Transantarctic Mountains, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Transantarctic Mountains, Antarctica Palaeogeography, Palaeoclimatology, Palaeoecology 213 (2004) 65–82 www.elsevier.com/locate/palaeo Neogene vegetation of the Meyer Desert Formation (Sirius Group) Transantarctic Mountains, Antarctica Allan C. Ashwortha,*, David J. Cantrillb aDepartment of Geosciences, North Dakota State University, Fargo, ND 58105-5517, USA bDepartment of Palaeobotany, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden Received 5 November 2003; received in revised form 28 May 2004; accepted 2 July 2004 Abstract A tundra vegetation consisting of at least 18 plant species is described from the Meyer Desert Formation which outcrops along the Beardmore Glacier in the Transantarctic Mountains, about 500 km from the South Pole. The fossils include pollen, seeds, fruits, flowers, leaves, wood, and in situ plants, of which wood and leaves of Nothofagus and a pollen assemblage had been previously reported. The plants include a cryptogamic flora of mosses and liverworts, conifers, and angiosperms in the families Gramineae, Cyperaceae, Nothofagaceae, Ranunculaceae, Hippuridaceae, ?Caryophyllaceae, and ?Chenopodiaceae or ?Myrtaceae. The plants grew in a weakly-developed soil formed within a complex periglacial environment that included moraines, glacial outwash streams, well-drained gravel ridges, and poorly drained depressions in which peat and marl were being deposited. D 2004 Elsevier B.V. All rights reserved. Keywords: Antarctica; Neogene; Nothofagus; Palaeoecology; Biodiversity; Palaeoclimate 1. Introduction yophyllaceae). Both species occur in the area from the islands of the Scotia Ridge, along the west coast of the The Antarctic flora today is dominated by crypto- Antarctic Peninsula south to the current southernmost gams, most of which only grow in the most sheltered site on Alamode Island, Terra Firma Islands at coastal locations north of 658S. Only two species of 68842VS. On the eastern side of the Antarctic vascular plants are known, a grass Deschampsia Peninsula, adjoining the frozen Weddell Sea, vascular antarctica Desv. (Poaceae) and a herbaceous caro- plants extend only as far south as 658 (Kappen and phyllid, Colobanthus quitensis (Kunth.) Bartl (Car- Schroeter, 2002). Both D. antarctica and C. quitensis are considered to have colonized the Antarctic Peninsula during the Holocene. Convey (1996) felt * Corresponding author. Fax: +1 701 231 7149. that the main reason why only two species had E-mail address: [email protected] successfully invaded was because of the geographic (A.C. Ashworth). isolation of Antarctica. The asymmetry in the geo- 0031-0182/$ - see front matter D 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.palaeo.2004.07.002 66 A.C. Ashworth, D.J. Cantrill / Palaeogeography, Palaeoclimatology, Palaeoecology 213 (2004) 65–82 graphic ranges of the species on the Antarctic each of a freshwater bivalve and a lymnaeid gastropod Peninsula, however, suggests that climatic factors (Ashworth and Preece, 2003). The new fossil plant play an important role in their distribution. Support materials reported here include moss stems and for the importance of climate in limiting distribution leaves, in situ cushion plants, and fruits, stems and comes from the failure of experiments to transplant flowers of several species of vascular plants. The the species further south (Lewis Smith, 1994). discoveries indicate a more diverse Neogene flora The simple vegetational communities and the low than was previously known and, together with the plant diversity seen today contrast with the rich fossil previously discovered fossils, enable a more complete record. Diverse forests of conifers (podocarps and interpretation of the Neogene vegetation and land- araucarians) and angiosperms (Cunoniaceae, Notho- scape in the Transantarctic Mountains. fagaceae, Proteaceae, Lauraceae) inhabited the con- tinent during the Late Cretaceous and Paleogene Periods (Dettmann and Thomson, 1987; Askin, 2. Stratigraphy and age 1992; Cantrill and Poole, 2002). The geographic isolation associated with the breakup of Gondwana, The Meyer Desert Formation (MDF) is the name and the development of the Antarctic ice sheets, given to the mostly nonmarine glacigenic deposits resulted in radical changes to the vegetation. How- forming the upper part of the Sirius Group, formerly ever, the nature and the timing of extinctions caused the Sirius Formation, in the Meyer Desert and by climatic cooling is still being debated largely due Dominion Range region of the Transantarctic Moun- to the paucity of Neogene fossil sites (Cantrill, 2001). tains (Mercer, 1972; McKelvey et al., 1991; Webb et Mercer (1972, p. 432) was the first to suggest that al., 1996). The deposits are gently inclined to the an examination of the contact between the Sirius north and are fractured by numerous normal faults Formation, a formation he named, and the underlying with throws of up to 300 m (McKelvey et al., 1991). bedrock in the Oliver Bluffs, Dominion Range, might The MDF occurs in discrete, terraced sedimentary result in the discovery of d...a palaeosol, or traces of packages, with a combined thickness of about 185 m. vegetation.T His intuition proved to be correct. Each of the packages is unconformable on the Nothofagus wood was described by Carlquist (1987) bedrock of a multi-tiered, glacially-scoured erosion and Webb et al. (1987) and pollen by Askin and surface, representing several distinct episodes of uplift Markgraf (1986). Further descriptions of the wood, and erosion followed by deposition. pollen, and well-preserved leaves of a new species of The fossils are from beds within the topographically Nothofagus, Nothofagus beardmorensis, were made lowest and stratigraphically younger part of the by Hill and Truswell (1993), Webb and Harwood formation exposed in the Oliver Bluffs, on the eastern (1993), Hill et al. (1996), and Francis and Hill (1996). flank of the upper valley of the Beardmore Glacier at Today, the climate of the Oliver Bluffs is too cold and latitude 85807VS, longitude 166835VE. The Oliver dry to support vascular plant or cryptogram growth. Bluffs, at an elevation of 1760 m above sea level, are The reports of Neogene fossil wood, leaves, and located about 170 km south of the confluence of the pollen of Nothofagus from a site so far south are one Beardmore Glacier with the Ross Ice Shelf and about of the most important palaeobotanical discoveries to 500 km north of the South Pole (Fig. 1). The new fossils have been made in Antarctica. The discoveries are from a horizon about 20 m above the base of an provided the basis for palaeoclimatic interpretations erosional spur located near the northern end of the that became significant in an ongoing debate about the bluffs (Fig. 2A). The section is about 900 m north of the relative stability of the Antarctic ice sheets. one from which leaves of Nothofagus beardmorensis An expedition to the Oliver Bluffs during the 1995 were described (Hill et al., 1996). The section consists austral summer resulted in the discovery of new fossil of 85.5 m of interbedded diamictites, coarse cross- materials. These included two species of curculionid bedded sandstones, and wood-bearing siltstones and beetles (Ashworth et al., 1997; Ashworth and sandstones. On the scree slope immediately north of Kuschel, 2003), one species of a cyclorraphid fly the spur, we discovered a thin lithified peat interbedded (Ashworth and Thompson, 2003), and one species between thin marlstone deposits (Fig. 2F), at a similar A.C. Ashworth, D.J. Cantrill / Palaeogeography, Palaeoclimatology, Palaeoecology 213 (2004) 65–82 67 Fig. 1. Locality map of the fossil site at the Oliver Bluffs on the Beardmore Glacier in the Meyer Desert region of the Dominion Range, Transantarctic Mountains. stratigraphic level to the wood-bearing siltstones and Group in the Beardmore region, outcrops about 90 km sandstones. The horizon is also at about the same level down-glacier from the Oliver Bluffs. Webb et al. (1996) as a palaeosol identified as the lower of two Viento interpreted the non-stratified and stratified drift with types by Retallack et al. (2001, Fig. 5). McKelvey et al. dropstones as glaciomarine sediments deposited by (1991) interpreted the diamictites as lodgement tills grounded and floating ice in a wide fjord. The deposited by the ancestral Beardmore Glacier during a Cloudmaker Formation is overlain by the MDF series of advances and retreats; they interpreted the implying that the fjord infilled with sediment either fossiliferous deposits to have accumulated during an by subsidence and progradation or by changes in base interglaciation. level. Webb et al. (1996) also proposed that subsequent Agglutinated foraminifera and other marine micro- to deposition, the Sirius Group deposits were uplifted fossils occur in the tillites at the southern end of the by about 1300 m. bluffs below the horizon containing leaves of Notho- A biostratigraphic age of less than 3.8 Ma has been fagus beardmorensis. Webb et al. (1996) correlated the assigned to the MDF based on the occurrence in the foraminifera assemblage with a similar assemblage Oliver Bluffs glacigenic sediments of reworked from the upper part of the Cloudmaker Formation. The marine diatoms (Harwood, 1986; Webb et al., 1996). Cloudmaker Formation, the lower part of the Sirius The same diatom taxa occur in situ with tephra in the A.C. Ashworth, D.J. Cantrill / Palaeogeography, Palaeoclimatology, Palaeoecology 213 (2004) 65–82 69 CIROS-2 core from the Ross Sea with 40Ar/39Ar ages abundant achenes (all
Recommended publications
  • University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY of the SCOTT GLACIER and WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA
    This dissertation has been /»OOAOO m icrofilm ed exactly as received MINSHEW, Jr., Velon Haywood, 1939- GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA. The Ohio State University, Ph.D., 1967 Geology University Microfilms, Inc., Ann Arbor, Michigan GEOLOGY OF THE SCOTT GLACIER AND WISCONSIN RANGE AREAS, CENTRAL TRANSANTARCTIC MOUNTAINS, ANTARCTICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University by Velon Haywood Minshew, Jr. B.S., M.S, The Ohio State University 1967 Approved by -Adviser Department of Geology ACKNOWLEDGMENTS This report covers two field seasons in the central Trans- antarctic Mountains, During this time, the Mt, Weaver field party consisted of: George Doumani, leader and paleontologist; Larry Lackey, field assistant; Courtney Skinner, field assistant. The Wisconsin Range party was composed of: Gunter Faure, leader and geochronologist; John Mercer, glacial geologist; John Murtaugh, igneous petrclogist; James Teller, field assistant; Courtney Skinner, field assistant; Harry Gair, visiting strati- grapher. The author served as a stratigrapher with both expedi­ tions . Various members of the staff of the Department of Geology, The Ohio State University, as well as some specialists from the outside were consulted in the laboratory studies for the pre­ paration of this report. Dr. George E. Moore supervised the petrographic work and critically reviewed the manuscript. Dr. J. M. Schopf examined the coal and plant fossils, and provided information concerning their age and environmental significance. Drs. Richard P. Goldthwait and Colin B. B. Bull spent time with the author discussing the late Paleozoic glacial deposits, and reviewed portions of the manuscript.
    [Show full text]
  • Nothofagus, Key Genus of Plant Geography, in Time
    Nothofagus, key genus of plant geography, in time and space, living and fossil, ecology and phylogeny C.G.G.J. van Steenis Rijksherbarium, Leyden, Holland Contents Summary 65 1. Introduction 66 New 2. Caledonian species 67 of and Caledonia 3. Altitudinal range Nothofagus in New Guinea New 67 Notes of 4. on distribution Nothofagus species in New Guinea 70 5. Dominance of Nothofagus 71 6. Symbionts of Nothofagus 72 7. Regeneration and germination of Nothofagus in New Guinea 73 8. Dispersal in Nothofagus and its implications for the genesis of its distribution 74 9. The South Pacific and subantarctic climate, present and past 76 10. The fossil record 78 of in time and 11. Phylogeny Nothofagus space 83 12. Bi-hemispheric ranges homologous with that of Fagoideae 89 13. Concluding theses 93 Acknowledgements 95 Bibliography 95 Postscript 97 Summary Data are given on the taxonomy and ecology of the genus. Some New Caledonian in descend the lowland. Details the distri- species grow or to are provided on bution within New Guinea. For dominance of Nothofagus, and Fagaceae in general, it is suggested that this. Some in New possibly symbionts may contribute to notes are made onregeneration and germination Guinea. A is devoted a discussion of which to be with the special chapter to dispersal appears extremely slow, implication that Nothofagus indubitably needs land for its spread, and has needed such for attaining its colossal range, encircling onwards of New Guinea the South Pacific (fossil pollen in Antarctica) to as far as southern South America. Map 1. An is other chapter devoted to response ofNothofagus to the present climate.
    [Show full text]
  • An Early Paleogene Pollen and Spore Assemblage from the Sabrina Coast, East Antarctica
    Palynology ISSN: 0191-6122 (Print) 1558-9188 (Online) Journal homepage: https://www.tandfonline.com/loi/tpal20 New species from the Sabrina Flora: an early Paleogene pollen and spore assemblage from the Sabrina Coast, East Antarctica Catherine Smith, Sophie Warny, Amelia E. Shevenell, Sean P.S. Gulick & Amy Leventer To cite this article: Catherine Smith, Sophie Warny, Amelia E. Shevenell, Sean P.S. Gulick & Amy Leventer (2019) New species from the Sabrina Flora: an early Paleogene pollen and spore assemblage from the Sabrina Coast, East Antarctica, Palynology, 43:4, 650-659, DOI: 10.1080/01916122.2018.1471422 To link to this article: https://doi.org/10.1080/01916122.2018.1471422 Published online: 12 Dec 2018. Submit your article to this journal Article views: 116 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tpal20 PALYNOLOGY 2019, VOL. 43, NO. 4, 650–659 https://doi.org/10.1080/01916122.2018.1471422 New species from the Sabrina Flora: an early Paleogene pollen and spore assemblage from the Sabrina Coast, East Antarctica Catherine Smitha, Sophie Warnyb, Amelia E. Shevenella, Sean P.S. Gulickc and Amy Leventerd aCollege of Marine Science, University of South Florida, St. Petersburg, FL, USA; bDepartment of Geology and Geophysics and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA; cInstitute of Geophysics and Department of Geological Sciences, University of Texas at Austin, Austin, TX, USA; dDepartment of Geology, Colgate University, Hamilton, NY, USA ABSTRACT KEYWORDS Palynological analyses of 13 samples from two sediment cores retrieved from the Sabrina Coast, East Paleocene; Eocene; Aurora Antarctica provide rare information regarding the paleovegetation within the Aurora Basin, which Basin; Sabrina Coast; East today is covered by the East Antarctic Ice Sheet.
    [Show full text]
  • Late Quaternary Surface Fluctuations of Beardmore Glacier, Antarctica
    Late Quaternary surface fluctuations Journal, this issue). These four drifts are from 10 centimeters to several meters thick. They are composed largely of unconsoli- of Beardmore Glacier, Antarctica dated gravel. Numerous included striated clasts were probably reworked from Sirius drift. Thin boulder-belt moraines com- monly mark drift surfaces and define outer edges of drift sheets. The thin drift sheets overlie well-preserved morphological fea- tures, particularly in Sirius deposits. Figure 3 shows former surfaces of Beardmore Glacier repre- G. H. DENTON sented by the four drift sheets. The upper limit of Plunket drift parallels the present surface of Beardmore Glacier along its Institute for Quaternary Studies entire length. It also fringes the snout of Rutkowski Glacier, and which drains the local ice cap on the Dominion Range. This drift Department of Geological Sciences configuration shows similar behavior of these two glaciers dur- University of Maine Orono, Maine 04469 ing deposition of Plunket drift. The upper limit of Beardmore and Meyer drifts are close to the present surface of Beardmore Glacier near the polar plateau but systematically rise above the B.C. ANDERSEN present surface in the downglacier direction. Further, the areal patterns of Beardmore and Meyer drifts show recession of Department of Geology Rutkowski Glacier concurrent with expansion of Beardmore University of Oslo Glacier. Dominion drift occurs on the northern flank of the Oslo, Noruay Dominion Range, where it reaches high above Beardmore Glacier (Prentice et al., Antarctic Journal, this issue). We draw several inferences from the configuration, physical H.W. CONWAY characteristics, and weathering of these four drift sheets.
    [Show full text]
  • The Neogene Biota of the Transantarctic Mountains
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Related Publications from ANDRILL Affiliates Antarctic Drilling Program 2007 The Neogene biota of the Transantarctic Mountains A. C. Ashworth North Dakota State University, [email protected] A. R. Lewis North Dakota State University, [email protected] D. R. Marchant Boston University, [email protected] R. A. Askin [email protected] D. J. Cantrill Royal Botanic Gardens, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/andrillaffiliates Part of the Environmental Indicators and Impact Assessment Commons Ashworth, A. C.; Lewis, A. R.; Marchant, D. R.; Askin, R. A.; Cantrill, D. J.; Francis, J. E.; Leng, M. J.; Newton, A. E.; Raine, J. I.; Williams, M.; and Wolfe, A. P., "The Neogene biota of the Transantarctic Mountains" (2007). Related Publications from ANDRILL Affiliates. 5. https://digitalcommons.unl.edu/andrillaffiliates/5 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Related Publications from ANDRILL Affiliates by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors A. C. Ashworth, A. R. Lewis, D. R. Marchant, R. A. Askin, D. J. Cantrill, J. E. Francis, M. J. Leng, A. E. Newton, J. I. Raine, M. Williams, and A. P. Wolfe This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ andrillaffiliates/5 U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Extended Abstract.071 The Neogene biota of the Transantarctic Mountains A.
    [Show full text]
  • Download Factsheet
    Antarctic Factsheet Geographical Statistics May 2005 AREA % of total Antarctica - including ice shelves and islands 13,829,430km2 100.00% (Around 58 times the size of the UK, or 1.4 times the size of the USA) Antarctica - excluding ice shelves and islands 12,272,800km2 88.74% Area ice free 44,890km2 0.32% Ross Ice Shelf 510,680km2 3.69% Ronne-Filchner Ice Shelf 439,920km2 3.18% LENGTH Antarctic Peninsula 1,339km Transantarctic Mountains 3,300km Coastline* TOTAL 45,317km 100.00% * Note: coastlines are fractal in nature, so any Ice shelves 18,877km 42.00% measurement of them is dependant upon the scale at which the data is collected. Coastline Rock 5,468km 12.00% lengths here are calculated from the most Ice coastline 20,972km 46.00% detailed information available. HEIGHT Mean height of Antarctica - including ice shelves 1,958m Mean height of Antarctica - excluding ice shelves 2,194m Modal height excluding ice shelves 3,090m Highest Mountains 1. Mt Vinson (Ellsworth Mts.) 4,892m 2. Mt Tyree (Ellsworth Mts.) 4,852m 3. Mt Shinn (Ellsworth Mts.) 4,661m 4. Mt Craddock (Ellsworth Mts.) 4,650m 5. Mt Gardner (Ellsworth Mts.) 4,587m 6. Mt Kirkpatrick (Queen Alexandra Range) 4,528m 7. Mt Elizabeth (Queen Alexandra Range) 4,480m 8. Mt Epperly (Ellsworth Mts) 4,359m 9. Mt Markham (Queen Elizabeth Range) 4,350m 10. Mt Bell (Queen Alexandra Range) 4,303m (In many case these heights are based on survey of variable accuracy) Nunatak on the Antarctic Peninsula 1/4 www.antarctica.ac.uk Antarctic Factsheet Geographical Statistics May 2005 Other Notable Mountains 1.
    [Show full text]
  • Age of the Falla Formation (Triassic), Queen Alexandra Range
    West Antarctica, has been computed with the use of a Bentley, C. R., and J . W. Clough. 1972. Seismic refraction finite difference technique. Results agree well with ob- shooting in Ellsworth and Dronning Maud Lands. In: Ant- served data. Comparison with calculations based on arctic Geology and Geophysics (R. J . Adie, ed.). Oslo, Uni- versitetsforlaget. 169-172. approximations commonly made in surface wave analyses Clough, J . W. 1973. Radio-echo sounding: brine percolation 4 (Poissons ratio = 1/ ; density = constant) surprisingly layer. Journal of Glaciology, 12(64): 141-143. shows that the group velocities are relatively more sensi- Kohnen, H. 1971. The relation between seismic urn structure, tive to incorrect densities than to incorrect shear wave temperature, and accumulation. Zeitschrift für Gletscherkunde velocities. und Glazialgeologie, VII( I-2): 141-151. Kohnen, H. 1972. Uber die beziehung zwischen seismischen 7. Final strain-rate calculations for a grid network geschwindigkeiten und der dichte in firn and eis. Zeitschrift across Roosevelt Island show a strongly asymmetrical für Geophysik, 38: 925-935. profile, with the longitudinal extensional strains twice as Kohnen, H., and C. R. Bentley. 1973. Seismic refraction and re- great on the northeast as on the southwest flank of the flection measurements at Byrd Station, Antarctica. Journal of Glaciology, 12(64): 101-111. island. Since accumulation rates on the two flanks are Kososki, B. A. 1972. A gravity study of West Antarctica. M. S. about the same the difference in strain rates is probably Thesis, University of Wisconsin. attributable to the effect of the Ross Ice Shelf. Robertson, J. D. 1972. A seismic study of the structure and metamorphism of 6rn in West Antarctica.
    [Show full text]
  • The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications
    University of New Hampshire University of New Hampshire Scholars' Repository Faculty Publications 1-20-2017 The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications Paul A. Mayewski University of Maine Mark S. Twickler University of New Hampshire, Durham, [email protected] W. Berry Lyons University of New Hampshire, Durham Mary Jo Spencer University of New Hampshire, Durham Debra A. Meese U.S. Army Cold Regions Research and Engineering Laboratory See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/faculty_pubs Recommended Citation Mayewski, P. A., Twickler, M. S., Lyons, W. B., Spencer, M. J., Meese, D. A., Gow, A. J., . Saltzman, E. (1990). The Dominion Range Ice Core, Queen Maud Mountains, Antarctica - General Site and Core Characteristics with Implications. Journal of Glaciology, 36(122), 11-16. doi:10.1017/ S0022143000005499 This Article is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors Paul A. Mayewski, Mark S. Twickler, W. Berry Lyons, Mary Jo Spencer, Debra A. Meese, Anthony J. Gow, Pieter M. Grootes, Todd Sowers, M. Scott Watson, and Eric Saltzman This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/faculty_pubs/ 375 loumal oJ Glaciology, Vol. 36, No. 122, 1990 THE DOMINION RANGE ICE CORE, QUEEN MAUD MOUNTAINS, ANTARCTICA - GENERAL SITE AND CORE CHARACTERISTICS WITH IMPLICATIONS By PAUL A.
    [Show full text]
  • Reconstructing Leaf Area from Fragments: Testing Three Methods Using a Fossil Paleogene Species
    RESEARCH ARTICLE Reconstructing leaf area from fragments: testing three methods using a fossil paleogene species Agathe Toumoulin1,2,4 , Lutz Kunzmann1 , Karolin Moraweck1, and Lawren Sack3 Manuscript received 23 March 2020; revision accepted 9 September PREMISE: Fossil leaf traits can enable reconstruction of ancient environments and climates. 2020. Among these, leaf size has been particularly studied because it reflects several climatic 1 Senckenberg Natural History Collections Dresden, Königsbrücker forcings (e.g., precipitation and surface temperature) and, potentially, environment Landstrasse 159, Dresden 01109, Germany characteristics (e.g., nutrient availability, local topography, and openness of vegetation). 2 Aix Marseille University, CNRS, IRD, INRA, Coll France, However, imperfect preservation and fragmentation can corrupt its utilization. We provide CEREGE, Technopole Arbois, 13545 Cedex 04, Aix-en-Provence BP80, France improved methodology to estimate leaf size from fossil fragments. 3 UCLA Ecology and Evolutionary Biology, 621 Charles E. Young METHODS: We apply three methods: (1) visually reconstructing leaf area based on taxon- Drive South, Box 951606, Los Angeles, CA 90095-1606, USA specific gross morphology; (2) estimating intact leaf area from vein density based on a 4 Author for correspondence (e-mail: [email protected]) vein scaling relationship; and (3) a novel complementary method, determining intact leaf Citation: Toumoulin, A., L. Kunzmann, K. Moraweck, and L. Sack. length based on the tapering of the midvein in the fragment. We test the three methods 2020. Reconstructing leaf area from fragments: testing three methods using a fossil paleogene species. American Journal of Botany 107(12): for fossils of extinct Eotrigonobalanus furcinervis (Fagaceae) from two lignite horizons of the 1786–1797.
    [Show full text]
  • 2010-2011 Science Planning Summaries
    Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites.
    [Show full text]
  • An Ice-Core-Based, Late Holocene History for the Transantarctic Mountains, Antarctica Paul A
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UNH Scholars' Repository University of New Hampshire University of New Hampshire Scholars' Repository Earth Sciences Scholarship Earth Sciences 1995 An Ice-Core-Based, Late Holocene History for the Transantarctic Mountains, Antarctica Paul A. Mayewski University of New Hampshire - Main Campus W. Berry Lyons University of Alabama - Tuscaloosa Gregory A. Zielinski University of New Hampshire - Main Campus Mark S. Twickler University of New Hampshire - Main Campus Sallie I. Whitlow University of New Hampshire - Main Campus See next page for additional authors Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub Recommended Citation Mayewski, P. A., Lyons, W. B., Zielinski, G., Twickler, M., Whitlow, S., Dibb, J., Grootes, P., Taylor, K., Whung, P.-Y., Fosberry, L., Wake, C. and Welch, K. (1995) An Ice-Core-Based, Late Holocene History for the Transantarctic Mountains, Antarctica, in Contributions to Antarctic Research IV (eds D. H. Elliot and G. L. Blaisdell), American Geophysical Union, Washington, D. C.. doi: 10.1002/9781118668207.ch4 This Book Chapter is brought to you for free and open access by the Earth Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Authors Paul A. Mayewski, W. Berry Lyons, Gregory A. Zielinski, Mark S. Twickler, Sallie I. Whitlow, Jack E. Dibb, P Grootes, K Taylor, P-Y Whung, L Fosberry, Cameron P. Wake, and K Welch This book chapter is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/earthsci_facpub/561 CONTRIBUTIONS TO ANTARCTIC RESEARCH IV ANTARCTIC RESEARCH SERIES, VOLUME 67, PAGES 33-45 AN ICE-CORE-BASED, LATE HOLOCENE HISTORY FOR THE TRANSANTARCTIC MOUNTAINS, ANTARCTICA P.
    [Show full text]
  • Quercus and Lithocarpus
    "Uqog"Vjqwijvu"qp"Gxqnwvkqpct{"cpf"Rj{nqigpgvke" Perspectives in the Oaks - Quercus and Lithocarpus J. Smartt and R.J. White, School of Biological Sciences, University of Southampton, United Kingdom Introduction - the family Hcicegcg Cp"korqtvcpv"lwuvkÞecvkqp"hqt"ectt{kpi"qwv"gzrgtkogpvcn"vczqpqoke"uvwfkgu"qp" c"nctig"itqwr"uwej"cu"vjg"qcmu"ku"vjg"dgnkgh"vjcv"vjgug"ecp"jgnr"vq"tguqnxg"fkhÞewnvkgu" cpf"codkiwkvkgu"yjkej"vjg"encuukecn"vczqpqoke"crrtqcejgu"ecppqv0"Vjg"qcmu"ctg"c" widely distributed and species-rich group with a complex evolutionary history, and it is therefore helpful to view our present perceptions of the oaks particularly in the dtqcfgt"eqpvgzv"qh"vjg"hcokn{"vq"yjkej"vjg{"dgnqpi0 The Fagaceae is not a large family; there are ten recognised genera (Nixon, 3;:;+0"Fagus - the beeches, Nothofagus - the southern beeches, Castanea - the chestnuts, Castanopsis and Chrysolepis - the chinkapins and two genera of oaks, Lithocarpus and Quercus. In terms of species richness, the oak genera are by far vjg"nctiguv0"Ecowu"*3;58/3;76+."kp"jgt"oqpwogpvcn"yqtm"Les Chenes, recognises 279 species of Lithocarpus and 430 of Quercus. In addition, there are 3 very small genera containing rare and possibly relict species, namely Trigonobalanus, Co- lombobalanus and Formanodendron0""Vjg"pwodgt"qh"urgekgu"ujg"tgeqipkugf"kp"vjg" other genera is 8 in Fagus, 12 in Nothofagus, 7 in Castanea and 27 in Castanopsis0 Although the actual number of species recognised by different authorities varies, vjgug"Þiwtgu"kpfkecvg"tgncvkxg"urgekgu"tkejpguu0"Qp"vjku"dcuku."qcmu"eqpuvkvwvg"vjg"
    [Show full text]