The Stink Bug, Andrallus Spinidens (Hemiptera: Pentatomidae), a Potential Predator for Effective Biological Control

Total Page:16

File Type:pdf, Size:1020Kb

The Stink Bug, Andrallus Spinidens (Hemiptera: Pentatomidae), a Potential Predator for Effective Biological Control Journal of Plant Protection Research ISSN 1427-4345 REVIEW The stink bug, Andrallus spinidens (Hemiptera: Pentatomidae), a potential predator for effective biological control Arash Zibaee1*, Samar Ramzi2, Hassan Hoda3 1 Department of Plant Protection, Faculty of Agricultural Sciences, Plant Protection, University of Guilan, Guilan, Iran 2 Department of Plant Protection, Tea Research Institute of Iran, Lahijan, Iran 3 Department of Biological Control, Plant Protection Institute, Amol, Iran Vol. 60, No. 4: 336–344, 2020 Abstract The aim of this review is to describe ecological and physiological features of Andrallus DOI: 10.24425/jppr.2020.134913 spinidens Fabricius and to discuss various possibilities of using it as an appropriate bio- Received: February 17, 2020 control agent in different agroecosystems. This hemipteran is a cosmopolitan predator of Accepted: August 19, 2020 caterpillar pests of rice, wheat, soybean, moong, pigeon pea, maize, sugarcane and cowpea with special feeding on Chilo suppressalis Walker, Naranga aenescnes Moore, Helicoverpa *Corresponding address: armigera Hübner and Spodoptera litura Fabricius. Climate, spatial distribution of prey and [email protected] type of agricultural crop are among the factors influencing the biology and spatial-tempo- ral distribution of A. spinidens. Studies have shown random or aggregated distribution of the predatory bug with population peaks in April, July and October. The 1st instar nymphs have no feeding, the 2nd and 3rd (the first 2 days) instars are seedling feeders while they are voracious predators of caterpillars from the middle of 3rd instar to adulthood. The salivary gland consisted of two anterior-, two lateral- and two posterior lobes with major secretion of trypsin, chymotrypsin, amino- and carboxypeptidases. The alimentary canal has a four-sectioned midgut in which the third section seems to be the main place for digestive enzymes including α-amylase, trypsin, chymotrypsin, elastase cathepsins B, L and D as well as carboxy- and aminopetidases. Andrallus spinidens have shown compat- ibility with some insecticides and the entomopathogenic fungus, Beauveria bassiana. The predatory bug may be successfully reared in a laboratory using Galleria mellonella larvae as prey and both conservation and augmentation should be considered as biological control strategies against insect pests. Keywords: Andrallus spinidnes, biological control, distribution, mass rearing, physiology Introduction There are several constraints on rice production around and thrips (Zibaee 2013). Due to high insect diversity the world including improper transportation, lack of in paddy fields and the need to produce healthy rice, suitable warehouses, unfavorable weather, insect pests, it is recommended to design an efficient system of in- pathogens and weeds (Anonymous 2018). Insects and tegrated pest management to alleviate pest population pathogens cause an average loss of 37% to rice yield outbreaks. Some steps should be included in the system that can vary between 24 to 41% regarding the produc- like proper cleaning of agronomical equipment, using tion situation (Savary et al. 2000). Insects from differ- clean seeds and varieties resistant to environmental ex- ent orders cause significant damage to rice plantations tremes and insect damage, balanced use of fertilizers, some of which are rice hispa, case worm, leaf folders, conservation of natural biocontrol agents, use of ecof- planthoppers, stem borers, armyworms, gall midges riendly pesticides and efficient storage of harvested Arash Zibaee et al.: The stink bug, Andrallus spinidens (Hemiptera: Pentatomidae), a potential predator… 337 grains (Reissig et al. 1986). Due to the urgent need for strategies by providing proper habitat, using fewer an increased food supply which involves reducing rice toxic pesticides and providing seedlings in winter in- losses by pests, farmers neglect integrated pest man- crease its population which naturally suppresses out- agement and freely spray paddy fields with different breaks of rice caterpillars. Andrallus spinidens belongs classes of insecticides even higher than the recommend- to the Pentatomid family of Hemipterans which was ed doses (Parween and Nakagoshi 2001). Although identified by Fabricius while Distant in 1902 reported such action may be effective in short-term periods, it from India and described its current morphologi- it will definitely lead to extensive problems including cal characteristics (Distant 1902). In the current re- disruption of an ecological balance between pests and view, the biological and physiological characteristics of predators, environmental pollution, products contain- A. spinidens are discussed along with its potential com- ing pesticide residue and pesticide resistance (Parween patibility with other control methods. and Nakagoshi 2001; Zibaee et al. 2009; Zibaee 2019). The afore-mentioned concerns have forced producers and consumers toward using eco-friendly pest control Morphological identification methods, mainly biological control. Microbial bacteria like Bacillus thuringiensis and fungi like Beuaveria bas- siana and Metarhizium anisoplia, parasitoids of Braco- Eggs are oval-shaped with 1.149 mm length and nids and Trichogrammatids in addition to predators 0.84 mm diameter. The top of each egg is covered like Andrallus spinidens Fabricius (Hemiptera: Pen- with a disc-shaped valve and a dark brown ring. The tatomidae) are among the major biocontrol agents of eggs are white to pale yellow just after laying but turn rice pests around the world (Ramzi and Zibaee 2014; dark with embryonic growth (Rajendra and Patel Bhojendra et al. 2019). Their distribution, efficiency 1971; Javadi et al. 2005) (Fig. 1B). The newly hatched and adaptation to cultivation systems should be deter- nymphs are bright red and turn dark red in a matter mined for potential use in conservation or augmenta- of hours (Fig. 1B). In the second nymphal stage, there tion strategies against rice pests. are six black spots on the lateral sides of the abdomen Andrallus spinidens is a predatory bug of caterpil- and three black spots on the center of the abdomen lars that naturally resides in paddy fields. Apart from (Fig. 1C). The third nymphs are similar to second other biocontrol agents like parasitoids, conservation nymphs but they are dark red (Fig. 1D). In fourth and Fig. 1. Adults, eggs and nymphal instars of Andrallus spinidens. A – adult, B – eggs and 1st instar nymphs, C – 2nd instar nymph, D – 3rd instar nymph, E – 4th instar nymph, F – 5th instar nymph 338 Journal of Plant Protection Research 60 (4), 2020 fifth nymphal stages, imaginal discs and dorsal spines Walker (Lepidoptera: Noctuidae), Thermesia rubri- are distinct. There are four black spots in the center of cans Boiduval (Lepidoptera: Noctuidae), Mythimna the abdomen and seven black spots on the lateral sides unipuncta Walker (Lepidoptera: Noctuidae), Melanitis of the abdomen although some yellow spots are visible leda L. (Lepidoptera: Nymphalidae), Pelopida smathias on the abdominal segments (Rajendra and Patel 1971; Fabricius (Lepidoptera: Hesperiidae), Spilosoma ob- Javadi et al. 2005) (Fig. 1E). Adults (males 13.4 mm lique Walker in addition to a coleopteran, Zygogram- long, females 15.8 mm long) are pale brown with dis- ma bicolorata Pallister (Coleoptera: Chrysomelidae) tinct, dense black punctuation on the head, pronotum, (Lepidoptera: Erabidae) (Distant 1902; Maxwell-Le- scutellum and hemelytra which form a distinct pattern froy 1909; Cherian and Brahmachari 1941; Rajendra on the head and anterior part of the pronotum. Anten- and Patel 1971; Singh and Gangrade 1975; Pawar 1976; nae have dark brown segments with very fine setae; the Rao and Rao 1979; Singh and Singh 1989; Pandey et al. rostrum is robust and long-reaching to the posterior 2002; Mohaghegh and Amir-Maafi 2007; Claver and coxae (Ghate et al. 2012). The head is almost rectan- Jaiswal 2013; Shylesha and Sravika 2018; Bhojendra gular with the two compound eyes on both sides and et al. 2019). a pair of a simple red eyes near the compound eyes Several environmental factors may affect the biol- (Rajendra and Patel 1971). The pronotum is hexago- ogy and spatial-temporal distribution of A. spinidens nal and densely punctured. The scutellum is longer including climate, distribution of prey and type of than wide and densely punctured with a longitudi- host plant. Javadi et al. (2005) determined the spatial- nal smooth line in the middle (Ghate et al. 2012) temporal distribution of the adults and the nymphal (Fig. 1A). Corium of hemelytra is broad and extends stages of A. spinidnes in rice fields of northern Iran on to the lateral margin of the wing with two white two rice varieties. These authors reported a random to stripes on the outer sides of the curium wing (Javadi aggregated population index on the two rice varieties. et al. 2005). Moreover, they monitored population changes from March to October and reported the highest number of both adults and nymphs in July although two small Distribution and host range peaks were recorded in May and October for adults as well as in June and September for nymphs (Javadi et al. 2005) (Fig. 2) (Rezvani and Shahosseini 1976). Andrallus spinidens has been reported in different Shylesha and Sravika (2018) found active feeding of geographical areas of eastern Asia, Australia, North both adults and nymphs on the different larval stages Africa, some parts of Europe and North America [as of Spodoptera frugiperda Smith (Lepidoptera:
Recommended publications
  • Arboreal Arthropod Assemblages in Chili Pepper with Different Mulches and Pest Managements in Freshwater Swamps of South Sumatra, Indonesia
    BIODIVERSITAS ISSN: 1412-033X Volume 22, Number 6, June 2021 E-ISSN: 2085-4722 Pages: 3065-3074 DOI: 10.13057/biodiv/d220608 Arboreal arthropod assemblages in chili pepper with different mulches and pest managements in freshwater swamps of South Sumatra, Indonesia SITI HERLINDA1,2,3,♥, TITI TRICAHYATI2, CHANDRA IRSAN1,2,3, TILI KARENINA4, HASBI3,5, SUPARMAN1, BENYAMIN LAKITAN3,6, ERISE ANGGRAINI1,3, ARSI1,3 1Department of Plant Pests and Diseases, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia. Tel.: +62-711-580663, Fax.: +62-711-580276, ♥email: [email protected] 2Crop Sciences Graduate Program, Faculty of Agriculture, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Bukit Besar, Palembang 30139, South Sumatra, Indonesia 3Research Center for Sub-optimal Lands, Universitas Sriwijaya. Jl. Padang Selasa No. 524, Bukit Besar, Palembang 30139, South Sumatra, Indonesia 4Research and Development Agency of South Sumatera Province. Jl. Demang Lebar Daun No. 4864, Pakjo, Palembang 30137, South Sumatra, Indonesia 5Department of Agricultural Engineering, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia 6Department of Agronomy, Faculty of Agriculture, Universitas Sriwijaya. Jl. Raya Palembang-Prabumulih Km 32, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia Manuscript received: 13 April 2021. Revision accepted: 7 May 2021. Abstract. Herlinda S, Tricahyati T, Irsan C, Karenina T, Hasbi, Suparman, Lakitan B, Anggraini E, Arsi. 2021. Arboreal arthropod assemblages in chili pepper with different mulches and pest managements in freshwater swamps of South Sumatra, Indonesia. Biodiversitas 22: 3065-3074. In the center of freshwater swamps in South Sumatra, three different chili cultivation practices are generally found, namely differences in mulch and pest management that can affect arthropod assemblages.
    [Show full text]
  • Florida Predatory Stink Bug (Unofficial Common Name), Euthyrhynchus Floridanus(Linnaeus) (Insecta: Hemiptera: Pentatomidae)1 Frank W
    EENY157 Florida Predatory Stink Bug (unofficial common name), Euthyrhynchus floridanus (Linnaeus) (Insecta: Hemiptera: Pentatomidae)1 Frank W. Mead and David B. Richman2 Introduction Distribution The predatory stink bug, Euthyrhynchus floridanus (Lin- Euthyrhynchus floridanus is primarily a Neotropical species naeus) (Figure 1), is considered a beneficial insect because that ranges within the southeastern quarter of the United most of its prey consists of plant-damaging bugs, beetles, States. and caterpillars. It seldom plays a major role in the natural control of insects in Florida, but its prey includes a number Description of economically important species. Adults The length of males is approximately 12 mm, with a head width of 2.3 mm and a humeral width of 6.4 mm. The length of females is 12 to 17 mm, with a head width of 2.4 mm and a humeral width of 7.2 mm. Euthyrhynchus floridanus (Figure 2) normally can be distinguished from all other stink bugs in the southeastern United States by a red- dish spot at each corner of the scutellum outlined against a blue-black to purplish-brown ground color. Variations occur that might cause confusion with somewhat similar stink bugs in several genera, such as Stiretrus, Oplomus, and Perillus, but these other bugs have obtuse humeri, or at least lack the distinct humeral spine that is present in adults of Euthyrhynchus. In addition, species of these genera Figure 1. Adult of the Florida predatory stink bug, Euthyrhynchus known to occur in Florida have a short spine or tubercle floridanus (L.), feeding on a beetle. situated on the lower surface of the front femur behind the Credits: Lyle J.
    [Show full text]
  • Heteroptera: Hemiptera ) from Chhattisgarh, India
    BISWAS et al.: On an account of Pentatomoidea.....from Chhattisgarh, India ISSN 0375-1511211 Rec. zool. Surv. India : 114(Part-2) : 211-231, 2014 ON AN ACCOUNT OF PENTATOMOIDEA (HETEROPTERA: HEMIPTERA ) FROM CHHATTISGARH, INDIA B. BISWAS, M. E. HASSAN, KAILASH CHANDRA, SANDEEP KUSHWAHA** AND PARAMITA MUKHERJEE Zoological Survey of India, M-Block, New Alipore, Kolkata-700053, India ** Zoological Survey of India, Central Zone Regional Centre, Vijay Nagar, Jabalpur-482002 INTRODUCTION SYSTEMATIC ACCOUNT The pentatomids are commonly known as Family I PENTATOMIDAE “shield bugs” or “stink bugs” as their bodies are Subfamily PENTATOMINAE usually covered by a shield shaped scutellum covering more than half of the abdomen, tibia with Tribe ANTESTINI weak or no spine, 5 segmented antennae which Genus 1. Antestia Stal, 1864 gives its family name and most of them emit an 1. Antestia anchora (Thunberg) unpleasant odour, offensive in nature, produced by a pair of glands in the thorax and is released through *2. Antestia cruciata (Fabricius) openings in the metathorax. Although majority Genus 2. Plautia Stal, 1867 of these bugs are plant sucking, the members *3. Plautia crossota (Fabricius) belonging to the family Asopinae are wholly or partially predaceous. Pentatomoidea is one of the Tribe AGONOSCELIDINI largest superfamilies of Heteroptera comprising of Genus 3. Agonoscelis Spin, 1837 1301 genera and 7182 species distributed in sixteen 4. Agonoscelis nubilis (Fabricius) families all over the world (Henry, 2009). Of these, family Pentatomidae alone represents 896 genera Tribe CARPOCORINI and 4722 species distributed in eight subfamilies Genus 4. Gulielmus Distant, 1901 (Pentatominae, Asopinae, Podopinae, Edessinae, 5. Gulielmus laterarius Distant Phyllocephalinae, Discocephalinae, Cyrtocorinae and Serbaninae).
    [Show full text]
  • Meiotic Behaviour of Chromosomes in Three Predator Species of the Subfamily Asopinae (Heteroptera: Pentatomidae)
    © Comparative Cytogenetics, 2010 . Vol. 4, No. 2, P. 133-139. ISSN 1993-0771 (Print), ISSN 1993-078X (Online) Meiotic behaviour of chromosomes in three predator species of the subfamily Asopinae (Heteroptera: Pentatomidae) H. Kaur1, B.K. Semahagn2 Department of Zoology, Punjabi University, Patiala 147 002, Punjab, India. E-mails: [email protected], [email protected] Abstract. The study of chromosome behaviour has been carried out on males of three species of the Asopinae (Pentatomidae) bugs Andrallus spinidens (Fabricius, 1787), Canthecona furcellata Wolff, 1801 and Perillus bioculatus (Fabricius, 1775) collected in India. All the species have XY sex chromosome system and 12 autosomes (2n=14=12A+XY). The general course of meiosis is fairly uniform and is typical for heteropteran species. However, the species differ in the extent of decondensation of the autosomes during the diffuse stage and the number of ring bivalents at diplotene/ diakinesis. Also, a metaphase I arrangement of chromosomes which is different from the typical Pentatomidae type has been observed in C. furcellata and P. bioculatus. Key words: chromosomes, diffuse stage, metaphase arrangement, Asopinae, Penta- tomidae. INTRODUCTION From cytogenetic point of view, members the family Pentatomidae, comprising 63 genera of the suborder Heteroptera are characterized and 357 species (Schuh, Slater, 1995) and some by possessing holokinetic chromosomes and of them are important agents of biological post-reductional meiosis for sex chromosomes control (Panizzi et al., 2000). However, only 22 in which the fi rst meiotic division is equational species have been cytologically investigated and the second one is reductional (Ueshima, with a diploid number of 12, 14, 16 or 18 1979; Kerzhner et al., 2004; Rebagliati et al., and XY sex determining mechanism.
    [Show full text]
  • (Heteroptera, Pentatomidae): III. Subfamily Asopinae D
    ISSN 0013–8738, Entomological Review, 2006, Vol. 86, No. 7, pp. 806–819. © Pleiades Publishing, Inc., 2006. Original Russian Text © D.A. Gapon, F.V. Konstantinov, 2006, published in Entomologicheskoe Obozrenie, 2006, Vol. 85, No. 3, pp. 491–507. On the Structure of the Aedeagus of Shield Bugs (Heteroptera, Pentatomidae): III. Subfamily Asopinae D. A. Gapon and F. V. Konstantinov St. Petersburg State University, St. Petersburg, 199034 Russia Received December 24, 2003 Abstract—This communication is the third one in a series of papers treated the morphological review of the aedeagi of Pentatomidae and its possible taxonomic significance. Fully inflated internal structures of the aedeagus of 18 species of Asopinae were studied. The examination of the Asopinae confirmed the monophyly of this taxon and revealed three distinct types of the aedeagal structure within the subfamily. These types differ in the structure of the theca, median penal plates, and ventral, ventrolateral, and apical conjuctival lobes. These characters can be used in phylogenetic analysis as well as in a tribal classification of asopines. DOI: 10.1134/S0013873806070050 The present communication is the third one in posterior ends, the male genitalia combining a well- a series of papers treated the morphological review of developed apical part of the theca with genital plates the aedeagi of shield bugs (Pentatomidae) and reveling (parandria) of the pygophore, and the predatory way of the characters significant for the supergeneric classifi- life. Many authors [Leston, 1953, 1954 (cited from cation of the group. The structure of the aedeagus of Gapud, 1981); McDonald, 1966; Gross, 1975] point to the family Pentatomidae and subfamilies Discocepha- the families Podopinae and Pentatominae as closely linae and Phyllocephalinae was described in the first related to the subfamily Asopinae.
    [Show full text]
  • First Record of Two Pentatomidae Bugs from Chandoli Area, Kolhapur, with a Somewhat Raised, Pale Coloured Impunctate Line Maharashtra, India
    JoTT NOTE 4(4): 2524–2528 First record of two Pentatomidae Audinetia spinidens. The recent bugs from Chandoli area, Kolhapur, nomenclature of Asopinae bugs Maharashtra, India has been given by Thomas (1994) and, accordingly, the current valid Hemant V. Ghate 1, Girish P. Pathak 2, Yogesh name of this species is Andrallus spinidens. Distant 3 4 Koli & Ganesh P. Bhawane (1902) mentions the distribution of this bug in India 1 Head, 2 Student, Department of Zoology, Modern College, from Sikkim, Assam, Khasi Hills, Bengal, Ranchi and Shivajinagar, Pune, Maharashtra 411005, India Bangalore. We have not come across any published 3 4 Research Fellow, Professor of Zoology, Department of report of this bug from Maharashtra. This note extends Zoology, Shivaji University, Kolhapur, Maharashtra 416004, India the known distributional range of this species to the 1 Email: [email protected] (corresponding author), north of India, although the bug is distributed widely 2 [email protected], 3 [email protected], 4 [email protected] throughout southern Asia and is even found in ‘Malaya Archipelago’, China, Japan, and occurring west to Turkey and more recently, Greece. It occurs also in Casual collection of bugs from shrub vegetation various parts of the Africa, Syria, Equatorial Guinea, near Chandoli National Park, Kolhapur District, Malawi, Madagascar, Australia, North America and Maharashtra state revealed the presence of two Central America (Distant 1902; Thomas, 1992, 1994 interesting pentatomid bugs. These two bugs have Pericart 2010). been identified as Andrallus spinidens (Fabricius, This bug is pale brownish overall with a distinct 1787) and Sabaeus humeralis (Dallas, 1851), based colour pattern, and is somewhat elongate in appearance on information in Distant (1902).
    [Show full text]
  • Natural Occurrence of Predatory Bugs, Eocanthecona Furcellata (Wolff) and Andrallus Spinidens (Fabr.) on Spodoptera Frugiperda (
    Journal of Biological Control, 32(3): 209-211, 2018, DOI: 10.18311/jbc/2018/22477 Tackling a new invasive -145, 209 Research Note Natural occurrence of predatory bugs, Eocanthecona furcellata (Wolff) and Andrallus spinidens (Fabr.) on Spodoptera frugiperda (Smith) (Hemiptera:Pentatomidae) in maize and their potential in management of fall army worm A. N. SHYLESHA1 and ACHANTA SRAVIKA2* 1Division of Germplasm Conservation and Utilisation, ICAR-NBAIR, Hebbal, Bengaluru – 560024, Karnataka, India 2Department of Entomology, UAS Bengaluru – 560065, Karnataka, India *Corresponding author E-mail: [email protected] ABSTRACT: Two species of predacious bugs, Eocanthecona furcellata (Wolff) and Andrallus spinidens (Fabr.) (Hemiptera:Pentatomidae) were found effectively preying on Spodoptera frugiperda (Smith) in organically grown maize from 28 to 56 days at GKVK, Bangalore. Population of E. furcellata in one square metre was more than A. spinidens during the 38th and 39th standard meteorological weeks. Adults and nymphs of both the species preyed on different stages of S. frugiperda larvae. These two species being initial colonizers has a potential in integrated management of fall army worm. KEY WORDS: Andrallus spinidens, Eocanthecona furcellata, Spodoptera frugiperda (Article chronicle: Received: 02-08-2018; Revised: 15-09-2018; Accepted: 25-09-2018) The invasive fall army worm, Spodoptera frugiperda on several important caterpillar pests, such as larvae of (Smith) was reported in India recently and is spreading Earias sp. (Pant, 1960), Spodoptera litura (F.) on daincha fast in the subcontinent. Several local natural enemies are (Cherian and Brahmachari, 1941), Eutectona machaeralis colonizing on the new species either by feeding directly or (Walker), Hyblaea puera (Cramer), Plecoptera reflexa by parasitizing the same.
    [Show full text]
  • Cellular Energy Allocation in the Predatory Bug, Andrallus Spinidens Fabricius
    JOURNAL OF PLANT PROTECTION RESEARCH Vol. 54, No. 1 (2014) DOI: 10.2478/jppr-2014-0012 Cellular energy allocation in the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae), following sublethal exposure to diazinon, fenitrothion, and chlorpyrifos Moloud Gholamzadeh Chitgar1*, Jalil Hajizadeh1, Mohammad Ghadamyari1, Azadeh Karimi-Malati1, Mahbobe Sharifi1, Hassan Hoda2 1 Department of Plant Protection, Faculty of Agricultural Science, University of Guilan, P.O. Box 1841, Rasht, Iran 2 Department of Biological Control, Iranian Research Institute of Plant Protection, P.O. Box 145, Amol, Iran Received: July 13, 2013 Accepted: January 27, 2014 Abstract: It is necessary to study the biochemical changes in insects exposed to toxicants if we want to predict the potential of vari- ous chemicals on the natural enemy. Physiological energy, as a biochemical biomarker, may be affected by many pesticides including organophosphate compounds. Therefore, in this study, the sublethal effects of diazinon, fenitrothion, and chlorpyrifos on the cellular energy allocation (CEA) of the predatory bug, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae), a potential biological control agent, was studied on 5th-instar nymphs. Among the energy reserves of the A. spinidens nymphs, only total protein was significantly affected by pesticide treatments, and the highest value was observed in chlorpyrifos treatment. The energy available (Ea) and energy consumption (Ec) in A. spinidens were significantly affected by these pesticides. In exposed bugs, these parameters were affected by fenitrothion and chlorpyrifos more than diazinon. The activity of the electron transport system (ETS) in the Ec assay showed that A. spinidens exposed to chlorpyrifos had the highest rate of oxygen consumption. Although, there was no significant change in CEA, the insecticides caused a marked change in the physiological balance of A.
    [Show full text]
  • 0 TALITA ROELL Uma Nova Era De Estudos Sobre Os Percevejos
    TALITA ROELL Uma nova era de estudos sobre os percevejos predadores: Sistemática, taxonomia e morfologia comparada de Asopinae (Hemiptera: Pentatomidae) Tese de doutorado Porto Alegre 2019 0 TALITA ROELL Uma nova era de estudos sobre os percevejos predadores: Sistemática, taxonomia e morfologia comparada de Asopinae (Hemiptera: Pentatomidae) Tese apresentada ao Programa de Pós- Graduação em Biologia Animal, Instituto de Biociências da Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do título de Doutor em Biologia Animal Área de Concentração: Biologia Comparada Orientador: Prof. Dr. Luiz Alexandre Campos. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE, 2019 1i Uma nova era de estudos sobre os percevejos predadores: Sistemática, taxonomia e morfologia comparada de Asopinae (Hemiptera: Pentatomidae) TALITA ROELL Aprovada em ____ de _______________ de 2019. _______________________________________ Dr. Cristiano Feldens Schwertner _______________________________________ Dr. Filipe Michels Bianchi _______________________________________ Dr. Kim Ribeiro Barão 2ii Dedico esta tese aos meus pais, Ivan C. Roell e Silvane L.F. Roell, minhas fontes de inspiração. 3iii AGRADECIMENTOS Ao meu orientador, prof. Dr. Luiz Alexandre Campos, por ter me aceitado em seu laboratório em 2012/2013 mesmo eu tendo “caído de paraquedas” após a primeira fase da seleção de mestrado. Agradeço, ainda, por todos esses anos de paciência, ensinamentos e confiança, além das inúmeras conversas sobre várias coisas da vida. Aos meus pais, Ivan C. Roell e Silvane L.F. Roell pela paciência, apoio, amor e compreensão. A vocês dedico não só esta tese, mas todas as conquistas que eu tiver na vida. Agradeço pelas inúmeras vezes que me buscaram no aeroporto e rodoviária (mano Tiago, obrigada também!) e pelo carinho imenso que sempre tiveram comigo.
    [Show full text]
  • Host Range and Distribution of Predatory Stink Bug Andrallus Spinidens (F.) in Uttarakhand
    Indian Journal of Entomology 83(2021) Online published Ref. No. e20163 DoI No.: 10.5958/0974-8172.2021.00011.0 HOST RANGE AND DISTRIBUTION OF PREDATORY STINK BUG ANDRALLUS SPINIDENS (F.) IN UTTARAKHAND BHOJENDRA*, RAVI PRAKASH MAURYA, LATIKA BRIJWAL, HIMANSHU PATWAL AND PARUL SUYAL Department of Entomology, College of Agriculture, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand *Email: [email protected] (corresponding author) ABSTRACT This study is on the host range and geographical distribution of Andrallus spinidens (F.) in the agroecosystems of Kumaon region of Uttarakhand. Predatory bug was surveyed in selected locations from all six districts in Kumaon region of Uttarakhand from March 2018 to February 2019. The bug occurs invariably in all the locations on wheat, soybean, maize, pigeonpea, gram, rice, beans and cowpea crops and associated with lepidopteran pests. The preferred preys were found to be the instars larvae of Mythimna separata and Helicoverpa armigera in wheat, Spodoptera litura in soybean and cabbage, Cnaphalocrosis medinalis in rice, Maruca vitrata and H. armigera in pigeonpea, S. litura and M. vitrata in beans, H. armigera in okra and gram, and Chilo partellus on maize. Key words: Andrallus spinidens, predator, prey, host range and distribution, agroecosystems, wheat, rice, pigeonpea, gram, beans, cowpea, lepidopterans Uttarakhand in the north western Himalaya (28º43’- agents is relatively insignificant in IPM (Guillion, 31º 27’N, 77º34’- 81º02’E has 86% area is under 2008; Ehlers, 2010, 2011). Important natural enemies hills (210- 7817 masl), and has diverse agroclimatic of insect and mite pests include predators, parasites, conditions, cultivating agricultural and horticultural and pathogens (De Bach, 1964).
    [Show full text]
  • Virulence Determination of Beauveria Bassiana Isolates on a Predatory Hemipteran, Andrallus Spinidens Fabricius (Hemiptera: Pentatomidae)
    Acta Phytopathologica et Entomologica Hungarica 50 (1), pp. 115–125 (2015) DOI: 10.1556/038.50.2015.1.11 Virulence Determination of Beauveria bassiana Isolates on a Predatory Hemipteran, Andrallus spinidens Fabricius (Hemiptera: Pentatomidae) H. FIROUZBAKHT1, A. ZIBAEE1*, H. HODA2 and M. M. SOHANI3 1Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran 2Biological Control Department, National Institute of Plant Protection, Amol, Iran 3Department of Agronomy and Plant Breeding, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran (Received: 30 June 2014; accepted: 4 September 2014) Virulence of the two isolates of Beauveria bassiana, BB2 and AM-118, were evaluated on adults of a predatory hemipteran, Andrallus spinidens Fabricius by conidial bioassay and enzymatic activities. Results of 4 3 the bioassay revealed LC50 of 37×10 and 15×10 spore/ml for isolates BB2 and AM-118, respectively. Activ- ities of chitinase, lipase and ALP showed the higher activity in the media inoculated by AM-118 while no sta- tistical differences were observed in activity of ACP. Although no statistical differences were found in general protease and Pr1 activities but activity of Pr2 in AM-118 was significantly higher than that of BB2. Activity of general esterases demonstrated no statistical differences when α- and β-naphtyl acetate were used as substrates but activity of glutathione S-transferase in AM-118 was higher than that of BB2 by using CDNB and DCNB as specific reagents. Results of the current study indicated higher virulence of isolate AM-118 against adults of A. spinidens by lower LC50 value and higher activities of the enzymes involved in pathogenicity.
    [Show full text]
  • Hemiptera of Egypt, with Remarks on Some Species of the Adjacent Eremian Region
    Reprinted from Annales Zoologici Fennici 1, p. 306- 356. 1964. Hemiptera of Egypt, with remarks on some species of the adjacent Eremian region R. LINNAVUORI Hemiptera of Egypt, with remarks on some species of the adjacent Eremian region R. LINNAVUORI Page Page 1. Introduction 306 Cercopidae .336 II. Taxonomy and distribution of the species treated .. 307 Menmbracidae .336 1. Heteroptera .307 Cicadellidae.. 336 Cydnidae .307 l)ictyopharidae .340 Plataspididae .307 Cixiidae .341 Pentatomidna.307 Delphacidae .341 Coreidae .309 MAeenoplidae. 3412 Alydidae .309 Issidae. 342 Rhopalidae .309 Ricaniidae .342 Lygaeidae .310 Flatidae .342 Tingidae .317 III. Survey of the topographical and biogeographical Reduviidae .318 regions of Egypt . .343 Nabiidae .321 1. The Coastal Belt .343 Cimicidae .321 2. The Nile Region .343 Anthocoridae .322 3. The oases of the Western Desert .344 Miridae .323 4. The Red Sea Coast .351 Mesoveliadae.. 334 5. The Eastern Desert. 351 Hydrometridae .334 6. The Western Desert .351 (ierridae. 334 7. Sinai. 351 Veliadae .334 8. Some geological data of Egypt .351 Leptopodidae .334 IV. Survey of the hiogeographical elements of Egypt .. 352 Saldidae .334 1. The Mediterranean element ..... ........... 352 Belostomatidae .334 2. The northern elements ..... ............... 353 Ranatridae .334 3. The eastern elements ...... ................ 353 Notonectidae .334 4. The Eremian element ...... ................ 354 Pleidae .335 5. The Ethiopian element ..... ............... 354 Corixidae .335) 6. Endemics ......... ....................... 355 2. llomoptera. 336 Summary ...................................... 355 Cicadidae .336 References ...................................... 356 I. Introduction On a grant from the Finnish Statc Committee coastal region near Alexandria. In 1962, when for Natural Science and the Finnish Academy of the trip was made in our OWII car, studies were Sciences my wife, Mrs.
    [Show full text]