance)norastronomicalobservations(>kpc). We willrestrictthis section to a study of SAGAS inthecontextoflargescalegravity,usingthe Pioneeranomaly(PA)asaquantitativeexample,andafewconventionaland“newphysics”hypothesesthat maybeusedtoexplainit.Inparticularwewilldiscusssomeclassesofconventionalhypothesesconsidered in [18] and the two “extremes” of the generalized metric theory described in [19], a relatively large parameterizedframeworkincludingsomeothermodelsasspecialcases.Theaimhereisnotsomuchto rigorously quantify the SAGAS measurements under the different hypotheses, but to show how the complementarySAGASinstrumentsallowthediscriminationbetweenthedifferenthypotheses.Indeed,for testsoffundamentalphysicsitisnotonlyimportanttomeasurephenomenawithhighestaccuracy,butalso toaddressasmanydifferentaspectsofagiventheoreticalapproachaspossible,therebyallowingafine tuningandcrosscheckbetweenthedifferentphenomenologicalconsequencesofagiventheory. We will consider the following classes of conventional hypothesis that could potentially cause observableeffectssimilartothePA,anddiscusstheminthecontextofSAGAS: • C1: Aninsufficientlymodelednongravitationalacceleration • C2: AnadditionalNewtonianpotential( e.g. Kuiperbeltetc…) • C3:AneffectontheDopplerlinkthataffectstheDopplerobservable Dν(asonPioneer)butnotthe frequency comparison observable y (e.g. afrequencyshiftinthesignalsonthetrajectory or in the DSN antennae,thatisidenticalfortheupanddownlink,thuscancelsinthedifferenceusedtomeasurethe y observable). • C4: AneffectontheDopplerlinkthataffectstheradiosignalsofPioneerbutnottheSAGASoptical link( e.g. unaccounted1/ f2dispersionalongthetrajectory). Thegeneralmetricframeworkof[19]canbewritteninlinearisedformandtofirstapproximation: 2w 2w g = −1 + + 2δΦ ; g = 1 + + 2δΦ + 2δΦ (26) 00 c 2 N rr c 2 N P where δΦNand δΦParefunctionsdependingon rthatneedtobemeasuredbyexperiment.Inthisframework thePAcanbeaccommodatedintwo“extreme”casescorrespondingtosetting δΦP=0or δΦN=0.Ofcourse anyintermediatecombinationofthetwopotentialscanalsobeused,butherewewillrestrictourattentionto thetwoextremecases.ThenthePAconstraintimplies δΦ = −1 δΦ = N rl ; P 0 “firstsector” (27) or c2 r 2 δΦ = ;0 δΦ = − “secondsector” (28) N P 3GM l where lisacharacteristiclengthdeterminedbythevalueoftheobservedPAtobe l≈10 26 m.Notethatthe potentialsneedtotaketheformsdescribedby(27)and(28)onlyatdistanceswherethePAwasobserved (20to70AU).Thisthenleadstothetwophysicshypothesesthatcouldcausepotentiallyobservableeffects ofthePAtypeonSAGAS: • P1: Thepurefirstsectorof[19],equation(27) • P2: Thepuresecondsectorof[19],equation(28) ToillustratetheversatilityofSAGAS,weestimatethedifferencesbetweenthevaluesofSAGAS observablesunderthedifferenthypothesesononehand,andwhenusingthebestfitorbitalmodelfrom known physics, fitted to the Doppler observable (as done for Pioneer) on the other. The difference is estimatedforastretchofdatacoveringoneyearwhentheS/Cisat30AUwithavelocityof ≈13.2km/s. Tab.22showstheresultingdifferences.

8 2 Hypothesis aNG /m.s y Dννν Comments C1 8.7x10 10 4x10 15 2x10 10 S/Ccloserandatlower vthanexpected C2 5x10 14 2x10 10 Effecton ymainlyduetotheadditional grav.effect C3 2x10 10 C4 NoeffectonSAGAS 14 10 P1 5x10 2x10 Effecton ymainlydueto δΦNat 30AU 14 10 2 P2 9x10 2x10 Effecton ymainlydueto δΦP( v/c) at30 AU Tab. 2-2: Anomalous effects on SAGAS observables under different hypothesis giving rise to PA type observations(seetextfordetails). TheresultsshowninTab.22areonlyroughestimates.Amoredetailedanalysis,overthecompletemission usingsimulateddataneedstobecarriedoutduringtheassessmentphasetofullyinvestigatethepossibilities offeredbySAGAS.Nonetheless,Tab.22allowstwomainconclusions: 1. Withoneyearofintegration,allSAGASobservablesallowameasurementofanyeffectofthesize of the PA with a relative uncertainty of better than 1% (taking into account the noise and bias uncertaintiesofTab.21). 2. The complementary observables available on SAGAS allow good discrimination between the different hypotheses, thereby not only measuring a putative effect, but also allowing a clean identificationofitsorigin. In summary, SAGAS offers the possibility to constrainasignificantnumberoftheoreticalapproachesto scale dependent modifications of GR. Given the complementary observables available on SAGAS the obtainedmeasurementswillprovidearichtestinggroundforsuchtheories,withthepotentialformajor discoveriesthatmaywellleadtoarevolutionofrelativityandphysicsasawhole.Inthelightofpresent observationalevidenceatverylargescales(galaxies,cosmology),andofinterrogationsastothenatureof darkmatteranddarkenergy,experimentaldataatintermediatescalesismuchneededandSAGASiswell equipped to provide such information with uncertainties corresponding to thebest of presently available technology. 2.5. Exploring Outer Solar System Masses TheexceptionalsensitivityandversatilityofSAGASinthemeasurementofgravitycanbeusedtostudythe sources of gravitational fields in the outer Solar System, and in particular the class of Trans Neptunian Objects(TNOs),ofwhichthosesituatedintheKuiperbelthavebeenthesubjectofintenseinterestandstudy overthelastyears[20].ObservationofKuiperbeltobjects(KBOs)fromtheEarthisdifficultduetotheir relatively small size and large distance, and estimates of their masses and distribution are accordingly inaccurate.Nonetheless,sufficientinformationisavailabletobeabletoconfrontittomodelsofformationof the Solar System, revealing some inconsistencies [20]. SAGAS will significantly contribute to the advancementoftheknowledgeonKBOs,therebyenlargingourknowledgeontheSolarSystemandonthe processesinvolvedinitsformation. The mass deficit problem in the Kuiper Belt : TheKuiperbeltistheremnantofthecircumsolardiskwherethegiantplanetsoftheSolarSystemformed 4.6billionyearsago.Since1992,morethan1000Kuiperbeltobjects(KBOs)havebeendetected,mostly outsideNeptune’sorbit.TheKBOsorbitalelementsrevealedacomplexstructure.Thisstructureisexplained byperturbationsbytheplanets,andinparticularbyresonanceswithNeptune.Thereisalargeuncertaintyin the disk mass due to conversion from absolute magnitude to sizes, assumptions about bulk density, ambiguitiesinthesizedistributionandstronglimitationonthedirectdetectionofsmallKBOs.Becauseof thesteepsizedistribution,alargeamountofmasscanbeinundetectablesmallKBOs.Estimatesfromthe discoveredobjectsrangefrom0.01to0.1Earthmasses,whereasinsituformationoftheobservedKBOs would require 10 to 30 Earth masses of solid material in a dynamically cold disk. There are several hypothesestoexplainthisdifference,adestructionofthedistantplanetesimaldiskoratruncationofthe originalgasdisk;thesemodelswouldleadtolowdiskmass.Othersmodelsinvolvemigrationofthegiant planets: the outwards migration of Neptune captures KBOs in migrating meanmotion resonances. This model would not perturb the outer disk, dynamically cold and undetectable by direct observations. In summary,largeuncertaintiesonthetotalmassoftheKuiperbelt,onitsmassdistributionandonmassesof 9 individual KBOs persist, and precise measurements of those quantities would significantly contribute to answering some of the questions related to these recently discovered Solar System objects and to the mechanismsofplanetformation.

2.5.1. Measuring the Kuiper Belt Mass Distribution ThemeasurementsensitivityofadedicatedprobelikeSAGASisofgreatinterestfordiscriminatingbetween differentmodelsforthespatialdistributionoftheKuiperBelt.Themostdiscussedmodelsinliteratureare (see[21]fordetailsandreferences):

• Tworingmodels,whichconsistsoftwothinringslyingontheeclipticwithradius R1=39.4AU (resonance3:2)and R2=47.8AU(resonance2:1). • Theuniformdiscmodel,whichconsistsofathindisclyingontheecliptic,withindistances RMin = 30AUand RMax =55AU. • Nonuniformdisc,athindiscwith RMin =30AUandRMax =100AUandamassfunctiongivenby 2 2 f(r)=(rRMin ) /AU exp[0.2( rRMin )/AU]. • Thetoroidalmassdistributionmodel,wheremassisdistributedinatoroidcenteredontheecliptic withcentralradius Rc=42.5AUandthickness Rt=12.5AU. Onecanplottheaccelerationprofilesforthedifferentmodels[21]or,equivalently,therelativefrequency 2 shiftduetothegravitationalpotential δy= wKB (r)/c ,asafunctionofheliocentricdistanceoftheS/C,as showninFig.21[21].

Fig. 2-1: Acceleration(left)andfrequencyshift(right)asafunctionofheliocentricdistancefromdifferent Kuiperbeltmassdistributions(seetext),withatotalmassof MKP =0.3 ME[21].Theredlinesindicatethe uncertaintiesofSAGAS. Inspectionshowsthat,apartfromtheweakerdetectabilityofthenonuniformdiskmassdistribution, theremainingmodelscanbeessentiallydetectedfromdistancesbeyond15AU,andwelldiscriminatedby thefrequencydifferenceobservableataround40AU,ietowardstheendofthenominalmission. 12 2 The5x10 m/s uncertaintyoftheaccelerometeron aNG doesnotallowobservationoftheKuiper beltgravityonthemotionoftheS/C.However,acompleteanalysiswouldinvolvemodellingoftheS/C trajectoryandfittingtheavailabledatatothatmodel.CalculatingsuchmodelsfordifferentKuiperbeltmass distributionsandfittingthemtothetotalbodyof measurements ( aNG , y, Dν)maywellallowevenbetter discriminationbetweenthedifferentdistributionsthansuggestedbyFig.21whenusingsolelythefrequency observable y. Acomplete“scan”overalldistancesavailableduringthemissionnotonlyallowsthedetermination oftheshapeofthecurvesshownonFig.21andhencethemassdistribution,butalsotheamplitude i.e. the totalmass MKP .Theaccuracyofthatwillobviouslydependonthedistribution.Forexample,inthe“two rings” distribution SAGAS will determine MKPwithanuncertaintyofatleast10% i.e. about 0.03 Earth masses.Inamoredetailedanalysisonewouldfitallmeasurementsduringthemissiontothecandidatecurve thereby likely decreasing the overall uncertainty by at most (depending on correlations of individual measurements) √NwhereNisthenumberofmeasurements.Giventhattheclocknoiseintegratesto10 17 in about10daysandforthe ≈14yearstravelfrom15AUtotheendoftheextendedmission(53AU),thisis anotherpotentialfactor22improvement.

10 WenotethatthegravityoftheplanetsyieldspotentiallymuchlargersignalsthantheKuiperbelt gravity,howeverthesedependstronglyondistanceandtheireffectcanbetakenintoaccountwhendesigning thetrajectory(seesect.2.6.). 2.5.2. Study and Discovery of Individual Kuiper Belt Objects AllknownKBOshavebeendiscoveredusingEarthbasedobservationsand/ortheHubblespacetelescope [22]and,asmentionedabove,theweaksignals,conversionfromabsolutemagnitudetosizes,assumptions aboutbulkdensityetc…leadtolargeuncertaintiesontheirmassesandmassdistributions.Asshown,the SAGAS frequency observable yis wellsuited to study thelarge, diffuse,statistical mass distribution of KBOsessentiallyduetoitssensitivitydirectlytothegravitationalpotential(1/ rdependence),ratherthanthe acceleration(1/ r2dependence).ThatlargediffusesignalmasksanysignalfromindividualKBOsrendering measurementsoftheindividualpropertiesdifficult.Thesituationismodifiedwhencloselyapproachingone 12 2 of the objects. Indeed, the crossover between the acceleration sensitivity (given by the 5x10 m/s aNG uncertainty)andthefrequencysensitivity(10 17 uncertaintyonGM/( rc 2))foranindividualobjectissituated atabout1.2AU.Belowthatdistance,theaccelerationmeasurementismoresensitivethanthefrequencyone. ThissuggestsaproceduretostudyindividualobjectsusingtheSAGASobservables:usetheS/Ctrajectory (correctedfor aNG )tostudythegravityfromacloseobjectandsubtractthediffusebackgroundfromallother KBOsusingthefrequencymeasurement.Tab.23belowlistssomeoftheknownKBOsthatarewithinthe reach of SAGAS, and the uncertainty with which their mass can be determined using the SAGAS observableswhenapproachingto0.5AUorto0.2AU. Object Semi major axis / Estimated Mass/ 10 21 δδδM/M @0.5AU δδδM/M @0.2AU AU kg Pluto 39.5 13.05 0.03 0.005 (136108)2003EL 61 43.3 4 0.1 0.02 (136472)2005FY 9 45.8 4 0.1 0.02 Quaoar 43.4 2 0.2 0.03 Ixion 39.7 0.6 0.7 0.1 Tab. 2-3: SomeKBOsandtheuncertaintywithwhichSAGASwillbeabletomeasuretheirmass. GiventhattherearenoparticularconstraintsontheSAGAStrajectoryfortheotherscienceobjectives(apart fromtheoccultationrequiredforthePPNtest),itshouldbepossibletochooseatrajectorythatleadsSAGAS closetoaKBOtostudy(tobeinvestigatedinamoredetailedmissionscenario).Thisisevenmorelikely giventherateofdiscoveryofKBOsoverthelastyears,soitisplausiblethatmanymoreoptionsforKBO flybyswillexistbythetimeSAGASislaunched.Finally,wementionthepossibilityofdiscoveryofoneor severalKBOsbySAGASitselfasitfliesbythem,againamoredetailedstudyisrequiredtodeterminethe optimaltrajectoryinordertomaximisetheprobabilityofdiscovery. Insummary,becauseofitscomplementaryobservables SAGAS offers the unique possibility of exploring the statistical distribution, the total mass as well as individual objects of the Kuiper belt and therebysignificantlyenhanceourknowledgeofthislargelyunknownpartofourSolarSystem. 2.6. Knowledge of Planetary Gravity ThegravitationfromplanetsandotherlargebodiesoftheSolarSystemislikelytocausesystematicshiftsin theSAGASmeasurementswhentheS/Cisclosetothem.Theseshiftscanbecorrectedforusingpresent knowledgeofplanetarygravity.Tab.24showsthecriticaldistance rCfromeachplanetbelowwhichthe correctionsfortheplanetaryeffectcannolongerbecalculatedtotherequiredaccuracyforSAGAS.Inother wordsSAGAScannolongerachieveitsscienceobjectiveswhenatadistancelessthan rCfromtheplanet.In turn,theSAGASobservablesthenprovideinformationonplanetarygravity.ForexampletheJupiterflyby, 11 (closestapproach ≈600000km)willallowameasurementof GM Jup. potentiallyat1.4x10 inrelativevalue whenlimitedbythe5x10 12 m/s 2uncertaintyoftheaccelerometer.However,amoredetailedstudyisneeded todeterminehowwelltheinstrumentsandtheDopplerrangingwilloperateinclosevicinitytoJupiter,sofor thetimebeingweadoptamoreconservativeestimateof≤10 10 forthatmeasurement.Evenatthataccuracy (about100foldimprovementonpresentknowledge)ample information will be collected concerning not only GM butalsohigherordertermsofthepotentialandJupiter’smoons,providingdetailedinformationon theplanetanditsmoons.Incaseofa2 nd flybytoanotherplanet,similarmeasurementscouldbeperformed forthatplanetaswell.Notethatsuchmeasurementsremaincomplementarytotheotherscienceobjectives, asthetimespentbelow rCisgenerallyshortcomparedtothetotalmissionduration(<50daysforJupiter).

11 Planet δδδGM /GM rC / AU Reference for δδδGM /GM Jupiter 2x10 8 0.15 R.A.Jacobson,JUP230orbitsolution,(2003) Saturn 3x10 8 0.1 R.A.Jacobson,AJ 132 ,2520,(2006) Uranus 2x10 6 0.3 Yoder,C.F.,ined.T.J.Ahrens, GlobalEarthPhysics:A Neptune 2x10 6 0.4 HandbookofPhysicalConstants ,AmericanGeophysicalUnion, WashingtonDC,(1995) Tab. 2-4: Presentrelativeuncertaintiesonplanetarygravitationalconstants,andcriticaldistanceforSAGAS (seetext) 2.7. Variation of Fundamental Constants Spatialand/ortemporalvariationsoffundamentalconstantsconstituteanotherviolationofLPIandthusof GR.Overthepastfewyears,therehasbeengreatinterestinthatpossibility(seee.g.[8]forareview), spurred on the one hand by models for unification theories of the fundamental interactions where such variations appear quite naturally, and onthe other hand by recent observational claims of a variation of differentconstantsovercosmologicaltimescales[9,10].Suchvariationscanbesearchedforwithatomic clocks, as the involved transition frequencies depend on combinations of fundamental constants and in particular,fortheopticaltransitionoftheSAGASclock,onthefinestructureconstant α. Moregenerally,suchteststaketwoforms:searchesforadriftintimeoffundamentalconstants,or foravariationoffundamentalconstantswithambientgravitationalfield.Thelattertestsforanonuniversal couplingbetweenambientgravityandnongravitationalinteractions(clearlyexcludedbytheEEP)andis wellmeasuredbySAGAS,becauseofthelargechangeingravitationalpotentialduringthemission. Forexample,changingparametersofthestandardmodelareusuallyassociatedwiththeeffectof massless(strictlyspeaking,verylight)scalarfields.Onecandidate,muchdiscussedintheliterature,isthe dilaton,whichappearsinstringmodels.Otherscalarsnaturallyappearinstringtheoryinspiredcosmological models,inwhichourUniverseisa“brane”floatinginaspaceoflargerdimensions.Suchscalarfieldswould couple to ordinary matter and thus their nonzero value would introduce a variation of fundamental constants,inparticular αofinteresthere.Thenonzerovalueofsuchscalarfieldscouldbeofcosmological origin[12,13],leadingtoaconstantdriftintimeoffundamentalconstants,and/oroflocalorigin,i.e. taking ordinarymatterasitssource[11].Inthelattercaseonewouldobserveavariationoffundamentalconstants withthechangeinlocalgravitationalpotential,whichcanbeparameterizedinthesimpleform[11] δα  GM  = kα δ   . (22) α  rc2  + Thebestpresentlimiton kαisobtainedin[11]fromacomparisonbetweenaHg opticalandCsmicrowave clock,whichhaveasensitivitytothevariationof αof3.2and+2.8respectively.Monitoringtheirrelative frequencyasafunctionofthechangingsolarpotentialontheEarth’ssurface(varyingby δ(GM /( rc 2))≈3.3 10 7 10 duetotheEarth’seccentricity),alimitof kα<6x10 wasobtained. The difference in gravitational potential betweenthe Earthandthe SAGAS satellite atthe end of nominalmissionisabout δ(GM /( rc 2)) ≈9.7x10 9,whichis30timesmorethanthevariationattainableon Earth.TheSr +opticaltransitionusedintheSAGASclockhasasensitivitytothevariationof αof ≈0.43. 17 9 Whencomparedtoagroundclockwith10 uncertainty,thisyieldsalimitof kα<2.4x10 ,afactor250 improvementoverthebestpresentlimit. Note that, even with expected improvement of ground clocks, SAGAS will always keep the advantageofthelargevariationofgravitationalfieldwhichisnotattainableontheground.Ontheother hand,therelativelylowsensitivityoftheSr +transitiontoavariationof α(0.43ascomparedtothe3.2for Hg +forexample)isadisadvantageinthisrespect.UsingoneoftheothercandidateionspeciesforSAGAS (seesect.3.2.)wouldreducethatdisadvantage( e.g. 0.88sensitivityforYb +).

2.8. Upper Limits on Low Frequency Gravitational Waves Dopplerrangingtodeepspacemissionsprovidesthebestupperlimitsavailableatpresentongravitational waves(GW)withfrequenciesoforder c/Lwhere ListheS/Ctogrounddistance i.e. inthe10 3to10 5Hz range[23,25],andevendownto<10 6Hz,albeitwithlowersensitivity[24,25].Thecorrespondinglimits on GW are determined by the noise PSD of the Doppler ranging to the spacecraft for stochastic GW backgrounds [24, 25], filtered by the bandwidth of the observations when looking for GW with known

12 signatures e.g. sinusoidalGWfrombinaries[23,25].Intheformercasebestlimits[25]areabout10 13 /√Hz inGWstrainsensitivityaround0.3mHzand,inthelattercase,about h≤2x10 15 forthemaximumamplitude ofsinusoidalGW,againat0.3mHz.Theselimitsincreaserapidlyatlowerfrequency[25]. InthecaseofSAGAS,usingoptimaldatacombinationallowsastrainsensitivityof ∼10 14 /√Hzfor stochasticsourcesintherangeof10 5to10 3Hz[42],limitedatlowfrequencybytheaccelerometernoise thatcouldpossiblybeimprovedbymodellingofnongravitationalaccelerations.WhensearchingforGW withparticularsignaturesinthe10 5to10 3Hzfrequencyregion,optimalfilteringusingacorrespondingGW templatewillallowreachingstrainsensitivitiesaslowas h≈10 18 withoneyearofdata,orevenlowerif moredataisavailable.Thiscorrespondstothreeordersofmagnitudeimprovementonbestpresentlimits. Inspiteoftheseverylowlimits,itisatpresent considered unlikely that known sources could generate GW ofthat amplitude inthe corresponding frequency region. The stochastic cosmological GW background (with PSD falling off as f 1.5 in most cosmological models)isalready constrained to levels belowthesensitivityofSAGASbyPulsarobservations,albeitinthenHzfrequencyregion.Toobtainuseful informationonthatitwouldbenecessarytoextendthefrequencyrangetolowerfrequencies,downto10 6or 10 7Hz,whichrequiresgoodmodellingoflowfrequencynongravitationalmotionoftheS/C.Potentially more interesting could be nonstochastic sources like, for example, inspiraling and merging Black Hole Binaries(BHB).However,eventhoseareexpectedtoprovidesignalswithamplitudesaround10 19 orless, soaboutafactor10outsidethevisibilityofSAGAS. In summary, SAGAS will improve on best present upper limits on GW in the 10 5 to 10 3 Hz frequencyrangebyaboutfourordersofmagnitude.AlthoughitisnotexpectedatpresentthatGWwith sufficientlylargeamplitudescanbefoundinthatregion,theobtainedresultsmightstillbeusefulasupper boundsforastrophysicalmodelsofknownGWsources,whilstleavingopenthedoorforpotentialsurprises. 2.9. Technology Developement SAGAS technology choices are based on cold atom and laser technology, both particularly adapted for tracking,timingandcommunicationoverlargedistancesandmeasurementofDC(orveryslowlyvarying) effectsbecauseoftheabsolutereferenceprovidedbytheatoms.Themissiontakesadvantagefromimportant heritageoncoldatomtechnologyusedinACES/PHARAOandlaserlinktechnologydesignedforLISA.It will provide an excellent opportunity to develop those technologies for general use in interplanetary missions,includingdevelopmentofthegroundsegment(DSNtelescopesandopticalclocks)thatwillallow such technologies to be used in many other mission configurations for precise timing, navigation and broadbanddatatransferthroughouttheSolarSystem. Ofparticularinterestinthisrespectisthesynergy between the different payload elements. The atoms in the accelerometer provide the absolute frequency reference for the quartz USO necessary for operationoftheopticalclock.Theopticalclock,inturn,providestheultranarrowandaccuratelaser(locked totheatoms)whichmakesoperationofthelinkinminimalconfigurationpossible.Thecompletepayload thus provides an optimalensemble for theimplementation of suchtechnologies in an operational mode, readytobereusedinfuturedeepspace,planetary,orterrestrialmissions. 3. PAYLOAD TheSAGASpayloadiscomposedoftwoinstruments(accelerometerandopticalclock)andtheopticallink whichisusedasascientificinstrument(frequencycomparisonandDopplermeasurements),andalsofor datatransfer.TheparticularfeatureoftheSAGASpayloadisthesynergybetweenthedifferentpayloadparts which significantly simplifies the overall design and reduces cost and technology development: The accelerometeralsoprovidestheabsolutecalibrationwithrespecttotheCsatomsofthequartzUSO,which inturnisusedtogenerateallonboardRFsignalsusedintheopticalclock,thelinkandthetimetaggingof observations. The optical clock and optical link share the same frequency, thereby avoiding use of a femtosecond frequency comb and allowing common use of some of the laser sources, with the clock providingahighlynarrowandstablelaserforthelink.Inshort,thecombinationofonboardinstrumentsis notonlyoptimalandcomplementaryforthescienceobjectives,butalsoclosetoidealforthesimplicityand coherenceofthetechnology.

13 3.1. Cold Atom Accelerometer

3.1.1. Introduction ToreachthescientificobjectivesofSAGAS,accuratemeasurementsofaccelerationsalongthreeorthogonal axesarerequired.Thedesignpayloadanditscharacteristicsarisefromthedevelopmentofthefieldsofcold atomphysicsandatominterferometry[40].Keytechnologiesareidenticaltothosealreadydevelopedwithin the ACES project forthePHARAO payload. Comparedto PHARAO, the SAGAS accelerometer shares identical key technologies and similar payload architecture and subsystems. Concerning issues related to atominterferometry,italsobenefitsfromthedifferentstudiescarriedoutwithintheHYPERproject.Ground developmentsofcoldatominterferometershavealreadyshownperformancescomparabletostateoftheart opticalinterferometers[26].MeasurementofthegravityaccelerationislimitedonEarthtoafewpartsin10 9 byenvironmenteffects:tides,atmosphericpressureandundergroundwaterfluctuations…,whichvanishina spaceenvironment.Theintrinsicaccuracyofcoldatominterferometersmakesthemattractiveforstudiesin fundamental physics [27], e.g. for the determination of the gravitational constant G [28] or for the measurement of the Planck constant h [29] (either by recoil measurement, or via the watt balance experiment)andforapplicationsinthefieldsofgeophysicsandgeodesy. Atominterferometerscanperformmeasurementswithvery high sensitivities, taking advantage of theabsenceofgravityandofaverylowvibrationenvironment,whichallowstosignificantlyincreasethe interrogationtime.Ahighlevelofaccuracycanbereached,usingcoldatoms,thankstoanexcellentcontrol oftheatomictrajectoriesandtheatomlaserinteraction,asisthecaseinatomicclocks.Inaddition, this payloadcanoperateasamicrowaveclocktocontrolthedriftoftheultrastablequartzoscillatorata10 12 levelindependentlyfromtheopticalclock,andtherebyprovideastableandaccurateonboardreference timescale. 3.1.2. Principle of operation and baseline choice Theaccelerometer isbased on the useof cold atoms and Raman transitionsfor the manipulation of the atomicwavepackets.Theatomsarealkalineatoms,whichcanbeeasilycooledusingallsolidstatesemi conductordiodelasers.TheRamantransitionscouplethetwogroundstatesofthealkalineatoms(noted g〉 and e〉)andcanberealizedbythesamelasersasthecooling.ThetwoRamanlasersarepropagatingin oppositedirectionsandtransferamomentum hktodiffractedatoms(correspondingtoavelocityor ftheorder r 2 of1cm.s 1).Thephaseshiftduetoaccelerationisgivenby: ∆ φ = −a.k.T .Thesensitivitydependsonlyon the wave vector k and the square of the time between pulses T. The three axes of acceleration are successivelymeasuredwithinthesamevacuumtubeusingthreeorthogonalpairsofRamanlasers. For each measurement, the sequence (total duration Tc ≈ 3 s) of preparation of the atomic sample, interferometeranddetectionissimilarandfollowsthisorder: • Coolingoftheatomicsample:(duration 790ms ) Loadingoftheatomsinthemolasses(highpowerandlowdetuningofcoolinglasers) Coolingoftheatomsto1 µK temperature in state e〉(reductionofpowerandincreaseofthe detuningofthecoolinglasers) • Preparationoftheinputstate:(duration 10 ms) Increaseofthebiasmagneticfieldtodegeneratethemagneticsublevels

Microwavepulsetotransfertheatomsinthe e,M f=0 〉statetothe g,M f=0 〉state(M f=0states arelesssensitivetomagneticfield)

• Discardingtheremainingatomsinstates e,M f≠0 〉usingapusherlaserbeam

• VelocityselectionRamanpulse:transferoftheatomsto e,M f=0,P=hk/2 〉:pulseofabout50 µs • Discardingoftheremainingatomsinstates g,M f=0 〉 InterferometerbasedonthreeRamanpulses(calledπ/2, π, π/2 ):(duration2s) • Firstpulsetosplittheinitialatomicwavepacketinacoherentsuperpositionoftwopartialwave

packetswithdifferentmomenta: e,M f=0,P=hk/2 〉and g,M f=0,P=+ hk/2 〉 • Secondpulse(afteratime T=1s)toexchangethetwostatesandredirectthetwo partial wave packets • Thirdpulse(afteranotherinterval T)torecombinethemwhentheyoverlap. Detection:determinationofthetransitionprobability(duration 200ms ) • Measurementofthenumberofatomsinstate e〉 • Descardingoftheatomsinstate e〉

14 • Repumpingoftheatomsin g〉to e〉andmeasurementofthenumberinitiallyinstate g〉 3.1.3. Choice of Raman transitions for the interferometer ThebeamsplittersoftheinterferometercanbebasedonRamantransitionoronBraggtransitions.Inthis secondcase,theatomsarediffractedwithtwophotontransitionsbutwithoutchangeofinternalstate.The advantagesofthismethodarelinkedtothefactthatatomicwavepacketsstayinthesameinternalstate, which strongly reduces a number of perturbing effects (laser phase noise, light shift, magnetic field fluctuations,collisionalshift,…).TheproblemisthatitneedsRamantransitionsinanycaseforthevelocity selectionandforthedetectionasitusesthedifferenceofinternalstates(aRamantransitionisthenusedto changetheinternalstateofoneofthetwooutputports).AsmostinterferometersstudiedsofaruseRaman transitions,wekeepthisasthebaselineofthepayload,butfurtherstudieswillbecarriedouttovalidatethis strategy.Inanycase,thetwooptionscanbeinterchangedwithoutanyphysicalchangeinthepayload,butby simplychangingthepulsesequence,whichcanbedonebysoftwareonly. 3.1.3. Choice of the atoms In principle any alkaline atom can be chosen for the atomic source. The intrinsic sensitivity of the interferometer is very similar for all alkaline atoms as it depends only on the wave vector k and the interactiontime Tbutnotonthemassoftheatom.Inpractice,technicaldifferenceshavetobetakeninto accounttooptimizethesensitivityoraccuracy: • OnlyCs,Rb,andKcaneasilybecooledusinglaserdiodes • TRLisbetterforCsthankstodevelopmentsforthespaceprojectPHARAO/ACES • Thetotalvolumeoftheinterferometerdecreasesas m3,where misthemassoftheatomconsidered, foragiveninterrogationtimeas:(i)thetemperatureoftheatomicsampledecreaseswiththemass, therebyreducingthevelocitydispersion,and(ii)themaximalsplittingbetweentheatomicwave packetsdecreaseswiththemass,therebyreducingthephysicallengthoftheatominterferometer. Thereductionofthesizelimitstherequirementonthegradientofgravityinducedbythesatellite • Collisionsbetweencoldatomsgiverisetodifferentialshiftsbetweenthetwopartialwavepackets leadingtoabiasontheaccelerationsignal TheCaesiumatomisthebestchoiceforallpointsexceptforthecollisionalshift,forwhich 87 Rbhasmuch lowershift(twoordersofmagnitude).Thislastpointwillbeaddressedinthenextparagraph. 3.1.4. Choice of molasses as atomic source Differentpossiblesourcesofcoldatomscanbeusedfortheatominterferometer:molasses,magnetooptical trap(MOT),ultracoldsourcesfromevaporativecoolinginamagneticoranopticaltrap(indegeneratestate or not). The choice of an optical molasses has been driven by the simplicity, lower mass and power consumptionbutwillgivereducedperformances. Compared to ultracold sources, the residual temperature (1 µKforCs)gives anextensionofthe atomiccloudofabout1.5cm/s(FWHM),whichlimitsthetotalinterrogationtimetoafewsecondsandso thesensitivityperunitoftime.But,asexplainedbelow,thissensitivityisstillgoodenoughtoachievethe performancerequiredforSAGAS.ComparedtoaMOT,themolassesavoidstheneedofmagneticcoilsfor thetrapping,whichdissipates ≈10W.Themaindisadvantageisthereductionofthenumberofcaptured atoms.Nevertheless,thenumberofusefulatomsattheendofthesequencewillbeoftheorderof3x10 5and isnotalimitingpointoftheexperiment.Anotheradvantageisthedrasticreductionofthecollisionalshift due to cold atom interactions during the interferometer measurement, as the initial size is much bigger (reductionbytwoordersofmagnitude),allowingtheuseofCsatoms.Thecalculationofthisshift,for10 6 atomsat1 µKwithatypicalinitialsizeof15mm(FWHM)andatotalinterrogationtime2 T=2s,givesashift of3x10 13 m.s 2,negligiblecomparedtotheaccuracyneededforSAGAS. Theuseofthe3DMOTortheuseofa2DMOT,toloadthemolasses,canbeconsideredasan optiontoincreasethenumberofcoldatoms(morethanoneorderofmagnitude).Inthetwocases10Ware neededforoptimumloading.Butacompromisecanbefoundconcerningthegradientofmagneticfield:for examplewithatwicesmallercurrent(dissipationoftheorderof2W)thecapturedatomsarestillalmost10 timeshigherthaninmolasses. 3.1.5. Acceleration sensitivity Thesensitivitytoaccelerationpercycleisgivenby1/( kT 2.SNR),whereSNRisthesignaltonoiseratioof themeasurement.Thissensitivityimproveswiththeaveragingtime tas1/√t.Differentsourcesofnoiselimit theSNR:atomshotnoise,phasenoisebetweenRamanlasers,accelerationnoises. 15 Shot noise: Afundamentallimitisgivenbytheatomshotnoiseduetothefinitenumberofatom(N)leading toaquantumprojectionnoiseduringthedetectionprocess.ThemaximumSNRisthenproportionalto√N, whichcorrespondsto500inthepresentcase. Raman frequency reference noise: A technical limit is coming from the residual phase noise between Ramanlasers.Groundstudieshaveshownthatnoisecontributionfromphaselockloopsbetweenlaserscan be sufficiently reduced to remain well below the phase noise due to the imperfections of the reference frequencyat9.2GHz.ByusingthespectralnoisedensityofthePHARAOflightmodelfrequencyreference, we obtain a SNR=200 per shot (3s total) leading to a sensitivity limit of 3x10 10 m.s 2 per shot. As the sensitivityimproveswiththesquarerootofthemeasurementtime,therequiredsensitivity(5x10 12 m.s 2)is obtained after only 3 h per axis, which gives 9h for the three axes. One should mention than specific optimizationofthefrequencyreferenceforatominterferometersshouldfurtherreducethiscontribution.This noisesourceispresentlythelimittothesensitivityoftheaccelerometer. Microvibration from fly wheels: Limitations may alsocome from microvibrations of the S/C caused by unbalanceintheflywheelsusedforpointingstability.Inthecaseofvibrationatfrequencies f>>1/ T,the sensitivity is decreasing as 1/(2 πf)2, giving typically five orders of magnitude reduction for frequencies around100Hz.UsingvibrationamplitudesfromBepiColombomissionstudies(1Natafrequencyof f=66 Hz)withaS/Cmassof1000kg,themodulationoftheaccelerationsignalseenatlowfrequenciesbythe aliasingeffectis2.3x10 8m.s 2intheworstcase( f=(2n+1)/(2 T)).Asthismodulationisperiodicandthekey featureistheaveragingoftheaccelerationduringlongterm,thistermbecomesnegligiblecomparedtophase noiselimitationsforaveragingtimeslongerthan3hours.Itcanbefurtherreducedbychoosingthecycle time TCsuchthatthenoisefrequencyisnotaharmonicof thecycling frequency 1/ TC. Moreover, as the sensitivitytohighfrequencyaccelerationnoisepresentssomezeroatharmonicsof1/ T≈1s(bestcase),afine tuningofinterrogationtimetothewheelfrequencyallowsaverygoodcancellationoftheseresidualterms makingthemnegligible. 3.1.6. Acceleration accuracy ToachievetherequirementforSAGAS,theaccelerometer has tobe accurate at a level of 5x10 12 m.s 2. Comparedtogroundexperiment,theabsenceofgravity,andsoofaveragevelocityoftheatomiccloud allowsreductionofmostofthesystematics.Moreover,someoftheerrorsourcesdecreasewithincreasing interaction time T, as they depend on the interaction with the Raman laser. These considerations make possibletheextrapolationfromgroundperformancestoneedsforSAGAS.Mainsourcesofsystematicerror are: Magnetic field: ThedifferenceofmagneticshiftsofthetwogroundstatesoftheCsatomsgivesingenerala differenceofphaseshiftattheoutputoftheinterferometer.Infact,thesensitivitytoabiasmagneticfieldis zerointhiskindofsymmetricinterferometer,asthetwoatomicwavepacketsspendthesametimeinthetwo internalstates.Moreover,astheaveragevelocityoftheatomicwavepacketiszero,itisalsonotsensitiveto gradientsofmagneticfield,whichisnotthecaseingroundexperiments. One photon light shift from Raman lasers: Tocancelthedifferentiallightshiftbetweenthe two states inducedbytheRamanlasers,theratioofpowerbetweenRamanlasershastobeadjusted(typicalratiois 1.8).Iftheratiosarenotperfectbutequalforthefirstandthelastpulse,thiseffectiscancelledatfirstorder. Onlyresidualeffectsduetotheexpansionoftheatomiccloudduringthesequence,andtothegradientof intensityontheRamanlasersleadtoaphaseshift.Foranaverageintensitychangeof10%betweenthefirst and the last pulse, the ration between Raman powers has to be kept at 0.35% to achieve the required accuracy. Moreover, as it has been shown on ground, this shift can be cancelled to 10 3 by alternative measurementswithoppositedirectionsofdiffraction(± hk)makingthiseffectnegligible. Two photon light shift from Raman lasers: To limit effects from wave front distortion (see paragraph below),wewillusecopropagatingRamanlasersretroreflectedbyamirror.ThepresenceoffourRaman beamsintheinterferometerzoneallowsfortwodiffractionprocessesinoppositedirections,degeneratedby the Doppler effect due to the recoil velocity. The forbidden transition is not very far off resonance and inducesadifferentialshiftbetweenthetwopartialwavepackets,whichdoesnotcancelbythebeamreversal technique.Again,theatomicphaseshiftisonlyaresidualeffectduetotheexpansionoftheatomiccloud betweenthefirstandlastpulse.Iftheaverageintensityseenbytheatomdiffersby10%betweenthefirst and last pulse, the intensities of the Raman lasers has to be controlled to 0.7% to achieve the required accuracy.Themeasurementofthebiasduetothiseffectcanbedoneduringtheinitialmissionphase(when no science measurementsarerequired) by extrapolationtozeropowerbyalternatingmeasurementswith differentRamanpowers,andcorrectingfortheeffectduringtherestofthemission,withadditionalperiodic calibrationsifnecessary.

16 Coriolis effect: ThispointiscriticalforgroundexperimentsduetotherotationoftheEarth,butisnegligible inSAGAS. Laser wave front distortions: Theaccelerationismeasuredwithrespecttothewavefrontsofthelasers, whichhavetobewellcontrolled.Astheatomsinteractwiththesamepartofthelasersforthethreepulses, thiseffectiscancelledatfirstorder.Theresidualeffectisduetotheexpansionoftheatomiccloudbetween thefirstandthelastpulse.Theuseofstateoftheartreflectionmirrors( λ/1000over3cmdiameter)anda calibrationprocedure(extrapolationtozerowithafactor50),bychangingtheinteractiontimeand/orthe temperatureoftheatomicsample,allowskeepingthissourceofbiasunderexpectedaccuracy.Anindepth calibrationcampaigncouldbecarriedoutduringearlymissionphasewithregularlaterchecksasrequired. Thiseffectisthemostcriticalintermsofaccuracyandshouldbeassessedindetailedgroundstudiesatan earlystage. Toachievetherequiredperformancestheaccelerometerneedsawellcontrolenvironment: Requirements on vibration noise: MicrovibrationsfromtheSChavetobekeptsmallto not degrade the performances of the accelerometer,especially at frequenciesthatareharmonicsofthecyclingfrequency 1/ TC.Indeed,asthemeasurementhasdeadtime,thealiasingeffectoffrequenciesclosetotheharmonicsof 1/ T Cappearsaslimitstothesensitivity.Incaseofwhiteaccelerationnoise,thelevelhastobelowerthan 7x10 10 m.s 2.Hz 1/2 .Weexpectthemaincontributiontocomefromvibrationsduetotheflywheelsofthe AOCS,whichwasfoundtobenegligible(seesect.3.1.5.above). Requirement on self gravity: SelfgravityfromtheSCmaybiastheaccelerometer,asforanyaccelerometer. Thisaccelerationhastobeknowntobetterthantheexpectedaccuracy:5x10 12 m.s 2,whichrequiresplacing theaccelerometerattheS/CcentreofmassandauniformdistributionofS/Cmass.Thesepointsneedtobe addressedinthedetailedS/Cdesign(seealsosect.4.2.) 3.1.7. Use as micro-wave clock As all the elements needed torealizea microwave atomic clock at moderate accuracy (10 12 in relative frequency) are present in the payload, one can measure periodically the drift of the reference quartz oscillator,whichisusedtogenerateallradioormicrowavefrequenciesfortheaccelerometer,theoptical clock,theopticallinkandtheonboardtimescale.Theatomicsourceanddetectionsystemarethesameas for the accelerometer and the interrogation may be done by the microwave antenna used for the state preparation.Sensitivityof10 12 pershotandtherequired10 12 accuracycaneasilybeachieved. 3.1.8. Description of the payload Most of the subsystems and components are similar or can be derived from the PHARAO project [30]. Estimations of mass and power budgettake advantage of these similarities.The atomic accelerometeris composedoffoursubsystems(seefig.3.1.1):thevacuumtubewheretheatomsarecooledandinterrogated (essentiallythecapturezonesubsystemofPHARAO),theopticalbenchforcoolingandRamantransitions, thefrequencyreferenceforstatepreparationandRamanreferenceandtheonboardmanagementunitto controlthecompletesequenceandtheacquisition. 92MHz 100MHz 9.1GHz Laser Reference Vacuum 9.192GHz bench 9optical frequencies chamber fibres 100MHz Onboardcontrolunit Fig. 3.1.-1: Atomicaccelerometersubsystems The vacuum tube is the central part of the payload where the atomic sample is prepared and the interferometer takes place. The vacuum has to be kept at 10 8 Pa level. It has to be non magnetic and protectedagainoutsidestray magneticfieldsusingamagneticshield.Itismostlyrealizedintitanium to fulfiltherequirementsonthemagneticfield,supportmechanicalconstraintsduringthelaunch,andbeas lightaspossible.Itiscomposedof: • aCaesiumoventocontroltheCspressurethankstoavalveapertureandatemperaturecontrol • vacuumpumps:getterpumpandionpump(outsidethemagneticshield)

17 • acentralchamberwith6coolingbeams,3Ramanlaserpairsforthe3accelerationmeasurements,2 lightdetectioncollectionsystems • amicrowaveantennaforthestateselectionandforclockmeasurements • atwolayermagneticshieldtocontrolstraymagneticfields • threepairsofcoilsforbiasmagneticfieldstoraisethedegeneracyofmagneticsublevels Themassbudgetis21kg(16kgforthemagneticshield)andapowerbudgetof5W. The optical bench provideslasersbeamsforthecooling,theinterferometer and the detection, with well controlledfrequenciesandpowers(seefig.3.1.2).AscoolingbeamsandRamanbeamsareusedatdifferent timeandhaveveryclosefrequencies,thesamelasersgeneratethem[31].Againkeytechnologiesbenefit fromdevelopmentdoneforthePHARAOproject.Theyarebasedonextendedcavitylasersat852nmusing interferencefiltersfortheselectionofthewavelengthandpiezoelectricactuatorsforthefinetuning.Three extendedcavitylasersareneededatthesametime: • thefirst(ECL1),frequencylocksonaCscellasreferencelaser • thesecond(ECL2)frequencylocksbycomparisonwithECL1andservesasrepumperlaserduring thecoolingandthedetectionandreferenceRamanlaserduringtheinterferometerphase • thethird(ECL3)frequencylocksbycomparisonwith ECL2 for cooling and detection and phase locksbycomparisonwithECL2duringtheRamanphase. Thefrequenciesoftheselattertwolasersarecontrolledbymixingtheopticalbeatsignal(intherangeof8.5 to9.2GHz)withthemicrowavereferenceat9.1GHz,viafrequencytovoltageconverter(FVC)orphase lockloop[31].Thetwolasers(ECL2andECL3)areamplifiedthankstoataperedamplifier.Again,usinga commonamplifierforthetwolasersreducescomplexity.Fouracoustoopticmodulators(AOM)areusedto controlthepowersandtoswitchfromcoolingbeamstoRamanbeams:oneforthecoolingandoneforeach Raman direction.The use of AOM avoids the need of mechanical actuators, which may age faster. The powerconsumptionisquitesmall,asthethreeAOMforRamanpulsesareswitchedoffalmostallthetime and the driven frequency is the same. Six mechanical shutters are neededtoavoid any stray light from coolingbeamsduringRamanphaseandviceversa.Ninepolarizationmaintainingfibresareusedtosendthe sixcoolingbeamsandthethreeRamanbeamstothe vacuum chamber. The same beams (with different frequencies)areusedfortheRamantransitionsandthedetection.Takingintoaccountthedurationofthe mission,tripleredundancyisplannedforeachlaser.Switchingfromonelasertoaspareoneisdonethanks toarotatinghalfwaveplateandapolarizingcube.Themassbudgetis20kgandthepowerbudget25W (includingelectronics). Raman3 Frequencylockloop MS Referencefrequency9.1GHz AOM Frequencylockloop Raman2 Cs MS 6Coolingbeams AOM ECL1 Raman1 MS ECL2 M S MS AOM M ECL3 TA AOM S Frequencylockloop DDS92MHz Phaselockloop Fig. 3.1.-2: Optical bench subsystem (ECL=Extended Cavity Laser, Cs=Cs vapour cell, MS=Mechanical Shutter,TA=TaperedAmplifier,AOM=AcoustoOpticModulator,DDS=DirectDigitalSynthesiser). The frequency reference provides frequencies for the Raman transition, the state selection (and clock function)andAOMdrivers(100MHz)andfrequencylockloopsoflasers.Italsoprovidesreferencesin radiofrequencyrangeforotherpayloads:ionclockandopticallink.Thedesignisidenticaltotheoneof PHARAO,givingthesameperformancesintermsoffrequency stability (below 10 13 from1to10s)and phasenoise[30].Itisbasedonanultrastableoscillator at 5 MHz and a 100 MHz intermediate quartz oscillator(phaselockedtothe5MHz)multipliedto9.1GHz.The9.192GHzsignalforstateselection(and orclockmode)isrealizedthankstoafinalmixingwitharadiofrequencysignalat92MHzprovidedbya directdigitalsynthesis(DDS).The9.1GHzsignalisalsousedasreferenceforthefrequencylockloopsof 18 ECL2and3andforthephaselockloopofECL3.Inthislastcase,theradiofrequencysignalderivedfrom thecomparisonoftheopticalbeatingandthe9.1GHzreferenceisthenusedforphaselockloopofECL3by comparisonwitha92MHzsignalfromtheDDSmentionedpreviously.Forthefrequencyreference,the massbudgetis7kgandthepowerbudgetis12W. The On board Control Unit allowsrealizationofthemeasurementsequence,controlofthefrequencyand powerofthelasers,dataacquisitionandanalysis.OnecanusePHARAOheritageastherequirementsare similar.Themassbudgetis6kgandthepowerbudget26W. Subsytem Mass /kg Power /W Dimensions /mm DCDCconverterincluded Vacuumtube 21 5 400x400x500 Opticalbench+electronics 20 25 500x300x200 Referencefrequencies 7 12 300x300x100 Onboardunitcontrol 6 26 250x250x120 Total 54 68 125litres Table 3.1.-1: Coldatomaccelerometermass,power,volumebudgets 3.1.9. Current heritage and Technology Readiness Level (TRL) DemonstrationsofDCaccelerometerontheverticalaxis(gravimeterat≤10 8m.s 2),limitedbythepresence ofgravityandvibrations,havebeendoneonground,thusvalidatingthemethod.Thetechnologyusedinthe payload is the same as PHARAO in the ACES project: same lasers, similar vacuum chamber, same frequencyreferences.TheengineeringmodelofPHARAOpassedalltests.Wethusestimatethetechnology readinessatlevel6. 3.2. Optical Trapped Ion clock 3.2.1. Clock specifications Theclockcomponentoftheoverallmissionscenarioisbasedontheuseofanonboardopticalfrequency 17 14 1/2 standardwithfrequencystability≤10 for10dayintegrationtimes(ie σy(τ)≤1x10 τ ),whereclock frequencydataisdownlinkedtoEarthbymeansofahighpowerlinklaser.Thisrequiredperformanceisone orderofmagnitudebetterthanthePHARAOclockandrequiresthedevelopmentofanewgenerationof space clocks. Instead of the microwave frequencies used in PHARAO, the SAGAS clock uses optical frequencies.Groundbasedopticalclocksareevolvingatasignificantlyfastrate,withoneortwosingleion clocksalreadydemonstratinginstabilities~4x10 17 at10 4sand2x10 17 accuracyinrealisingtheunperturbed ionfrequency[32].Thereisgoodreasontoexpectsimilarperformanceforarangeofotheropticalclock systems,whichisextendabletobelowthetargetspecificationatlongertimes.Therangeofoptionsavailable tosatisfythesestability/reproducibilityrequirementsisbrieflyoutlinedbelow. 3.2.2. Choices for optical clocks Currently,therearetwodistincthighaccuracyopticalatomicclockarchitectures,onebasedonasinglecold trappedionapproach,andoneoncoldneutralatomsheldwithinanopticallattice.Thesingleionarchitecture presentlyrepresentsahighertechnologyreadinesslevelthanisthecasewithneutralatomlatticeclocks.In additionneutralatomclocksexhibitlargermass,volumeandpowerconsumptionwhencomparedtotheion clockarrangement.Asaresult,onlythesingleionclockisconsideredforthisSAGASproposal. Within this ion clock arena, there are a number of possible ion species and isotopes which have been developedwithstateoftheartcharacteristics.TheseareitemisedinTable3.2.1below.Onexamination,it canbeseenthatquantumlimitedtheoreticalstabilitiesforallspeciessurpassesthestabilityrequirementof 10 17 @10days.Thelimitedamountofexperimentalstabilitydatatolongaveragingtimesinexcessof10 3 s existing (eg for 199 Hg +, 27 Al + and the 171 Yb + quadrupole clock transition at 435 nm), exhibits instability performanceafactor3to5abovethislimit,butstillwithinthe10 17 @10daysspecification.

19 Ion Clock λ Lifetime Natural Theor.stability Recorded Theor.stability Transition nm s linewidth @100s stability @10 6s @100s (~10days) 199 + 2 2 16 16 18 Hg S1/2 D5/2 282 0.09 1.3Hz 1.3x10 3x10 1.3x10 171 + 2 2 16 16 18 Yb S1/2 – D3/2 435 0.05 3.1Hz 2.7x10 9x10 2.7x10 88 + 2 2 16 15 18 Sr S1/2 – D5/2 674 0.4 0.4Hz 1.5x10 1.3x10 1.5x10 40 + 2 2 16 18 Ca S1/2 – D5/2 729 1 0.15Hz 1.0x10 1.0x10 115 + 1 3 16 15 18 In S0– P0 236 0.2 0.8Hz 0.7x10 5x10 0.7x10 171 + 2 2 6 17 18 Yb S1/2 – F7/2 467 2x10 ~nHz 2.8x10 0.3x10 27 + 1 3 17 16 18 Al S0– P0 267 21 8mHz 1.6x10 3x10 0.2x10 Table 3.2.-1:Theoreticalstabilityassumesinterrogationtimesequaltolifetime,exceptfor 171 Yb +octupole 467nmtransitionandthe 27 Al +267nmtransition,where5sinterrogationtimeisassumedinbothcases .

Inrespectofthesequantumlimitedstabilities,theabsenceofthequadrupoleshift,thesmallblack bodyshiftandthesmallmagneticfieldsensitivity, the J=00 clock transitions could be considered better choices for a highspecification clock system with excellent stability and low systematics. However, for continuedlongtermperformancewithinthespacemissionenvironment,thecomplexityoftheparticulartrap technology and the difficulty to generate deep UV wavelengths for cooling or clock transitions are also strong determinants.These UV wavelengthsare normally generated from fundamentalfrequenciesinthe midIR,whichthenrequiretobedoubledanddoubledagain,oftenwiththedoublingcrystalshousedwithin powerenhancementcavitiesinordertogeneratetherequisitelevelofpower.Additionally,theneedforUV optics and UV fibrebased delivery systems are also likely to increase complexity, with such fibre and coatingssufferingenhancedradiationdamagewithinthespaceenvironment. These,andotherconsiderations,precludetheselectionofthe 199 Hg +and 27 Al + clocks.Particularly, the 199 Hg +clockrequiresUVclockandcoolingtransitions,aswellasbeingcryogenicallycooled.The 27 Al + clockhasaUVclocktransition,andrequirestheuseofaquantumlogicalgorithmtoreadouttheclock transition.Additionally,the 115 In +clockrequiresbothUVcoolingandclocktransitions,withquadruplingof 171 +2 2 IRhighpowerdiodeandsolidstatelasersrespectively.The Yb S1/2 – F7/2 467nmclocktransitionisvery weak,andrequirestighttolerancesandspecialalignmentarrangementsforspatialoverlapwiththeion.Asa result,thesesystemsarenotconsideredfeasibleforalongtermspacemission. 3.2.3. Detailed comparison of viable ion clock choices for SAGAS Withtherejectionofthesecomplexionclockspecies,threepossibilitiesremain,withopticalwavelengths fortheclocktransitions,andopticalornearUVforcooling.Table3.2.2comparesthemagnitudesofthe mostsignificantphysicsparametersthatwillcontributetopotentialfrequencyshiftanduncertaintyforthese choices,andTable3.2.3showsacomparisonoflasertechnologyissues. Ion Clock λnm Electricquadrupole BlackbodyStark 2 16 Transition moment(ea 0 )ofthe Shift(10 )atroom excitedstate temperature 171 + 2 2 Yb S1/2 – D3/2 435 2.08(11) 5.8 88 + 2 2 Sr S1/2 – D5/2 674 2.6(3) 6.7 40 + 2 2 Ca S1/2 – D5/2 729 1.83 9.7 Tab. 3.2.-2:Comparisonofsignificantphysicsparameterscontributingtosystematicfrequencyshiftsforthe 3ionclockoptions ExaminationofTable3.2.2showsthereislittledifferenceinmagnitudefortheelectricquadrupole momentoftheupperstate(whichgivesrisetothequadrupoleshift)ortheblackbodyshiftforthe3options. Asaresult,thematurityoflasertechnologyneededtogeneratethevariouscooling,auxiliaryandclock wavelengthsiscomparedtodeterminethefeasibilityofthethreechoices.

20

Ion Clock λ Clocklaser Cooling Coolinglaser Technicalcomplexity nm technology λnm technology 171 Yb + 436 SHGof872nm 369 SHGof738nm Doublingstagesforboth ECDLdiodelaser ECDLdiodelaser clock&cooler 88 Sr + 674 ECDLdiodelaser 422 SHGof844nm Doublingstageforcooler ECDLdiodelaser 40 Ca + 729 ECDLdiodelaser 397 SHGof794nm DoublingstageorUVdiode ECDLdiodeorUV forcooler,difficultclock ECDLdiode wavelength Tab. 3.2.-3:OptionsforSAGASionclockconsideredfeasible;SHGsecondharmonicgeneration,ECDL extendedcavitydiodelaser Thetechnology issues for each option are examined in turn. The 171 Yb + clock requires doubling stagesforbothclockandcooler.Thefundamentalwavelengthsarenotservedwellwithavailabletapered amplifiersatthistime(thoughthiscouldchange),withthecoolingfundamentalwavelengthat738nmbeing aparticularlydifficultregionfromthispointofview.Additionally,thereistherequirementfortheclock laser wavelength (or harmonic) to provide the link laser wavelength with ~ 1 W of power. Again, no significantpowerattheclockwavelengthiscurrentlyavailable. The 88 Sr + clock requires only one doubling stage from 844 nm to 422 nm for laser cooling. SufficientlypowerfultaperedamplifiersexistwithafewhundredmWoutputsuchthatrelativelysimple single pass doubling in periodically poled KTP can provide enough 422 nm power to provide all three cooling/compensation beams. Narrowlinewidth probe lasers at the 674 nm clock transition are readily availablewithextendedcavitydiodelasers.Further,highpower674nmtaperedamplifierlasersarenow availableatthe500mWlevel,providinggoodopportunityforitsusealsoasthelinklaserwavelength. Extendedcavitydiodelasersforprobingthe 40 Ca +ionclocktransitionat729nmareavailable(eg TopticaPhotonicsAG),butitisunclearatthistimetheextentofthelinewidthreductionavailablefromthese commercialdevices,ortheeasewithwhichthebarediodescanbeobtained.Ontheotherhand,highpower taperedamplifiersexistattheclockwavelength,offeringopportunityforthelinklaser.Coolingoftheionat 397nmcanbeachievedbydoubling794nm,andlike 88 Sr +,taperedamplifiersexistsothatsinglepass doublingshouldbepossible. In summary, it can be seen that possibilities exists for all these three options. However, taking togetherthecurrentlyavailablepowerlevelsforbothclockandcooler,theneedforonlyonesinglepass doublingstage,clocklaserlinewidthandtheclockaccuracyalreadyachieved,itisconsideredthatthe 88 Sr + 674 nm clock represents the most feasible ion clock option at this time. It is acknowledged that the technologyunderpinningallthreeoptionshasthecapabilitytoevolveintheneartomediumterm,andthis shouldbeacorecomponentoftechnologyrefinement activity during early stages of the L class mission preparations.

21 3.2.5. 88 Sr + ion clock system

Mumetalshielding 1092nmrepumper laser Fibrefreespace PMT interface Iontrap T 1033nmclearout UHV laser chamber B

422nmcooling 844nm+SHG EC

+f f+ δf vacuum 674nmclocklaser pumps AOM AOM

ToDOLL Magneticfield ultrastable cavity Temperature frequency modulationand span Ionfluorescence AOM Processor

slowloop tothe atomic resonance fast loop Fig 3.3.-1: 88 Sr+ ion clock system architecture: AOM, acoustooptic frequency shifter; PMT, photo multiplier;SHG,secondharmonicgeneration;EC,endcaptrap;T,temperaturesensor;B,magneticfield sensor.Redundantlaserunitsnotshown,norcontrollinesforactiveunitmonitoringandredundantunit activationaftermajorfaultdiagnosis,norstandardmonitoringandcontrollines.

Theionclocksystemdesignisoutlinedinfigure3.3.1.Itcomprisesanumberofsubcomponents, including: • theprimaryphysicspackage,anRFendcaptrapforionisingandconfiningasingle 88 Sr +ionwithinan ultrahigh vacuum chamber pumped by a small ion pump and nonevaporable getter pump. External magneticfieldcoilsin3orthogonalaxesallowthenullingofexternalfields,andsettingofafixedfield. These coils are surrounded by mumetal shielding to minimise external field changes. While three dimensionalsingleiontrapswithelectrodeseparationsintherange0.5mm1.5mmarecurrentlyusedfor frequencymeasurementsandproposedhere,wewillalsoinvestigatethepossibilitytobenefitfromnovel segmentediontraptechnologieswithintegratedoptics. • alaserplatformtoprovideDopplercoolingoftheionto~1mKonthestronglyallowed 88 Sr +iondipole transitionat422nm.Thisisachievedbyfrequencydoublingof~200mWcommercialextendedcavity diodelaserat844nm,bymeansofsecondharmonicgeneration(SHG)inperiodicallypoledKTP. 2 • auxilliarylasersfor(1)repumpingtheionfromthe D3/2 metastablelevelduringthecoolingsequence, 2 and(2)forfastclearoutoftheclocktransitionmetastable D5/2 upperlevel,oncetheclocktransitionhas beendriven.ThesearetemperatureandcurrentstabilisedDFBlasers. 2 2 • the674nmclocklaserprobingthe S1/2 D5/2 quadrupoleclocktransition.Thisisanextendedcavity diodelaserfrequencyFMstabilisedtoaveryhighfinesseultralowexpansion(ULE)cavitymountedona temperaturestabilisedandevacuatedplatform. • a high NA lens imaging and photomultiplier detection system to record the statistics of 422 nm fluorescencequantumjumpsasafunctionof674nmclocklaserfrequency,providingthecoldionlinewidth referencewhichsteerstheULEcavitystabilisedclocklaserlight. • a fibre system to deliver the cooling, auxiliary and clock light from source to trap, making use of achromaticdoubletswherenecessaryatthefibrefreespaceinterfaceforlaunchingintothetrap • a monitoring and control processor driving the clock sequence (coolingprobingdetection). The processor also monitors frequency and amplitude data necessary to determine normal laser and ion operationalconditionsandinitiateresettingandrecoveryalgorithmswherenecessary,andlaserunitfailure. • aredundancylevelof2or3unitsforbothcooling,clockandhighpowerlinklaser,plusaredundancy levelof3unitsfortherepumperandclearoutDFBlasers.Allredundancyunitsforeachwavelengthtobe fibremultiplexedasstandard,allowingredundantunitactivationondeterminationofpriorunitfailuremode.

3.2.6. 88 Sr + ion clock performance and critical issues Theprogressintheaccuracyofsingleionopticalclockshasbeenrapidanditisforeseeablethatwithinthe nextfewyearsthelevelof1partin10 17 willbedemonstratedinseveralgroundbasedsystems,including Sr +.Forsometime,theshiftduetotheinteractionofelectricfieldgradientswiththeDlevelsusedinthe

22 quadrupolereferencetransitionsinHg +,Yb +andSr +wasconsideredasthemostcriticalsystematic.Now,it was established that without active compensation, this shift is generally smaller than 10 15 and that compensationschemescansuppressitbymorethantwoordersofmagnitude.Sincetheseschemesrelyon an averaging over severalZeeman components, thetemporalstabilityofthemagneticfield(staticvalue: about1 µT)becomesacriticalissue.Mumetalshieldingofthetrapvacuumsystemwillbeemployedin ordertolimitdriftsofthemagnitudeofthemagneticfieldtoavaluebelowtennTperhour. Thesecondcriticalissueistheinteractionoftheionwithblackbodyradiationemittedfromthetrap. Thesensitivitycofficientisd(ln f)/d T=3x10 25 T3 /K 4sothatforoperationat300K,d Tshouldbelessthan 2 K. If temperature changes are slow, no active stabilization will be necessary. Characterisation of the thermal environment and measurement of the temperature with thermistors will be sufficient. Another critical point related to temperature issues is the laser pointing alignment which should be kept within typicallytenmicrometers. Reloadingofthetrapwillbenecessaryoveramissionperiodof15years.Aminiaturedispenser, containingafewmgofSrandahotwireasanelectronsourceareneeded.Automaticreloadingofthetrap willinduceaninterruptionofclockoperationforafewminutes.Chargingproblemsofthetrapandvacuum systemwillbeavoidedbyilluminationwithultraviolet LEDs.The discharge procedure willalso be used periodicallytoeliminatechargesfromhighenergyradiation The 88 Sr +ionclocksystematicfrequencydependenciesareshownintable3.2.4,intheformofthe expecteduncertaintybudget.Overalluncertaintyof~10 17 isachievablewithinthespacecraftenvironment, providedexternalmagneticfieldandtemperaturevariationsaresufficientlyloworadequatelycontrolled. Influence Coefficient/ condition Bias Uncertainty Comment

Magnetic field Appliedfield~1T • LinearZeemanshift +5.6Hz/nT( ∆m=0) 0* ~10 17 Zeemanpairaveraging+mu 17 • 2nd OrderZeemanshift 5 µHz/T 2( ∆m=0 ) 6 µHz <<10 metalshielding Electric field • Quadrupoleshift 3Zeemanpairaverage 0** <10 17 See** 17 • LowfreqACStark 3Dmicromotionnulled 0 <10 2 18 • ClocklaserACStark 0.5mHz/Wm 150 µHz <10 30nWin300 µm Temperature (+1K) Assumes+1K, • Blackbodyshift 4mHz/K(roomtemp) 300mHz ~2x10 17 BBcoefficientuncertainty largebutfixed 2nd Order Doppler shift • Resid.thermalmotion T~1mK 0 ~10 18 18 • Residualmicromotion 3Dmicromotionnulled 0 ~10 *ContinuousZeemancomponentpairaveragingon20scycletimeremoves1 st orderZeemaneffect;Residualdue toBfielddriftrateattrapwith1layermumetalshield<0.8nT/minsufficientforaveragingdown,but2layers(~1 nT/hour)betterforcontingency,dependentonexternalfieldvariationencountered. **Magneticfieldstability/directionalityof< 10nT/hourby1or2layermumetalshielding,dependentonexternal fieldvariationencountered. Tab. 3.2.-4:88 Sr +ionclocksystematicfrequencyshiftdependencies 3.2.7. Clock payload requirements Payload requirements are developed by extrapolation from existing groundbased clock arrangements, together with attention to existing laser and optoelectronic hardware and reference to the existing ACES/PHARAO microwave clock payload. This includesaredundancylevelofthreelasersforboththe clocklaserECDLandthehighpower844nmcoolinglaserandsinglepassdoubler.Theuseofavailable DFBlasersforthe1092nmrepumperlaserand1033nmclearoutlaserwillalsoallowaredundancylevelof atleastthreeperwavelength. Typeofoptical power Physics Electronics Physics Electronics Total clock (W) volume volume mass mass mass Ionclock 80 150litres 30litres 50kg 30kg 80kg Tab.3.2.-5:Projectedspaceionclockpower,volumeandmass

23 The physics package volume of 150 litres is considered an upper limit. It will include all laser systems, optoelectronic beam conditioning and fibre launching and delivery to the trap package, beam manipulationontotheion,photomultiplierdetectionoftheionfluorescence,trapvacuumchamberand2ls 1 ionpumpplusnonevaporablegetterpump,3axismagneticfieldcoilsforfieldnullingandquantisationaxis definition, plus mumetal shielding. The clock laser system will include one high finesse supercavity maintainedwithinasmallvacuumhousingandpumpedbyaminiionpump.Thecooling/auxiliarylasers willrequirelowerfinessesmallerreferencecavitiesforcontrolledwavelengthtuningandstabilisation. Not considered in the above are the general requirements for environmental temperature control and radiation shielding. For the former, encapsulation of the science payload within a temperaturecontrolled spacecraftinteriorshouldhelptomaintainfreespaceopticalalignments.Forthelatter,acertainleveloflead shieldingmaybenecessarytotakeaccountofthevaryingradiationenvironmentsencountered. 3.3. Deep space Optical Laser Link (DOLL) WeproposeanoriginalopticallinkconceptforSAGASthattakesfulladvantageoftheparticulartechnology availableonboardandthesynergybetweenpayloadcomponents(narrow,stableandaccuratelaserfromthe clock,accuratemicrowavefromtheaccelerometer)whilstbeingspeciallytailoredtoachievetherequired scienceobjectives.Concerningthetechnology,particularemphasiswaspaidto making maximumuseof existing developments (ACES/PHARAO diode laser technology, LISA telescope technology, SLR/LLR groundstations,).DOLLfeaturesinparticular: continuouswavelaseroperationinbothdirections(twowaysystem). heterodynedetectionschemesonboardandonground. highdatatransferratewithsimultaneoussciencemeasurements. asynchronousoperationallowingoptimalcombinationofonboardandgroundmeasurements. largestraylightrejectionfromheterodynedetectionandduetothepossibilityoflargecontrolledfrequency offsetbetweentheupanddownlinkusingtheaccurateonboardmicrowave. Moregenerally,webelievethatDOLLwillnotonlyfinditsuseinSAGAS,butmoregenerallycontribute significantly toward the development of optical, high accuracy interplanetary navigation and broadband communication. 3.3.1. Principle of operation and estimated performance DOLLisbasedoncontinuoustwowaylasersignalsexchangedbetweenthegroundstationandtheS/C,with independent heterodyne detection of the incoming signal at either end (no transponder scheme). The fundamentalmeasurementisthefrequencydifferencebetweenthelocaloscillatorandtheincomingsignal. ThismeasurementisparticularlyadaptedtoSAGASbecauseoftheavailabilityoftheverynarrowclock laser( ≈10Hzlinewidth)onboardandontheground,stabilizedtotheatomictransitionswithastabilityof 14 1/2 σy(τ)=1x10 τ .Theonboardandgrounddataarecombinedinposttreatmentandanalysedinorderto extractthescienceobservables:Doppler( →velocitydifference),clockfrequencydifference,ranging. This allows asynchronous operation, i.e. combining the measurementstaken at different times in ordertoindependentlyoptimiseeachobservablebymaximumrejectionoferrorsourcesforeachobservable (see[42]fordetails).Forexample,theclockfrequencydifferenceobservableisobtainedbydifferencingthe S/Candgroundmeasurements.Thisrejectsallfrequencyshiftingeffectsthatarecommontotheupand downlink(Doppler,atmosphere,etc…)uptopathasymmetriesbetweentheupanddownlinkwhichneedto becorrectedfor.Ingeneralitispossibletochoosethemeasurementsthatarecombinedinsuchawayasto optimise that cancellation. For example, differencing the S/C measurement taken at t0 and the ground measurementtakenat t0D/c(with DtheS/Ctogrounddistance) i.e. combiningthesignalthatarrivedatthe Earth at t0 with the one that left the Earth at the same instant, rejects most of the atmosphere effects. Similarly, the Doppler observable is obtained by adding the up and down link, so summing, the S/C measurementtakenat t0andthegroundmeasurementtakenat t0+D/c,i.e. combiningthesignalthatarrivedat theS/Cat t0withtheonethatlefttheS/CatthesameinstantrejectstheS/Cclockinstability.Thelevelto which such cancellation is effective, is determined by how accurately one can time S/C and ground measurements,estimatedforSAGAStobeabout10ns(seesection3.3.5.). Toavoidcomplexityonboardthespacecraft,thesignals emitted on the ground will be offset in frequencytolargelycompensatefortheDopplerfrequencyshift(upto70GHz),sothefrequencyreceivedat theS/Cisclosetothenominalclockfrequency,allowingdirectheterodynebeatwiththelocalclocklaser.

24 Additionally,theupanddownsignalswillbelinearlypolarizedwithorthogonalpolarizations(forstraylight rejection),whichimpliesvariablepolarizationdirectionforthegroundstationtelescope. Table31belowsummarizestheperformanceofDOLL for the main observables, when using optimalrejectionofnoisesourcesinasynchronousoperation(seealsosection3.3.4). Observable Performance Remarks Noise Bias 28 23 2 1 17 Doppler( Dν) S(f)=(1x10 +4.3x10 f )Hz <10 ClockandTropospherelimited Frequencydiff.( y) S(f)<10 28 Hz 1 <<10 17 Wellbelowclockperformance Ranging( r) 4km 2Hz 1 <3m FSKorPSKmodulationat1kHz Datatransfer ≈3000bps Satelliteat30AU Tab. 3-1:SummaryofDOLLperformance.Ranginganddatatransfervaluesare@30AU. Table 31 does not take into account accelerometer noise. If one wants to extract the purely gravitational trajectory of the S/C from the Doppler data the noise on the nongravitational acceleration measuredbytheaccelerometerneedstobeadded(cf.Tab.21).Similarly,thefrequencydifferenceneedsto be corrected for Doppler and relativistic effects again adding accelerometer noise or troposphere noise dependingonhowtheuplinkanddownlinkmeasurementsarecombined(cf.Tab.21). NotethatfororbitdeterminationtheDopplerandrangingobservablesare,inprinciple,redundant. ForSAGASthepreciseorbitisobtainedfromtheDoppler,whilsttheranging(ordersofmagnitudeless precise)servesonlytoimproveinitialconditionsfortheintegration. 3.3.2. Space segment ThemainsubsystemsoftheDOLLspacesegmentarethetelescopeandtheopticalbenchprovidingthelaser source. ThepresentbaselineistouseatelescopedesignsimilartothatoftheLISAmission,adaptedforthe SAGASwavelength(674nm)andincludingahighdefinitionCCDcamera(similartoCOROTorLISA). TheLISAtelescopeconsistsofaCassegraintelescopecharacterizedbyanaperturediameterof400mm,a systemfocallengthof4800mm,andacomparativelylargemagnificationof80.MainreflectorM1and subreflectorM2areseparatedby450mmwiththehelpofaCFRPtubespacer.Thetelescopeocularincludes apupilof5mmdiameterinwhicha“PointAheadAngleMechanism”canbeplacedforthecorrectionofthe outofplanepointaheadangle.InthepresentSAGASbaselinedesign,boththetransmittedandthereceived signalsareprocessedwiththesametelescope.Atwotelescopesystem(oneforemission,oneforreception) maybeenvisagedasanalternativeifstraylightfromtheemittedsignalturnsouttobealimitingproblemfor the detection of the received signal, but present estimations indicate that this will not be necessary (see section3.3.4.2.). Theopticalbenchhousesahighpowerlaser(LH)forthelink,alowpowerlaser(LL)fortheclock, andanultrastablecavityforshorttermlaserstability ( ≈10Hzlinewidth),thelongtermstabilitybeing achievedbylockingtotheatomsintheopticalclock(seefig.31).Atpresentsemiconductorlasersystems (ECDL) with tapered amplifiers that deliver close to the required power at 674 nm are commercially availablebutnotspacequalified(seesect.6.2.).BasedonexperiencewiththeACES/PHARAOlasersystem weexpectthatsuchsystemscanbefurtherdevelopedandspacequalifiedwithrelativelymodestindustrial investment.Severalservoloopsareusedforlockingofthelaserstoeachother,tothecavity,andtothe atoms. Two acoustooptic modulators (AOM) serve for the modulation of LL to interrogate the atomic resonance.ThecorrespondingerrorsignalissenttothethirdAOMtherebylockingLLtotheatoms.Afast phaselockedloop(PLL)isusedtolockLHtoLSandtoaddanoffsetfrequency δfbetweenthetwo(to mitigate stray light, see section 3.3.4.2.) and for the frequency modulation of the FSK (or PSK) data transmission (section 3.3.5.). Another PLL serves for the heterodyne detection of the beat between the incomingsignalandLL,whichprovidesthesciencedata(frequencydifference)andgivesaccesstothedata modulated onto the frequency of the incoming signal. The incoming and outgoing channels have linear orthogonalpolarizationstominimiseinterference(straylight),hencetheuseofthepolarizingbeamsplitter (PBS) separating the two. The RF signalsfortheAOMs, the PLL loops, and for data time tagging are deliveredbyanonboardquartzUSO( e.g. theonedevelopedfortheACESproject),lockedtothehyperfine transitionoftheatomsusedintheaccelerometer(seesect.3.1.)toavoidlongtermdriftswithanuncertainty of<10 12 inrelativefrequency.

25 Ultra stable cavity Fast loop

Slow loop AOM

≈ 100 mW LL AOM AOM Clock

< 1 mW ≈ 100 mW modulation

+f -f ± δf ≈ LH 1W Interf. filter PBS ∼

Fast loop φ φ lock lock

Telescope ∼

FSK data encoding to/from ground Data decoding δ + f to avoid interference + frequency with up-link measurement Fig. 3-1: PrincipleofthelasersetupforDOLL 3.3.3. Ground segment ThegroundsegmentforDOLLwillconsistofseveral(min.3toensurepermanentcoverage)lasertracking stations.Presentsatelliteandlunarlaserrangingstationsarewelladaptedforthispurpose,butwillrequire upgradesconcerningtheopticalsetup(wavelength,polarizationcontrol,pointingaccuracy,adaptiveoptics) andneedtobeequippedwithhighperformanceopticalclocks.PresentlyseveralLLRstationsareequipped with 1.5 m diameter telescopes (OCA, Matera,…) which are sufficient for DOLL. However, the phase coherentdetectionrequiresadaptiveopticsmethodstoensurephasecoherenceoverthecompleteaperture. Additionallythe3.5mtelescopeoftheUSApachePointLLRstationcouldprovideavaluablehighpower additiontothegroundsegment.Theminimalgroundstationlasersetup(theoneconsideredinthefollowing sections)wouldbeasymmetricreplicaofthespacesetup,butincludingavariablecontroloftheorientation ofthelinearpolarizationinordertoensureorthogonalitybetweentheincomingandoutgoingsignals on boardtheS/Candontheground,andprovisiontoaccommodatethelargeDopplershift(upto70GHz) betweenthenominalclockwavelength(674nm)andtheemitted/receivedsignal.Upgradedscenarioscould usehigheremissionpower(>10W,seesect.6.2.),whichinturnwouldmitigatedetection,straylight(on S/C)andpointingissues(onground).ThegroundstationopticalclockscouldbeeitherSr +ionclocksasfor the S/C but also any other optical clock equipped with a fs frequency comb allowing the frequency comparisonwiththe674nmnominalwavelength. 3.3.4. Error sources ThemainerrorsourcesaffectingtheperformanceofDOLLarerelatedtopowerandpointingissues,stray lightandeffectsoftheEarth’satmosphere.Theyarediscussedinthefollowingsubsectionsbearinginmind theoverallperformancediscussedinsection3.3.1. 3.3.4.1. Power and shot noise: ThepoweratthecentreofthereceivedGaussianlaserbeamisgiven by 2A 2A A P = rec P ≈ rec emit P (31) rec π w(r)2 emit λ2r2 emit where Aand Parethetelescopeareaandpoweratemissionandreception, w(r)isthebeamwaistatdistance rand λ thewavelength.ForSAGASatadistanceof30AUwith1Wemittedpoweranda1.5mground 14 telescopethiscorrespondsto Prec =4.9x10 W=166000photons/s.Atmosphericattenuationforasiteat 2000maltitudeleadstoalossoftypically30%(between4%and40%dependingonelevationandweather conditions).PointingerrorscontributeexponentiallyduetotheGaussianprofileofthebeam.Fora1.5x10 6 rad(=0.3”)S/Cpointingerrorthiscorrespondstoanotherlossofabout71%.Finally,weallowforafurther 35%lossintheinstrument,leavingatotalpoweratreceptionof6.5x10 15 W=22000photons/s i.e. aS/N powerof43dB(ina1Hzband)forthequantumnoiselimitedheterodynemeasurement.Thecorresponding 34 2 photonshotnoisePSDonthefrequencymeasurementisonlyabout Sy(f)=1.5x10 f /Hz,manyordersof magnitudebelowtheclocknoise(10 28 /Hz)atthelow(<10 2Hz)frequenciesofinteresttoSAGAS. 3.3.4.2. Stray light: Stray light issues can be separated into coherent and incoherent stray light. Incoherentstraylightcanbeovercomebyusinganarrowbandfilterandbysupplyingsufficientpowerfrom thelocallasertorecoveranearlyquantumlimitedcoherentphotondetection.Coherentlight(within the bandwidthoftheheterodynedetectionPLL)needstobereducedbelowthesignalpowerlevel.

26 DirectradiationfromtheSunat1AUhasatypicalpowerspectraldensityof ≈0.07Wm 2cmaround thewavelengthofinterest.Narrowbandpassinterferencefilters( e.g. theonesusedforACES/PHARAO) show a bandwidth of about 0.3 nm whilst allowing 90% inband transmission. At the first occultation (expectedatabout2AU)thisleavesabout0.1Wm 2inbandstraylightwhenpointingdirectlytowardthe Sun,andmuchlessforsubsequentoccultationsorwhenpointingawayfromtheSun(mostofthetime).For theS/Cthiscorrespondstoabout14mWpowerenteringthetelescope,ofwhichonlytheratio“photodiode area”to“Sunarea”onthefocalplaneisdetected.Thisisinanycasesufficientlysmalltobeovercome bythepowerfromthelocaloscillator.Anothersourceofincoherentstraylightcouldbethespontaneous emissionfromthesemiconductoramplifierofthehigh power (1W) laser for emission. Measurements at SYRTEonsuchsystemsattheRbwavelength(780nm)showaspectraldensityofsuchradiationofabout 10 12 W/Hz. Taking into account the 0.3 nm filter, and estimating that 10 10 to 10 7 of that radiation is scatteredbytheopticsandthetelescope(seebelow)thisleaves<10 8Wincidentonthedetector,whichis totallynegligiblewithrespecttoLLpower. CoherentstraylightpassingthefilteroftheheterodynedetectionPLL( ≈1kHz)ispotentiallymore difficulttodealwith,asitneedstobereducedtobelowthepoweroftheincomingsignal(6x10 15 W@30 AU).Concerningthelightfromtheoutgoingbeamscatteredfromtheoptics(PBSmainly)andthetelescope themainreductionoftheeffectofcoherentstraylightisachievedbyoffsettingthehighpowerlaser(LH) fromtheincomingsignalfrequency(clockfrequency)by δf=1to10GHzusingaPLLdrivenbythelocal RFsignal.Thisispossiblebecauseofthe10 12 accuracyofthelocalmicrowavelockedtotheatomsinthe accelerometer,whichmeansthat δfcanbegeneratedwithmHzaccuracy,sufficientforthe10 17 uncertainty on the optical frequencymeasurement.Typically, an ECDL is characterised by a (white) noise spectrum corresponding(initswings)toaLorentzianpeakofabout10kHzwidth.ThenthePSDat1GHzfromthe linecentre( i.e. atthefrequencyofLLandtheincominglaser)isabout10 11 ofthepeakPSD,corresponding to10 8Winthe1kHzPLLfilter.Theremainingreductionbyanother10 7needstobeachievedbyoptimised designofthetelescopeandopticsandbymakinguseoftheorthogonalpolarizations.Aroughstudyby EADSSODERNestimatesthedetectedstraylightfromtheoutgoinglaserinthe10 7to10 9range.Sowe are confident that the required 10 15 W limit on coherent scattered light from the outgoing laser can be achieved.Sunlightwithinthe1kHzfilterisfurtherreducedbytheratioof“laserspotsize”to“Sunspot size” on the focal plane, which leaves about 10 17 W. Similarly spontaneous emission from the semiconductoramplifierscontributes10 9insidethe1kHzPLLbandwidthofwhich10 7to10 9arescattered bythetelescopeandoptics.Coherentstraylightisthereforemorethananorderofmagnitudebelowthe signalpower. 3.3.4.3. Earth atmosphere: ThemainlimitingeffectontheperformanceofDOLLwillbefluctuationsdueto theEarth’satmosphere.Athighfrequency(aroundthe1kHzofthedetectionPLL)thesecanleadtofrequent cycleslipsand/orlossoflock.Atlowfrequencyatmosphericeffectsleadtophasefluctuationsthatcanaffect directlytheobservablesandcorrespondingsciencemeasurements. Highfrequencyfluctuationsareduetoatmosphericturbulenceandhavebeenmeasuredusingoptical stellarinterferometry[33].Theresultsarereportedintermsofthepathdelaystructurefunctiondefinedas D(τ) ≡〈[x(t+ τ)x(t)] 2〉with“ 〈.〉”denotinganensembleaverage,and xtheatmosphericopticalpathdelay.For τbetween10msandafewsecondstheobserved D(τ)followsapowerlawwithaslopearound1.5.At10 mstypicalvaluesare D(10 ms) ≈ 5x10 14 m 2[33].Thiscorrespondstofluctuationswithanamplitude of aboutathirdofthe674nmwavelengthofDOLLat10msandtoabout6%ofthewavelengthat1ms.Thus cycleslipsatthe1kHzbandwidthofDOLLareunlikely,butcannotbefullyexcluded,inparticularduring periodsoflargeturbulence,windvelocitiesetc…Furthermore,intensityfluctuations,althoughmitigatedby theadaptiveopticsandappropriateelectronics(logarithmicamplifiers)canfurtherincreasethelikelihoodof loosinglock. Atlongerintegrationtimesfluctuationsaredominatedbywhitephasenoiseduetoturbulence,and slowly varying effects due to the evolution of global parameters (temperature, pressure, humidity). The structurefunction D(τ)undergoesatransitiontowhitenoise( D(τ) ≈const.)aboveacharacteristicscale.In theresultsof[33]thistransitionoccursbetweenτ=10sand τ=100swith D(τ)reachingaplateauatabout 4x10 10 m 2. Witha datarate of 0.01 Hz for DOLL this corresponds to a variance of 2x10 10 m 2 of the fluctuationsofDOLLdata.Additionally,weallowforslowvariations,roughlylinearovereachindividual6 h continuous observation, with an amplitude of 1 mm, corresponding to typical modelling errors of the tropospheric delay from global parameters as used in SLR [34], and a roughly linear evolution ofthose parameters over6 h.This correspondstoa whitefrequency noise with a variance of about 2.4x10 32 in relativefrequencyat6haveraging.

27 Tomodelthecorrespondingoverallatmosphericnoise,wegeneratedata(100spoints)withawhite phasenoisecorrespondingto210 10 m 2delayfluctuations,formthederivative,andthenadd6hconstants randomlydistributedwith2.4x10 32 varianceinrelativefrequency.TheresultingPSDinrelativefrequency 23 2 4 corresponds to Sy(f) ≈ 1.8x10 f /Hz for f > 3x10 Hz corresponding to the white phase noise from 27 5 turbulence.Itthenincreaseswithdecreasingfrequencyreachingaplateauat Sy(f) ≈1x10 /Hzfor f<3x10 Hzcorrespondingtotheaddedwhitefrequencynoise. Finally,oneshouldbearinmindthatforthedeterminationofthefrequencydifferencebetweenthe S/Candgroundclocksanyperturbationthatiscommontotheupanddownlinkcancelstoalargeextent, whentheasynchronousdataarecombinedinanoptimalway(see[43]fordetails). 3.3.5. Communication and Ranging Thecapacityofacoherentopticalchannelisgivenby: Ccoh =(log 2e)× B×ln(1+ R/B),where Ristherateof detectedsignalphotonsand Bisthesignalbandwidth.Forexample,with R=22000s 1and B=500Hz,one obtains Ccoh = 2700 bps. Data is encoded onto the laser signals of the up and down link using FSK (frequencyshiftkeying),bymodulatingthelaserfrequencyviathereferencemicrowavesignalfrequencyin thePLLofLHorPSK(phaseshiftkeying)bymodulatingthephaseofthereferencemicrowavesignal.Data isdecodedbyusingatrackingoscillatorphaselockedontheincomingsignal.Thisallowsachievingadata transferrateofseveral10 3bpswitherrorbitratesof10 4orless,whichcanbefurtherreducedbystandard coding schemes. The detection PLL will track the FSK or PSK modulations, thereby achieving the informationtransferwhilesimultaneouslyacquiringthesciencedata(frequencymeasurementoftheoptical carrier).WhenusingFSKorPSKtheoffsetfrequencyisprovidedbythelocalmicrowaveandknownat<< mHzuncertainty,thusthissetupallowsfrequencytransferat10 17 ontheopticalfrequency.However,this requiresthatcycleslipsduetothemodulationandnoiseare≤10 3/s.ForaPLLtheaveragetime τbetween 2 cycleslipscanbeestimatedfromthevariance σΦ ofthephaseerrorofthephaselockedloop i.e.τ =π/(4 Bw ) 2 exp(2/ σΦ ),where Bw isthebandwidthofthephaselockedloop.Forinstance,a0.2rdequiprobablebinary phasemodulationat500Hz,22000detectedphotons/s,aloopbandwidthof1kHzleadsto τ ~1000s.In summary we expect to be ableto transfer several 103 bps without compromising science measurements. Moregenerally,themodulationbandwidthcanbemodifiedduringthemission(accountingforthechanging signal photon rate with distance) for optimal compromise between data transfer capacity and science measurement(cycleslips). TheranginguncertaintyisdeterminedbythecapabilityoftimingtheFSKorPSKmodulations( i.e. measuring the arrival time on the local clock of a particular sequence of code). It is a function of the bandwidthofthephaselockedloop,andthesignaltonoiseratiooverthetimeofintegration τ,decreasingas 1/2 −1/2 τ . For a 1 kHz bandwidth the timing instability σx(τ) = 6 τ µs with τ in s. In the long term the uncertaintywillbelimitedbysystematiceffects e.g. instrumentaldelayuncertainties,residualatmospheric effects,etc…whichcanbecontrolledtoatleastthe10nslevel. The FSK or PSK timing also characterises the instability with which the onboard USO can be synchronizedtogroundtimescales,andthereforetheuncertaintywithwhichonboardmeasurementscanbe dated with respect to a ground timescale. Note that using the up and down link difference for synchronization(twowayconfiguration)contributionsfromorbiterrorsarelargelyrejectedandplaynorole attheestimatedsynchronizationuncertainties.LongtermlimitsinthiscaseincludealsotheUSOinstability overdeadtimebetweenobservations,about100ns(allowingfor1daydeadtimewith10 12 uncertaintyof theUSOlockedtotheCsatomsintheaccelerometer). Insummary,weestimatethatusingtheFSKorPSKcodingat B=500Hz,ranginginstabilitiesare 1.4 τ1/2 km(with τtheintegrationtimeins)withsystematiceffectslimitingatthefewmlevel.Similarly, synchronisationoftheUSO(andthereforetimingofonboarddata)willbepossiblewithanoverall100ns uncertaintyduringopticallinkdowntime,andabout10nsotherwise. 3.3.6. Power, Mass, Volume TheDOLLpowerandmassareestimatedbasedonthePHARAOclock(diodelasers,AOM,electronics,RF source)andLISAstudies(telescope,opticalcomponentsetc…).Notealsothatsomeofthesubsystems(LL, ULEcavity,RFsource)arealreadyaccountedforintheclockoraccelerometerbudgets,butareincluded alsohereforadditionalmarginandtoreflecttheearlystageofthedesign.

28 LH LL ULE cavity AOM+RF+electronics Power 25W 3W 3W 20W Mass 89kg Volume 30l(notincludingtelescope) Tab. 3-2: DOLLbudgets. 3.3.7. Critical issues, requirements, heritage, and technology development ThemainDOLLcriticalissuesarethe0.3”pointingrequirementandthelaserreliability.Theyarediscussed inmoredetailinsections4.3.and6.2.respectively.MuchoftheDOLLtechnologyisbasedonheritagefrom PHARAO (ECDL, AOM, RF synthesis, Quartz,…), COROT (CCD, pointing) and on LISA technology developments(telescope,optics,…).ThatensuresarelativelyhighTRL(TechnologyReadinessLevel)for mostofthesubsystems,whichishowevercontingentonthereliabilityandthedevelopmentofthehigh powerlasersourceat674nm. Finally,wenote,thatthedevelopmentofDOLLaswellastheopticalclocksfortheDOLLground stationsfitswellintocurrenttechnologydrivestowardstheuseofopticalclocksandopticalcommunication inNASAandESAinterplanetarymissionandDSN. 4. SPACECRAFT KEY FACTORS SAGAShasthechallengingtasktomeasurethegravitationalfieldintheSolarSystembetweenoneand50 AU.Themeasurementisconductedbyacombinationofalaserlinkoverinterplanetarydistances,acold atomaccelerometerandanatomicclock.Thepreliminaryconceptsatisfyingtherequirementsputforwardby itstasksconsistsofa3axisstabilisedspacecraftwithexcellentpointingaccuracy.Thepowerdemandofthe orderof400WisfedbytwoRadioisotopeThermoelectricGenerators(RTGs).Abipropellantpropulsion module (PM)is attached to SAGAS that serves toincrease the Earth escape velocity and/or to conduct requireddeepspacemanoeuvres(seesect.5.). 4.1. Design Drivers ThedesigndriversforSAGASarisemainlyfromtheneedsofthepayloadandtherequirementsduringa longjourneytotheouterSolarSystem. AgeneralrequirementforthepayloadofSAGASishighthermalstability,becausetheprecision instrumentswilldeliverbestperformanceinastableenvironment.Specificrequirementsforthecoldatom accelerometerandtheinterplanetarylaserlinkcomeontopofthis: • Thecoldatomsensorhasthesameneedasanyconventionalprecisionaccelerometertobeplaced preciselyinthecentreofmassofthespacecraftwithaslittleselfgravitygradientfromthespacecraftinits surroundings as possible. Additionally, the envisaged absolute acceleration measurement at 5x10 12 m/s 2 requiresthatanyselfgravitybiasatthepositionoftheaccelerometerbeknownwiththatsamelevel of accuracy.Themostsensitiveaxisfortheaccelerometersciencemeasurementsisalongthetelescopeaxis, whichallowssomeroomforoptimisation.Asanexample,selfgravityonboardtheMICROSCOPEsatellite atthelocationoftheaccelerometersisoforder10 10 10 9m/s 2,withagradientofabout10 11 s 2.Forthe projectedSAGASuncertaintythisimpliesknowingthemassandmassdistributionoftheS/Catthe10 2to 10 3level.CarefullybalancedS/Cdesigncouldfurtherreducethisrequirement. • Thelaserlinkisatwowayasynchronousconnection.Inordertoestablishalinkoverthe50AU maximumdistancetoEarththedownlinkneedstohaveanextremelynarrowbeamthatwillcoveronlya smallfractionoftheEarthduringnearlyallofthejourney.Onlyat50AUthebeamdiameterwillreachthe magnitudeoftheEarth’scrosssection.Thenarrowbeamdivergenceimpliesapointingrequirementof0.3” (seesection3.3.4.1.).Asafurthercomplicationtheuplinkanddownlinkwillhavetopointintodifferent directionsduetothelongtwowaylighttimeofupto13.8h.TheserequirementswilldrivetheAOCS. ThejourneytotheouterSolarSystemputsforwardthefollowingrequirementstothesystem: • Apowersupplythatisstillfunctionalatlowinsolationandthatsatisfiestheconsiderablepower demandsoftheSAGASpayloadofabout200W. • Arobustcommunicationsystemsuitedforthelongdistanceasabackuptothelasercommunication system. • Athermalcontrolthatcancopewithafactor2500changeinimpingingsolarpower.

29 Inthefollowingsectionsthesolutionsforeachofthedrivers,identifiedabove,areaddressedinthecontext oftherelevantsubsystem.Firsttheconfigurationisdiscussedaddressingtheaccommodationofthecold atom accelerometer.Thenthe AOCS system is discussed addressing the issueof the laserlink pointing. Finallythepowersystem,thetelecommunicationsystemandthethermalcontrolareoutlined. 4.2. Configuration

AOCS thrusters louvre RTG

low gain antenna telescope baffle star tracker high gain antenna interface ring Fig. 4-1:ConfigurationconceptoftheSAGASspacecraft.Thedesignshowsavariantwith2GPHSRTGs becausethedetailsoftheASRGarenotyetavailable TheSAGASspacecraftisathreeaxisstabilisedplatform.OnesideispermanentlypointingtowardsEarth. Thissidecarriesboththehighgainantenna(HGA)andtheTelescopeforthelaserlink.Theoppositepanel oftheS/Ccarriestheadapterringtowardsthepropulsionmodule.TwoRTGpowersuppliesareplacedon thesidepanelsonshortstruts.Thelengthofthestrutsislimitedbythespaceinthefairingandbythelaunch loads.Thelongestpossiblestrutsfortheselectedlaunchershouldbechoseninordertominimisetheview factor of the RTGs towards the S/C side panels. This serves to minimise the backscattering of thermal radiationfromthespacecrafthullthatcontributesanunwantedsourceofaccelerationsystematics.Forthe interiorconfigurationcarehastobetakeninordertominimizethemagnitudeofcentreofmassmovements. For this reason the hydrazine monopropellant for AOCS is distributed over three tanks that are placed towardsthesidesofthebusandsymmetricallywithrespecttothecentreofmass. 4.3. AOCS TheSAGASspacecraftneedstobethreeaxisstabilizedinordertofulfilthepointingneedsofthelaserlink. Theattitudecontrolsystemconsistsofsensorsandactuators.AssensorsaSunsensorisforeseenforinitial attitudeacquisitioninLEOPandsafemode.Startrackersandaninertialmeasurementunitareusedfor attitude determination for coarse pointing, e.g. during trajectory manoeuvres. During science mode the attitudedeterminationissupportedbyafeedbackfromthedetectoroftheuplinklasersignal.Thisdetectoris designed as a quadrant photodiode and can hence provide fine pointing information with respect to the uplinkdirectionbydifferentialwavefrontsensing.ThesamefeedbackfromthephotodiodestotheAOCSis foreseenforLISA. Standardreactionwheelsof12Nmscapacityandasetof12(+12redundant)10Nthrustersare foreseenasactuators.WheelsofasufficientlifetimeforSAGASareavailableforinstancefromRockwell Collins,Germany.InallnominalmodestheattitudecontrolofSAGASreliesonreactionwheels.Thefine pointingattherequiredlevelusingconventionalreactionwheelsandafeedbackloopfromthepayloadis currentlybeingdemonstratedbytheCOROTspacecraftandishencealsoforeseenforSAGAS.Itwasfound thatthelowfrequencyvibrationsinducedbythereactionwheelsarecompatiblewiththeaccelerometerand opticalcavityvibrationrequirements(seesect.3.1.6.).Forsafemode,theattitudecontrolwillrelyonthe thrusters. The thrusters are also used for wheel desaturation and orbit control. The major orbit control manoeuvretobeaccomplishedwillbethetargetingbeforetheJupiterswingbyforwhich80m/sof ∆Vhave beenallocated. A particular challenge for the AOCS, and indeed SAGAS as a whole, is maintaining lock to the incominglaser,andinitialacquisitionofthatlock.Thesolutiontothisproblemliesinthecombineduseof theCCD(FoVof1’)thattheS/Ctelescopeisequippedwithandthequadrantdiode(0.3”FoV)usedforthe heterodynedetection(acombinationoftheCOROTandLISAmethodsforfinepointing).Initialacquisition isachievedinthefollowingway: 1. TheS/CestablishestherightpointingtowardsagroundstationGwithrespecttotheEarth’simage intheCCDusingonboardinformationaboutthestationpositionatagiventimewithrespecttothe

30 Earth’slimbandstartsemitting,applyingthenecessarypointaheadanglesothatthesignalarrivesat G(oranother)groundstation(seebelowforrequirements). 2. TheGsallstarewiththeirCCDs(largeFoV)waitingforanincomingsignal.Onreceptiontheylock ontoit,applythenecessarypointaheadangleandemitback. 3. TheS/Cthusreceivesasignalback,alreadyinitsquadrantdiodeFoV,andlocksontoit. Note,thatlockremainsestablishedevenwhenGschangeduetoEarth’srotationbecausetheS/C“knows” wherethedifferentGsare,andthusswitchesfromonetothenextasrequired(oncelockisestablishedthe S/CdisposesoftheincominglaseradditionallytotheCCDimagewhenswitchingGs).Italsoswitchesthe pointaheadangle(notsynchronouslywiththereceptionswitch,butoffsetbythelighttraveltime)soGs alwayshaveanarrivinglasertolockto(theydonotneedtoscanfortheS/CwiththeirCCD).Theprocedure requiresthattheCCDFoVandthequadrantdiodeFoVbealignedtobetterthan0.3”.LISAstudieshave shownthatalignmenttobelow0.2”ispossible.ForSAGAS,additionally,wehavethepossibilityofpost launchcalibrationofthatalignmentusingthelargeCCDimageoftheEarthandlargeincominglaserpower in the early mission phase. Secondly, the CCD needs tobe able toresolve atarget on the Earthimage correspondingtothe0.3”diodeFoV, i.e. about200km@1AUand6500km@30AU,whichshouldbe possiblegivenCOROTperformance. 4.4. Power Subsystem ForamissiontoseveraltensofAUaradiothermalpowersupplyismandatory.Thepayloadandsystem powerdemandsare400Wintotal,bothincruisemodewithPMandinsciencemode.Forthepreliminary design, four ASRG RTGs which are currently being developed by LockheedMartin in the US are considered.ThedevelopmentplanbyNASAandtheUSDepartmentofEnergyforRTGsforeseesthatthese Stirling Radioisotope Generators will beavailablein2009andhencewellintimefortheCosmicVision timeframe.TheperformanceassumptionsfortheASRGarebasedon[35].ThespecifictypeofRTGsisnot importantforSAGAS.Forinstance,asetoftwocurrentUSGPHSRTGswouldalsobeasuitablechoice thatfulfilsthepowerandlifetimerequirementsofSAGAS. In fact, the ASRG Stirling generators are unfavourable for the SAGAS application because their movingpistonswillcausevibrations.Theseare,however,notconsideredcriticalbecausetheASRGhave twocountermovingpistonstoreducevibrationsandwillbeequippedwithanadaptivevibrationreduction system[36].Duetothefixedfrequencyofthepistonmotionthevibrationscausedbythemcanfurthermore easily be damped and identified in the accelerometer data. Hence the use of the ASRG is considered unproblematic,althoughtheuseofconventionalRTGswiththermocoupleswouldbepreferable,iftheyare availableforthetimeframeoftheSAGASimplementation. 4.5. Radio-Frequency Telecommunication System An Xband communication system is foreseen for telemetry tracking and command. The radio link is mandatorybecauseduringcriticalmissionphasessuchasorbitmanoeuvreandinsafemodethelaserlink willnotbeavailable.ForLEOPtwolowgainantennaswithhemisphericalcoverageareforeseen.Fordeep spacecommunicationsahighgainantenna(HGA)isbaselined.Itisassumedthatthecommunicationcanbe established via the HGA also in safe mode relying only on Sunsensor information using a conscan manoeuvre.Hencecurrentlyamediumgainantennaisnotforeseen.Sincethecurrentdesignisnotmass criticalthisdecisionmayberevisited.TheaccommodationoftheHGAisconstrainedbytheaccommodation ofthe40cmaperturetelescope.Theoptionswereidentified: • ArathersmallHGAofonly1.1mdiametercouldbeusedtoaccommodatetheHGAsidebyside withthetelescope.Combinedwithatransponderwith27.5Wtransmitpowersuchasitwillbeusedin BepiColomboadatarateof50bpsisachievableover50AUwhichissufficienttakingintoaccountthatthe channelforthesciencedataandregulartelemetryisviathelaserlink. • AlargerHGAcouldbeusedifa45cmcutoutforthetelescopeisallowedinthedish.Sincetheloss inantennagainwillberoughlyproportionaltotheareaofthecutoutthissolutionisviableiftheantennais sufficientlylarge.Assumingthesametransponderperformanceasaboveand2.2mdiameterantennaasit wasforinstanceusedforRosettaadatarateof180bpsisachievableattheendofmission.Inordertolimit theimpactontheantennapatternacutoutlocatedclosetothecentreoftheHGAispreferable.Duetothe smallfieldofviewofthetelescopetheplacementoftheantennafeeddoesnotposeaparticularproblem. Thelargerantennawiththecutoutisthecurrentlypreferredsolutionduetoitshigherperformance. Adetailedassessmentoftheeffectofthecutoutontheantennapatternishoweverneededtofinalizethe decision.

31 4.6. Operations Concept ThetwomostfrequentlyusedspacecraftmodesofSAGASwillbetheScienceModeandtheNormalMode. BothmodeswillbereflectedintheAOCSmodes,powermodes,andoperationalschemes.NormalMode willbeusedfororbitcontrolandwhenscienceoperationsareinterrupted.Sciencemodewillbeusedwhen thecoldatomaccelerometerand/orthelaserlinkareoperating. TheNormalModewillbeverysimilartothatusedduringcruiseforatypicalinterplanetarymission suchasMarsExpress.DuringNormalMode,theMissionOperationsCentrewillhaveexclusivecontrolof AOCSandoperationsscheduling.Communicationswillbeviatheradiofrequencylink.Thismodewillin particularbeusedduringorbitmanoeuvresandfortheirpreparation.TheAOCSwillbecoarsepointingvia thestartrackersandinertialmeasurementunits. TheScienceModewillbeusedduringmostofthemission, in particular when the spacecraft is coastingindeepspace.InScienceModethelaserlinkwillbeestablishedandspacecraftAOCSwillbefine pointingusingthelaserlinkinformation.Inthismodethemissionoperationsandscienceoperationswillbe deeplyintertwinedanditwillbenecessarythatseveraltypicalmissionoperationstasksareunderdirect supervisionoftheScienceOperationsCentre.Inparticular,thisneedstobethecaseforattitudecontrol, acquisition of the laser beam and scheduling of those spacecraft operations that could interfere with the sciencetasksthroughthermalormechanicaldisturbances.InScienceModetheprimaryTT&Cconnection willbeviathelaserlink. Inordertoassurespacecraftsafety,thespacecraftAOCSshallbelargelyautonomousinScience Mode.Inaddition,areliableFDIRisrequiredandarobustSafeModethatwillbetriggeredbywatchdogsof the onboard autonomy system. For minimal interruptions of science operations, a largely autonomous recoveryfromSafeModeisdesirable.Itstillneedstobeassessedifwheeldesaturationshallbeimplemented alsoasasubmodeoftheScienceMode,inwhichcaseitwouldhavetobecarriedoutautonomouslybythe spacecraftoronlyforNormalMode,forwhichboth,autonomousandnonautonomouswheeldesaturation, wouldbepossible. 4.7. Thermal Control TheSAGASthermalcontrolisdesignedtomaintainconstantambienttemperatureforthepayloadoverthe wholemissionduration,whiletheimpingingpowerrangesbetween950WattheEarthflybyanda0.4Wat endofmission.Thistaskcanstillbeaccomplishedinastraightforwardmannerbyemployinglouvers.The hotcaseoftheEarthswingbytogetherwiththeattainablelouverareaof~2.7m²setthenominalspacecraft temperatureto35°C.Thistemperatureismaintainedthroughoutthemissionbythepowerdissipatedbythe spacecraft andthechanging opening factor of the louvers. GildedKaptonisforeseento coverthe outer surfaceofthespacecraftinordertoachievealowemissivityandabsorptance.Compensationheatersare mostly unnecessary. Only forthe payload compensation heaters at the level of 1/3 of the ON power are foreseen to maintain thermally stable conditions also if the instruments are in standby mode. As an alternativetolouversswitchableinternalandexternalpowerdumpersasonUlyssescouldbeused. 4.8. Propulsion System ThepropulsionsystemofSAGASservestocarryouttrajectorymanoeuvres,wheeldesaturationandattitude controlinsafemode.ThetrajectorydesignforSAGASforeseesatrajectorywhichrequiresalargedeep spacemanoeuvreoftheorderof600m/s.Thelargepropellantdemandforthismanoeuvreisconflictingwith therequirementtohaveawellknowncentreofmassposition.Therequirementsarereconciledbycarrying outthelargedeepspacemanoeuvrebyapropulsion modulethatisafterwardsjettisoned.Onlyafterthe jettisoningofthepropulsionmoduletheaccelerometertakesupitsregularduty.Asuitablecandidateforthe propulsionmodulecouldbeidentifiedintheEUROSTARseriesofgeostationaryplatforms,awellknown offspring from which is the LISAPathfinder propulsion module. These bipropellant propulsion modules reachaspecificimpulseofupto325sandarehencewellsuitedtominimisethepropellantpenaltyforthe deep space manoeuvre. No lifetime issues exist for this heritage because the EUROSTAR platform is qualifiedfor15yearsofinorbitlifetime.Thisseriesofplatformsisundercontinuousdevelopmentandis hencelikelytobestillavailablealsoforSAGAS. Thekeyparametersofthepropulsionmodulearegivenin Table44,below.TheywerederivedfromthecriticaldesignreviewdataoftheLISAPathfinderPMbya conservativescalingtakingintoaccountthedifferentmassofthespacecraftandthepropellant. TheonlymajorremainingmanoeuvretobecarriedoutbytheSAGASspacecraftitselfisthetargetingfor theJupiterswingbywhichwillbeoftheorderof80m/s.Forthispurposeandforattitudecontrolasetof8 (+8redundant)10Nthrustersisforeseen.

32 Tab. 4-4: PropulsionmodulekeyparametersbasedonscalingoftheLISAPathfinderPM PM wet mass PM dry mass Propellant mass Maximal ∆∆∆V ∆∆∆V Isp [s] [kg] [kg] [kg] [m/s] margin 1134 174 970 1865 5% 325

Fig. 4 -2 :Potentialpropulsionmodulefor SAGASbasedontheEUROSTAR/LISA PathfinderPropulsionModuleheritage

5. MISSION PROFILE SAGASwilldeliverprecisiondataonthegravitationalfieldintheSolarSystemfrom1AUto50AU.The totalmissiondurationis15yearsnominaland20yearsextendedmission.Thespacecraftwetmassunder consideration will be 1000kg. The trajectory foreseesaJupitergravityassisttoreachhyperbolicescape velocity.Dependingonthechosenlauncher,oneormoregravityassistsintheinnerSolarSystemmaybe requiredtoreachJupiter.Theobjectiveofthetrajectoryistoreachtheendofmissiontarget,aheliocentric distanceof50AUinasshorttimeaspossible. 5.1. Escape Strategy and Launcher Selection Combinedwiththesizeablespacecraftmass,alargelauncheristheonlyrealisticoption.Theonlycurrently availableEuropeanlauncherthatfallsintothiscategoryistheAriane5ECA.Fora671kgspacecraft, it offers a hyperbolic excess velocity of 7km/s [37]. Unfortunately, this performance is too low to put a spacecraftofthedesiredmassintoatrajectorytowardsJupiter.HenceevenwithanAriane5ECA,agravity assistintheinnerSolarSystemwillberequiredtoputthespacecraftonthedesiredtrajectory. ThesituationcouldconsiderablyimprovewiththeadventoftheAriane5ECB,whichwillfeature the reignitable Vinci upper stage engine. With the Ariane5 ECB, a 1000kg spacecraft could reach an escapevelocityof9.5km/s,whichwouldbemorethansufficientforadirecttransfertoJupiter.Itislikely thattheAriane5ECBwillbeavailablefortheCosmicVisiontimeframe. OthercurrentlyavailablelauncheroptionsthatwouldallowadirecttransfertoJupiterarelistedin Tab.51.Theselauncherscouldbeconsideredifthemissionisrealisedincollaborationwithotherspace agencies. Hyperbolic excess velocity [km/s] Launcher options for 1000 kg payload Ariane 5 ECA ~ 6.5 km/s Ariane 5 ECB ~ 9.5 km/s Atlas V / Star 48V ~ 10.7 km/s Delta IV Heavy / Star 48B ~ 10.0 km/s Proton M / Breeze M ~ 8.1 km/s Table 5-1: Launcher options for SAGAS FortheAriane5launchertheuseofapropulsionmodule(PM)improvestheescapeperformance.Tab.52 gives the performance for the two Ariane5 variants using the US Star 48B propulsion module and bi propellantPM.Theestimatesforthebipropellant PMarebasedonthemassesandperformancesofthe EurostarplatformandtheLISAPathfinderPMthathasbeenderivedfromit.ThedesignofthePMhasbeen optimised for achieving maximal hyperbolic excess velocity for a 1000kg payload (The PM is further discussedinSect.4.8.).ForthecombinationofAriane5ECAandaStar48Bkickstage,noimprovementin performanceisachieved.

33 Hyperbolic excess velocity [km/s] Launcher options for 1000 kg payload Ariane 5 ECA / Star 48B ~ 6.2 km/s Ariane 5 ECB / Star 48B ~ 10.5 km/s Ariane 5 ECA / Eurostar ~ 6.7 km/s Ariane 5 ECB / Eurostar ~ 10.5 km/s Tab. 5-2: Propulsion module options Fromthissurvey,itisclearthattheAriane5ECB,theAmericanAtlasVandDeltaIVandtheRussian ProtonallowadirecttransfertoJupiterifakickstageorpropulsionmoduleisused.FortheAriane5ECA,a directtransfertoJupiterisnotobtainableevenwithapropulsionmodule. 5.2. Trajectory Design Amongstthelaunchersdiscussedabove,onlytheAriane5ECAisconsideredinthelauncherlistofthe Cosmic Vision frame [38]. Hence, we consider the Ariane 5 ECA as our preferred launcher option. Unfortunately,thislauncherhasthelowestperformance,andhencerequiresamorecomplicatedtrajectory designtoreachthedesiredheliocentricdistanceof50AU.Thefollowingprincipleoptionsexisttoputthe spacecraftontoatrajectorytowards50AUafterlaunchwithanAriane5ECA: • AnEarthVenusEarthEarthJupiter(EVEEJ)trajectorywithfourgravityassists.Suchtrajectories havebeenemployedfortheGalileoandCassinimissions • AnEarthEarthJupitertrajectorywithtwogravityassists.Inthisoptionthespacecraftisfirstput intoaresonantorbitwithEarthoftwoor1.5yearsperiodandasizeabledeepspacemanoeuvreof~0.5km/s isconductedatapheliontoamplifytheeffectofthegravityassistatEarth.Suchtrajectoriesarecommonly denotedas ∆VEGAtrajectories. In both options, hyperbolic escape velocity is reached after Jupiter and the SAGAS spacecraft reaches 50AU in a hyperbolic coast. A final swingby at Saturn after that at Jupiter could considerably enhancetheescapevelocity.Unfortunately,nogoodoptionsexistforaJupiterSaturntrajectoryafter2016 throughouttheCosmicVisiontimeframe.Hencethisoptionisnotfurtherconsidered. In general the ∆V requirement for the EVEEJ trajectory is ~0.7km/s smaller than that for the ∆VEGAoption.NeverthelessforSAGASthe ∆VEGAoptionispreferredbecauseitavoidsthethermally challengingenvironmentofVenusat0.7AUheliocentricdistance. For preliminary mission analysis, a global optimisation has been carried out to determine the preferredtransferopportunitywithalaunchdatebetween2017and2025.Theobjectivewastoreach50AU in minimal travel time under the combined constraints of the Ariane5 ECA escape capability and the maximal ∆Vcapabilityofthepropulsionmodulefortherespectiveescapeconditions.Theoptimaltrajectory withadeparturedateintheCosmicVisiontimeframehasalaunchinMarch2019andleadstoatransferto 50AUofonly18.83years. Notall ∆Vprovidedbythepropulsionmoduleisneededforthedeepspacemanoeuvreduringthe EGAloop.Theremaining ∆VisappliedaftertheEarthflybyinordertoincreasethedeparturevelocity.A higherdeparturevelocityaftertheflybycouldbereachedif the ∆Vwouldbeappliedduringthegravity assist.Howevertheburntimeforthemanoeuvreof~850m/smagnitudewillbelongerthan1/2houreven foranuninterruptedburn.Itrequiresadetailedanalysistodeterminehowmuchoftheavailable ∆Vcanbe appliedwithintheEarth’ssphereofinfluencetakingintoaccountoperationalconstraints.Herewetakethe conservativeapproachofnotconsideringapoweredswingby.Amoderatereductionoftheavailabledeep space ∆V,e.g.duetoanincreasedmassofSAGAS,wouldnotresultinaninfeasibletrajectorybutjustina slightlyextendedmissionduration.ThekeyparametersoftheresultingoptimaltrajectoryaregiveninTab. 53.ThetrajectoryuntilJupiterisdepictedinFig.51. Generally,launchopportunitiestowardsJupiteropenuponceayear.Theanalysisshowedthatthe typicaltraveltimesfortheseopportunitiesarebetween19and21years.Hence,allowinga10%longertravel time,thelaunchofSAGAScantakeplaceinanydesiredyear.Thisflexibilityinlaunchdateisaparticular benefitofthe ∆VEGAforwhichonlyanoptimalconstellationofEarthandJupiterisrequiredwhicharises onceayear. FortheotherlaunchersinTab.51adirecttransfertoJupiterispossible.Thiswouldallowtoomit theEGAloopandhencetoshortenthemissiondurationbyapproximately2years.

34 Time since Time since Interval between Interval between Event Date launch [days] launch [years] events [days] events [years] Launch 22 March 2019 0 0 0 0 1st deep-space manoeuvre 7 May 2020 412 1.13 412 1.13 Earth gravity assist 15 May 2021 785 2.15 373 1.02 2nd deep-space manoeuvre 15 May 2021 785 2.15 0 0.00 Jupiter Gravity assist 29 Oct. 2022 1317 3.61 532 1.46 Arrival at 50 AU 21 Jan. 2038 6878 18.83 6346 17.37 Tab. 5-3a: Datesoftrajectorymilestonesoftheoptimaltrajectory

8 x 10 8

6 Parameter Value 4 Earth departure velocity [km/s] 5.27 ∆ 2 1st Deep Space V [km/s] 0.656 2nd Deep Space ∆V [km/s] 0.848

y 0 Total deep space ∆V [km/s] 1.504 -2 Velocity after Jupiter swingby [km/s] 22.64 -4 Tab. 5-3b: Velocityparametersoftheoptimaltrajectory -6

-8 -10 -8 -6 -4 -2 0 2 4 6 8 x 8 x 10 Fig. 5-1: Optimal ∆VEGAtrajectoryforSAGASthroughtheinnerSolarSystem(red/black).OrbitsofEarthand Jupiterinblue.Dimensionsinkm. In summary, with the chosen trajectory SAGAS will reach a heliocentric distance of 38.9 AU over the nominalmissionduration(15years)and53.3AUoverextendedmission(20years). 5.3. Ground Segment FortheXbandlinkthemissionwilluseESA15mground stations for LEOPoperationsand ESA 35m ground stations for deep space communications. During most of the mission, ground contact will be infrequent–lessthanonceafortnight–becausethescienceandtelecommanddataaretransmittedviathe laser link (kbps capacity, see sect. 3.3.). For periods around the gravity assists and the deep space manoeuvres, permanent ground coverage via Xband and laser is desirable. In general no large baseline tracking operations will be required because orbit reconstruction accuracy from the laser ranging will considerablyexceed ∆VLBIperformances. Thelaserlinkwillrequireaminimumofthreededicatedgroundstationsequippedwith1morlarger telescopes(seesect.3.3.),opticalclocksandcorrespondinglasersystems(seealsosect.6.2.).Thepresent baselineforsuchgroundstationsistotakeadvantageoftheexistingstructureofSatelliteandLunarLaser Ranging stations, several of which are already equipped with 1.5 m telescopes (OCA, Matera, …). The corresponding stations will require upgrades to make them compatible with SAGAS requirements; in particular,theywillrequireadaptiveoptics,opticalclocksandcorrespondinglasersystems.Analternative optionwouldbetodevelopdedicatedlaserDSNstationsforSAGASbutalsoforotherdeepspacemissions thatwillrequireprecisetiming,navigationandbroadbandcommunication.Bothoptionsfitwellintothe generaltechnologicaldevelopmentoflasercommunicationandopticalclocksforDSN,carriedoutpresently underESAandNASAcontracts. 5.4. Special Requirements Thelauncherselectionwillnotonlybedeterminedbythelauncher’scapabilities,butalsobytheregulations concerningthelaunchofspacecraftequippedwithRTGs.ThisiscurrentlypossiblewiththeRussianandUS launchers.However,itislikelythatthenecessaryclearancewillbeachievedforAriane5intheframework ofESA’sAuroraprogramme(thisissueisaddressedinmoredetailinsect.6.1.).

35 6. KEY TECHNOLOGY AREAS 6.1. Platform The SAGAS spacecraft faces considerable challenges in terms of instrument accommodation, pointing requirementsandtheneedtoprovidesufficientpowerintheouterSolarSystem.Thepreliminaryconcept (section4.)hasaddressedalltheseschallengesandhasidentifiedfeasiblesolutions.Thebiggestchallengeis the differential wavefront sensing for the locking of the laser beam. The corresponding technology has alreadybeendemonstratedforLISAinalaboratorysetup.Nonetheless,whileconsiderableexperiencecan bedrawnfromCOROT,GAIAandthetechnologydevelopmentforLISA,adetailedanalysisofthebeam recovery and locking scheme for SAGAS is likely to reveal important differences. Hence aTDA on the attitudeforSAGASduringsciencemodeshouldbeinitiatedtimely. Thelocationrequirementofthecoldatomaccelerometerinclosedistancefromthecentreofmassis comparable to those of GOCE or LISAPathfinder and henceample experience onthistask willexist in EuropefortheimplementationofSAGAS. Otherwise, no particular technology development needs forthe platform couldbe identified.The complete platform of SAGAS uses well developed technology and hence the challenges of SAGAS lie mainlyinitspayloadandoperationsandnotintheplatform.NotableexceptionsaretheStirlingradioisotope generators,whicharestillunderdevelopment.Theseare,however,notconsideredcriticalbecausethetype ofRTGstobeusedisnotcriticalforSAGASanditcanbeassumedthatanRTGofthepowertomassratio ofthecurrentGPHSRTGswill,inanycase,beavailableintheUSduringtheCosmicVisiontimeframe. It is worth stressing that sufficient expertise for the power system design using RTGs and their integrationexistsinEurope:GPHSRTGshavealreadybeenusedonthejointESA/NASAmissionUlysses. ForUlysses,boththepowersystemwasdesignedandtheRTGswereintegratedbyaEuropeancompany. WhiletheknowledgeforthehandlingofRTGisavailableinEurope,nocorrespondinghandlingandsafety regulationsforCentreSpatialGuyanaishavebeenestablished,yet.Firststepstowardssuchregulationsare currentlyundertakenforradioisotopeheatingunitswithinESA’sAuroraprogramme.However,itislikely thatthelargeramountofnuclearmaterialpresentintheRTGswillrequireadditionalregulations.Hence,the qualificationofCSGforthelaunchofRTGsshouldbeinitiatedwellaheadoftheSAGASimplementation phase.ApossiblewaytocircumventthisqualificationwouldbethelaunchonaUSlauncher.Thisoption wasfoundattractivefromthepointofviewoftrajectorydesignaswell(cf.sect.5.1.). 6.2. Laser Sources for Clock and Optical Link at 674 nm At674nmwiththerequired1Woutput,diodelasertechnologyrequirestheuseofanECDLfollowedbya tapered amplifier (TA). At present, the maximum output power available at 674 nm using ECDLTA configurationis250300mW,butpowerupgradesareexpectedfromthedevelopmentoflongerTPAchips. Outputpowerexceeding1Wisrealisticwithinthreeyearsfromnow.Acceleratedageingtestshavebeen performedwithARcoated670nmwavelengthECDLs(90°Coperationtemperature),withtypicaloutput powersof10to20mW.Anextrapolatedvalue>10 4hourswasfoundinstandardoperatingconditions.No significant dependence of the lifetime on the optical power was found, so that this result can be representative also in case of higher optical power. In standard operating conditions (25 °C) lifetimes exceeding 2.5 ×10 4 hours (about 3 years) have been already reported by different customers at 671 nm wavelength.Lifetimesapproaching10 5hoursarenotunrealisticinthefuture(infactsuchlifetimevalues havebeenalreadydemonstratedincaseofinfraredlaserdiodesfortelecomapplications)butwouldrequire significantdevelopmentsforthechipsand35yearsfromnow.Itisthusrealistictoexpecttobeableto coverthecompletemissiondurationwithmoderate(twoorthreefold)redundancy. An alternative approach based on laser diode technology that could become realistic in the near futureisadirectlymodulatedDFBlaser(100mWoscillator)oraDFBlaserasmasterlaserwithinamaster oscillatorpoweramplifiersystem(MOPA)inthecaseoflargeropticalpower(upto1W).DFBlasersoffer asignificantadvantageincomparisonwithexternalcavitydiodelasersintermsofdimensionsandmodehop freetuningrangewithoutanymovingmechanicalpart.ThelackofmechanicalpartsqualifiesDFBlasers especially for space applications. Currently, this concept can be realized within the wavelength interval between 730 nm and 1060 nm, but further developments are expected in the next years to extend the emissionwavelengthtowardsthevisibleregion. Althoughoperationoftheopticallinkwith1Wgroundlasersiscertainlypossible(symmetrictothe downlink),itwilllikelybeofadvantagetousehigherpower(>10W)ontheground,ifavailable.Tothat aimarealisticsolutionwasidentifiedusingacoherentsolidstatedeviceat674nmbasedonintracavity 4 4 3+ frequencydoublingofthe F3/2  I13/2 lasertransitionat1348nmofNd dopedcrystals.Theproposedlaser

36 sourceisbasedonaslavelaserwithathindiskpumpingscheme,usingahighNddopingconcentrationina La 2SiO 5crystal(inthiscasetheLaionicradiuscloselymatchestheNdone),injectedbyatunable,single frequency,narrowlinewidthoscillator(500mW,linearcavity).Usingthisopticalconfigurationweexpectto obtain30Wat1348nmusing100Wpumppowerat808nmand1215Woutputpowerat674nmby intracavityfrequencydoubling. Insummary,availability,spacequalification,andlifetimeoflasersourcesfortheclockandthelink (674nm)isakeytechnologicalissueforSAGAS,witha presently low technology readiness. However, giventhelargetechnologybasisinthefieldofsemiconductorandsolidstatelasersarapiddevelopmentof appropriatelasersourcesseemslikelybutshouldbeinitiatedearly. 7. CONCLUSION WehavepresentedadetaileddescriptionofthescientificandtechnologicalaspectsoftheSAGASproject, basedontheoriginalmissionproposalsubmittedtoESAinJune2007inresponsetotheCosmicVision 20152025callforproposals.TheoutcomeoftheESAselectionprocedureisnowknown,andunfortunately SAGAShasnotbeendeemedapriority.However,independentlyofthatoutcome,webelievethatitisworth pursuingtheinvestigationsinitiatedbytheCosmicVisioncall,inordertofurtherstudythescientificand technologicalimplicationsofthistypeofmission.Thepresentdocumentisafirststeptowardsthatgoal, allowingpublicaccesstomostofthepresentlyexistingmaterialonSAGAS,therebyprovidingabasisfor furtherdevelopments. Onthescienceside,deepspacegravityprobesareuniqueopportunitiestoaddresssomeofthemost fundamental questions of contemporary physics, related to unification of the fundamental interactions in nature,thenatureofgravitation,darkenergyanddarkmatter.Byextendingexperimentaltestsofgravityto thelargestscalesattainablebyhumanmadeartifacts(sizeoftheSolarSystem),missionslikeSAGASare startingtobridgethegapbetweenobservationalevidenceatrelativelyshortscales( ≈EarthMoondistance) whereallobservationsconfirmpresenttheories,andastronomical(Galaxies)andcosmologicalscaleswhere agreementbetweentheoryandobservationcomesattheexpenseofpostulatinglargeamountsofdarkmatter andenergy. ConcerningtheexplorationoftheouterSolarSystem(Kuiperbelt,giantplanets),SAGASopensa newandcomplementarywindowonsuchexploration,nolongerbasedonelectromagneticimaging,buton themeasurementofthegravitationalsignaturesoftheobjectstobestudiedordiscovered.Thedetermination oftheKuiperbeltmassdistributionandtotalmassaregoodexampleswheregravitationalmeasurementsare complementaryto,andbetteradaptedthan“classical”techniques. TheSAGASpayloadwillincludeanopticalatomicclockoptimisedforlongtermperformance,an absoluteaccelerometerbasedonatominterferometryandalaserlinkforranging,frequencycomparisonand communication.Thecomplementaryinstrumentswillallowhighlysensitivemeasurementsofallaspectsof gravitationviathedifferenteffectsofgravityonclocks,light,andthefreefalloftestbodies,thuseffectively providingadetailedgravitationalmapoftheouterSolarSystem,whilsttestingallaspectsofgravitation theorytounprecedentedlevels.Table71providesasummaryoftheSAGASscienceobjectives.

37 Science Objective Expected Result Comments TestofUniversalRedshift 1x10 -9ofGRprediction 10 5gainonpresent NullRedshiftTest 1x10 -9ofGRprediction 103gain TestofLorentzInvariance 3x10 -9to 5x10 -11 10 2to 10 4gain (ISor“timedilation”test) fct.oftrajectory PPNtest δ(γ ) ≤ 2x10 -7 10 2gain maybeimprovedbyorbitmodelling LargeScaleGravity Fillexp.datagapforscale Differentobservationtypesandlarge dependentmodif.ofGR rangeofdistanceswillallowdetailed IdentifyandmeasurePAto<1% “map”oflargescalegravity peryearofdata

KuiperBelt(KB)TotalMass δMKB ≤ 0.03 ME Dep.onmassdistributionand correlationofclockmeas. KBMassDistribution Discriminatebetweendifferent Willcontributesignificantlyto commoncandidates solutionofthe“KBmassdeficit” problem

IndividualKBObjects(KBOs) Measure MKBO at ≈10% Dependingondistanceofclosest approach PlanetaryGravity JupiterGravityat≤10 10 10 2gainonpresentforJupiter StudyJupiteranditsmoons idemforotherplanetincaseof2 nd flyby VariationofFund.Const. δα /α≤( 2x10 -9) δ(GM /rc 2) 250 foldgainonpresent UpperlimitonGrav.Waves h≤ 10 -18 @10 5to10 3Hz Integrationoveroneyear TechnologyDevelopement DevelopsS/Candgroundsegmenttechnologiesforwideuseinfuture missions(interplanetarytiming,navigation,broadbandcommunication,…) Tab. 7-1: ScienceobjectivesofSAGAS(seesect.2.fordetails). Red=Fundamentalphysics , Blue=Solar Systemscience .(GR:GeneralRelativity,PA:PioneerAnomaly,IS:IvesStilwell, ME:Earthmass). Thequantitative estimates inTab. 71 are obtained using rough estimates, as described in the differentsubsectionsofsection2.Furtherstudiesarerequiredtounderpintheestimatednoisesourcesand uncertaintiesgiveninsections2and3.Aparticularpointofinterestisalsothepossibilitytocombinetheon boardandgroundmeasurementsindifferentways(sumordifference,variabletimedelaybetweenupand downlink),whichcanbetailoredandoptimizedforeachparticularscienceobjective.Asaconsequencethe data analysis can be optimized as a function of the spectral signature of the signal searched for, with potentially increased reliability. Studies on such data analysis strategies are in progress and will be the subjectofaforthcomingpublication. Insummary,SAGASopensthewaytowardstheexperimentalinvestigationofsomeofthe most puzzlingquestionsofcontemporaryphysicsandtowardsanewwindowfortheexplorationoftheouterSolar System. These “phenomena of the very large” are explored using the “technology of the very small” (quantumsensors),illustratingthediscoverypotentialofthecombinationofthetwodomains. REFERENCES [1]N.K.Pavlis,M.A.Weiss,Metrologia 40 ,66,(2003). [2] Groten, E., 1999, Report of the IAG. Special Commission SC3, Fundamental Constants, XXII IAG GeneralAssembly. [3]C.M.Will,LivingRev.Relativity9,(2006). [4]R.F.C.Vessotetal.,PRL 45 ,2081,(1980). [6]G.Saathoffetal.,PRL 91,190403,(2003). [7]M.Hohenseeetal.,PRD 75 ,049902,(2007). [8]JP.Uzan,Rev.Mod.Phys.75,403,(2003). [9]M.T.Murphy,etal.,Mon.Not.R.A.S.,345,609,(2003). [10]E.Reinholdetal.,PRL 96 ,151101,(2006). [11]V.V.FlambaumandE.V.Shuryak,arXiv:physics/0701220,(2007). [12]T.DamourandK.Nordtvedt,PRL 70 ,2217,(1993).PRD 48 ,3436,(1993). [13]T.DamourandA.M.Polyakov,Nucl.Phys.B 423 ,532,(1994)[arXiv:hepth/9401069].

38 [14]DamourT.,PiazzaF.,VenezianoG.,PRL 89 ,081601,(2002),PRD, 66 ,046007,(2002).M.C.Bentoet al.Phys.Lett B648 ,14,(2007). [15]Damour&Nordtvedt,PRL 70 ,2217,(1993);Perrottaetal,PRD 61 ,023507,(2000);Bartoloetal,PRD 61, 023518(2000). [16]Amendolaetal,ApJ 583 ,L53(2003);Bucher&Spergel,PRD 60 (1999)043505. [17]B.Bertotti,L.Iess,P.Tortora,Nature 425 ,374,(2003). [18] J.D. Anderson et al., PRL 81 , 2858, (1998). S.G. Turyshev etal., arXiv:grqc/990024, (1999). J.D. Andersonetal.,PRD 65 ,082004,(2002).S.G.Turyshevetal.,Int.J.Mod.Phys. D15 ,1,(2006).V.T.Toth andS.G.Turyshev,arXiv:0710.2656. [19]MT.Jaekel,S.Reynaud,CQG 23, 7561,(2006). [20]A.Baruuci,H.Boehnhardt,D.CruikshankandA.Morbidelli,eds., TheKuiperBelt ,(Univ.ofArizona Press), in press, (2007); in particular the chapter "The dynamical structure of the Kuiper Belt and its primordialorigin"byA.Morbidelli. [21]O.BertolamiandP.Vieira,CQG 23, 4625,(2006);O.BertolamiandJ.Páramos,grqc/0702149. [22]G.Bernsteinetal.,ApJ. 128 ,1364,(2004). [23]J.W.Armstrongetal.,ApJ. 318 ,536,(1987). [24]J.D.Anderson,B.Mashoon,ApJ. 290 ,445,(1985). [25]J.W.Armstrong,etal.,ApJ, 599 ,806,(2003). [26]A.Petersetal,Metrologia 38 ,2561,(2001).B.Canueletal.Phys.Rev.Lett.97 ,010402(2006). [27]http://xxx.lanl.gov/abs/grqc/0610047. [28]A.Bertoldietal.,EPJD 40 ,271279,(2006);J.B.Fixleretal.,Science 315 ,74,(2007). [29]A.Wicht,etal.,PhysicaScripta T102 ,82(2002);P.Cladéetal.Phys.Rev.Lett. 96 ,033001,(2006). [30]Ph.Laurentetal.,Appl.Phys. B84 ,684690,(2006). [31]P.Cheinetetal.,Appl.Phys. B84 ,643646,(2006). [32]T.Fortieretal.,PRL 98 ,070801,(2007);W.H.Oskayetal.,PRL 97, 020801(2006);SchneiderT,Peik E,andTammChr. ,PRL 94, 230801(2005);MargolisH.S.,etal.Science 306 ,1355(2004);T.Rosenband, etal.,Science 319 ,1808(2008); [33]R.P.Linfield,M.M.Colavita,B.F.Lane,ApJ 554 ,505,(2001);M.Bester,etal.,ApJ 392 ,357,(1992). [34]MendesV.B.andPavlisE.C.,Geoph.Res.Lett. 31 ,L14602,(2004);MendesV.B.,etal.,Geoph.Res. Lett. 29 ,1414,(2002). [35]R.Richardson,J.Chan,“AdvancedStirlingRadioisotopeGeneratorDevelopment,”FirstAnnualNASA ScienceTechnologyConference,(2007). [36] L. Thieme, “Adaptive vibration reduction system shown to effectively eliminate vibrations for the Stirling radioisotope power system,” NASA Glenn Research Center, Research and Technology Report, (1999). [37]H.M.Sanders,UpdatedAriane5performancesforescape,ellipticalandcircularmissions,ESA/ESOC MASWorkingPaperNo.360,(1994). [38]ESAdocumentD/SCI/DJS/SV/val/21851,Annex4. [39]M.R.Drinkwater,etal.,in: Earth Gravity Field from Space – from Sensorsto Earth Sciences , G.B. Beutler,etal.(Eds.),SpaceScienceSeriesofISSI, 18 ,419,KluwerAcademicPubl.,Dordrecht,(2003). [40] Ch.J. Bordé, Metrologia 39 ,435,(2002).;G.M.Tino,etal.,Nucl.Phys.B(Proc. Suppl.) 166 , 159, (2007). [41]C.Lämmerzahl,O.Preuss,H.Dittus,in Lasers,Clocks,andDragFree:ExplorationofRelativistic GravityinSpace ,H.Dittus,C.Lämmerzahl,S.G.Turyshev,(Eds.),p.75,Springer,(2007). [42]Reynaud,S.,etal.:PRD 77 ,122003,(2008).arXiv:0801.2896 ANNEX: List of Acronyms S/C:Spacecraft PPN:ParameterizedPostNewtonian PSD:PowerSpectralDensity CMB:CosmicMicrowaveBackground DSN:DeepSpaceNetwork USO:UltraStableOscillator TRL:TechnologyReadinessLevel( http://sci.esa.int/sciencee/www/object/index.cfm?fobjectid=37710 ) SNR:SignalToNoiseRatio SLR:SatelliteLaserRanging

39 LLR:LunarLaserRanging CCD:ChargeCoupledDevice FoV:FieldofView RTG:RadioisotopeThermoelectricGenerator ECDL:ExtendedCavityDiodeLaser DFB:DistributedFeedback MOPA:MasterOscillatorPowerAmplifier PM:PropulsionModule HGA:HighGainAntenna LEOP:LaunchandEarlyOrbitPhase AOCS:AttitudeandOrbitControlSystem GPHS:GeneralPurposeHeatSource ASRG:AdvancedStirlingRadioisotopeGenerator

40