Antileukotrienes in Upper Airway Inflammatory Diseases

Total Page:16

File Type:pdf, Size:1020Kb

Antileukotrienes in Upper Airway Inflammatory Diseases Curr Allergy Asthma Rep (2015) 15:64 DOI 10.1007/s11882-015-0564-7 RHINOSINUSITIS (J MULLOL, SECTION EDITOR) Antileukotrienes in Upper Airway Inflammatory Diseases Cemal Cingi1,5 & Nuray Bayar Muluk2 & Kagan Ipci3 & Ethem Şahin4 # Springer Science+Business Media New York 2015 Abstract Leukotrienes (LTs) are a family of inflammatory zileuton, ZD2138, Bay X 1005, and MK-0591). CysLTs have mediators including LTA4,LTB4,LTC4,LTD4, and LTE4. important proinflammatory and profibrotic effects that con- By competitive binding to the cysteinyl LT1 (CysLT1)recep- tribute to the extensive hyperplastic rhinosinusitis and nasal tor, LT receptor antagonist drugs, such as montelukast, polyposis (NP) that characterise these disorders. Patients who zafirlukast, and pranlukast, block the effects of CysLTs, im- receive zafirlukast or zileuton tend to show objective improve- proving the symptoms of some chronic respiratory diseases, ments in, or at least stabilisation of, NP.Montelukast treatment particularly bronchial asthma and allergic rhinitis. We may lead to clinical subjective improvement in NP. reviewed the efficacy of antileukotrienes in upper airway in- Montelukast treatment after sinus surgery can lead to a signif- flammatory diseases. An update on the use of antileukotrienes icant reduction in eosinophilic cationic protein levels in se- in upper airway diseases in children and adults is presented rum, with a beneficial effect on nasal and pulmonary symp- with a detailed literature survey. Data on LTs, antileukotrienes, toms and less impact in NP. Combined inhaled corticosteroids and antileukotrienes in chronic rhinosinusitis and nasal and long-acting β-agonists treatments are most effective for polyps, asthma, and allergic rhinitis are presented. preventing exacerbations among paediatric asthma patients. Antileukotriene drugs are classified into two groups: CysLT Treatments with medium- or high-dose inhaled corticoste- receptor antagonists (zafirlukast, pranlukast, and montelukast) roids, combined inhaled corticosteroids and LT receptor an- and LT synthesis inhibitors (5-lipoxygenase inhibitors such as tagonists, and low-dose inhaled corticosteroids have been re- ported to be equally effective. Antileukotrienes have also been This article is part of the Topical Collection on Rhinosinusitis reported to be effective for allergic rhinitis. * Cemal Cingi [email protected] Keywords Leukotrienes . Antileukotriene drugs . Asthma . Nuray Bayar Muluk Chronic rhinosinusitis with nasal polyposis Allergic rhinitis [email protected] Kagan Ipci [email protected] Introduction Ethem Şahin [email protected] Leukotrienes (LTs) are inflammatory mediators, previously 1 Department for ORL Head and Neck Surgery, Faculty of Medicine, known as slow-reacting substances of anaphylaxis, produced Eskişehir Osmangazi University, Eskisehir, Turkey by a number of cell types, including mast cells, eosinophils, 2 Department for ORL Head and Neck Surgery, Faculty of Medicine, basophils, macrophages, and monocytes [1]. LTs are synthe- Kırıkkale University, Kırıkkale, Turkey sised from arachidonic acid (AA) by the 5-lipoxygenase (5- 3 ENT Department, Ankara Koru Hospital, Ankara, Turkey LO) pathway [2, 3] (Fig. 1). Synthesis of these mediators 4 ENT Clinics, Bayındır Içerenköy Hospital, Istanbul, Turkey results from the cleavage of AA in cell membranes. LTs exert 5 ENT Department, Eskisehir Osmangazi University, their biologic effects by binding to and activating specific Eskisehir, Turkey adaptors. This occurs in a series of events, leading to the 64 Page 2 of 11 Curr Allergy Asthma Rep (2015) 15:64 Fig. 1 Synthesis of leukotrienes from arachidonic acid. Adapted from reference 3 contraction of human airway smooth muscle, cell chemotaxis, airway remodelling by increasing the deposition of collagen and increased vascular permeability [1]. below the basement membrane, enhancing collagen synthesis The LT family consists of LTA4,LTB4,LTC4,LTD4,and and degradation by fibroblasts, and promoting the prolifera- LTE4 [4••, 5]. An unstable intermediate product, LTA4,is tion of bronchial epithelial cells and smooth muscle cells. LT formed and successively converted into LTC4,LTD4,and modifiers can reduce cytokine expression by blocking their LTE4. A separate pathway produces LTB4.LTC4 is actions. The reverse phenomenon is also true: cytokines can metabolised enzymatically into LTD4 and subsequently into modulate LT expression [5]. LTE4, which is excreted in the urine. Several cells such as LTs act by binding to specific receptors of the rhodopsin mast cells, basophils, eosinophils, monocytes/macrophages, class that are located on the outer plasma membrane of struc- dendritic cells, and T lymphocytes can produce LTs in re- tural and inflammatory cells [3]. Once ligated by the LT, these sponse to receptor-activated, antigen-antibody interactions receptors interact with G proteins in the cytoplasm, thereby [2]. By competitive binding to the CysLT1 receptor, LT eliciting an increase in intracellular calcium and a reduction in receptor antagonist (LTRA) drugs, such as montelukast, intracellular cyclic AMP. These proximal signals activate zafirlukast, and pranlukast, block the effects of cysteinyl downstream kinase cascades in ways that alter various cellular LTs (CysLTs), improving the symptoms of some chronic activities, ranging from motility to transcriptional activation respiratory diseases, particularly bronchial asthma and [6]. In the bronchi of aspirin-intolerant asthma (AIA) patients, allergic rhinitis [4••, 5]. whose asthma is characterised by increased production of CysLTs are potent proinflammatory mediators produced CysLTs, there is overexpression of LTC4 synthase. This phe- from AA through the 5-LO pathway. They have important nomenon is explained, at least in part, by a genetic polymor- pharmacological effects by interacting with at least two differ- phism of the LTC4 synthase gene. A common promoter vari- ent receptors: CysLT1 and CysLT2.CysLT1 mediates ant of the gene creates a predisposition to AIA by reinforcing sustained bronchoconstriction, mucus secretion, and oedema the effector mechanism of bronchoconstriction. Aspirin chal- in the airways. Selective antagonists of CysLT1 approved for lenge studies, coupled with the estimation of LTC4 synthase the treatment of asthma block the proasthmatic effects of polymorphism and LTC4 urinary excretion, point to some het- CysLT1. Experiments in mice that are deficient in CysLT2, erogeneity among patients with AIA [3, 7]. or that overexpress CysLT2 in the lungs, have indicated that In this review paper, we present the efficacy of CysLT2 does not mediate bronchoconstriction but rather con- antileukotrienes in upper airway inflammatory diseases. tributes to inflammation, vascular permeability, and tissue fi- brosis [4••]. The two classes of LTs, LTB4 and peptidylcysteinyl LTs, Antileukotrienes also have important mediator functions in the upper airways. They promote inflammatory cell recruitment and activation During the early-phase response to antigens, CysLTs are re- (primarily of eosinophils) as well as fibrosis and airway re- leased by mast cells and basophils; however, in the late phase, modelling, with actions such as smooth muscle and epithelial they are synthesised by eosinophils and macrophages [8]. cell proliferation. The CysLTs increase the expression of ad- CysLTs cause contraction of bronchial smooth muscles, mu- hesion molecules such as P selectin. They also promote cous production, oedema, and increased vascular Curr Allergy Asthma Rep (2015) 15:64 Page 3 of 11 64 permeability. LTD4 challenge in humans causes an increase in two well-characterised receptors (CysLT1 and CysLT2) and nasal mucosal blood flow and airway resistance [9]. newly described selective LTE4 receptors [18–21]. Antileukotriene drugs are classified into two groups based Chronic hypereosinophilic rhinosinusitis (CHES) is an in- on their mechanism of action: LTRAs (zafirlukast, pranlukast, flammatory disease characterised by the prominent accumula- montelukast), which block the LT receptor and thus block the tion of eosinophils in the sinuses and, when present, associat- end-organ response of LTs; and LT synthesis inhibitors ed with nasal polyps [21–24]. While NPs frequently occur (zileuton, ZD2138, Bay X 1005, MK-0591), which block with CF, AFS, and AERD, in the absence of one of these the biosynthesis of cysteinyl LTs and LTB4 [1]. conditions, the presence of NP (particularly in the concomi- Zafirlukast is an LTD4 receptor antagonist that has been tant presence of asthma) has been proposed as presumptive used for LTD4-induced bronchoconstriction, exercise chal- evidence for CHES [25, 26]. In CHES, the sinus tissue dem- lenge, cold-induced asthma, and chronic asthma. LT synthesis onstrates a marked increase in cells that express cytokines inhibitors block the biosynthesis of cysteinyl LTs. Zileuton is a (e.g., IL-5 and GM-CSF), chemokines (e.g., CCL5,CCL11, 5-lipoxygenase inhibitor that has been used in exercise, cold, and CCL24), and proinflammatory lipid mediators (e.g., and aspirin-induced bronchial hyperresponsiveness. LT mod- CysLTs) that are responsible for the differentiation, survival, ifiers represent the first mediator-specific therapeutic option and activation of eosinophils [22, 27, 28]. for rhinitis and asthma [10, 11]. Antileukotrienes in chronic rhinosinusitis and nasal polyps The currently used antileukotriene drugs are described in are shown on Table 1. In Pérez-Novo et al.’s[29••] study, the succeeding
Recommended publications
  • Drug Information Sheet("Kusuri-No-Shiori")
    Drug Information Sheet("Kusuri-no-Shiori") Internal Published: 05/2017 The information on this sheet is based on approvals granted by the Japanese regulatory authority. Approval details may vary by country. Medicines have adverse reactions (risks) as well as efficacies (benefits). It is important to minimize adverse reactions and maximize efficacy. To obtain a better therapeutic response, patients should understand their medication and cooperate with the treatment. Brand name:PRANLUKAST TABLETS 112.5mg "CEO" Active ingredient:Pranlukast hydrate Dosage form:white to pale yellow tablet, diameter: 7.5 mm, thickness: 2.7 mm Print on wrapping:(face) プランルカスト 112.5mg「CEO」, CEO 131, プランルカスト 112.5mg (back) PRANLUKAST 112.5mg「CEO」, CEO 131, プランルカスト 112.5mg Effects of this medicine This medicine selectively binds to leukotriene receptor and inhibits its action. It consequently suppresses increase in airway contraction, vascular permeability, mucosal edema and hypersensitivity. It is usually used to treat bronchial asthma and allergic rhinitis. However, it cannot stop the attack of bronchial asthma already in progress but prevents the asthma attack. Before using this medicine, be sure to tell your doctor and pharmacist ・If you have previously experienced any allergic reactions (itch, rash, etc.) to any medicines. ・If you are pregnant or breastfeeding. ・If you are taking any other medicinal products. (Some medicines may interact to enhance or diminish medicinal effects. Beware of over-the-counter medicines and dietary supplements as well as other prescription medicines.) Dosing schedule (How to take this medicine) ・Your dosing schedule prescribed by your doctor is(( to be written by a healthcare professional)) ・In general, for adults, take 2 tablets (225 mg of the active ingredient) at a time, twice a day after breakfast and dinner.
    [Show full text]
  • Inhibitory Activity of Pranlukast and Montelukas Against Histamine
    Showa Univ J Med Sci 21(2), 77~84, June 2009 Original Inhibitory Activity of Pranlukast and Montelukas Against Histamine Release and LTC4 Production from Human Basophils 1, 2 1 1 Satoshi HIBINO ), Ryoko ITO ), Taeru KITABAYASHI ), 1 2 Kazuo ITAHASHI ) and Toshio NAKADATE ) Abstract : Leukotriene receptor antagonists(LTRAs)are routinely used to treat bronchial asthma and are thought to act mostly by inhibiting leukotriene receptors. However, there is no preclinical or clinical evidence of the direct effect of LTRAs on histamine release from and leukotriene(LT)C4 produc- tion by basophils. We used anti-IgE antibody(Ab), FMLP, and C5a to induce histamine release, and anti-IgE Ab and FMLP to stimulate LTC 4 production. Basophils were exposed to different concentrations of pranlukast and montelu- kast, and then to anti-IgE Ab, FMLP, and C5a. Culture supernatant histamine and LTC 4 levels were measured by using a histamine ELISA kit and a LTC 4 EIA kit, respectively. Histamine release was expressed as a percentage of the total histamine content(%HR)induced by anti-IgE Ab, FMLP, or C5a. To evaluate the effects of pranlukast and montelukast on histamine release and LTC 4 production, we calculated the percent inhibition of histamine release and LTC 4 production, expressed as percent inhibition, at different concentrations of pranlukast and montelukast. Pranlukast significantly inhibited histamine release stimulated by FMLP and C5a, but had no effect on histamine release stimulated by anti-IgE Ab. By comparison, montelukast signicantly inhibited histamine release stimulated by FMLP, C5a, and anti-IgE Ab, in a concentration-dependent manner. Both pranlukast and montelukast signicantly inhibited LTC 4 production stimulated by anti-IgE Ab and FMLP.
    [Show full text]
  • Chemical Tools for Studying Lipid-Binding Class a G Protein–Coupled Receptors
    1521-0081/69/3/316–353$25.00 https://doi.org/10.1124/pr.116.013243 PHARMACOLOGICAL REVIEWS Pharmacol Rev 69:316–353, July 2017 Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: STEPHEN P. H. ALEXANDER Chemical Tools for Studying Lipid-Binding Class A G Protein–Coupled Receptors Anna Cooper, Sameek Singh, Sarah Hook, Joel D. A. Tyndall, and Andrea J. Vernall School of Pharmacy, University of Otago, Dunedin, New Zealand Abstract. ....................................................................................317 I. Introduction. ..............................................................................317 A. Cannabinoid Receptor . ..................................................................317 1. Ligand Classes. ......................................................................318 B. Free Fatty Acid Receptor ................................................................320 1. Ligand Classes. ......................................................................320 C. Lysophospholipid Receptors. ............................................................321 1. Ligand Classes. ......................................................................321 D. Prostanoid Receptor . ..................................................................321 Downloaded from 1. Ligand Classes. ......................................................................322 E. Leukotriene Receptor . ..................................................................322 1. Ligand Classes. ......................................................................322
    [Show full text]
  • Drug Class Review Controller Medications for Asthma
    Drug Class Review Controller Medications for Asthma Final Update 1 Report April 2011 The Agency for Healthcare Research and Quality has not yet seen or approved this report. The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Original Report: November 2008 Daniel E. Jonas, MD, MPH Roberta C. M. Wines, MPH Marcy DelMonte, PharmD, BCPS Halle R. Amick, MSPH Tania M. Wilkins, MS Brett D. Einerson, MPH Christine L. Schuler, MD Blake A. Wynia, MPH Betsy Bryant Shilliday, Pharm.D., CDE, CPP Produced by RTI-UNC Evidence-based Practice Center Cecil G. Sheps Center for Health Services Research University of North Carolina at Chapel Hill 725 Martin Luther King Jr. Blvd, CB# 7590 Chapel Hill, NC 27599-7590 Tim Carey, M.D., M.P.H., Director Oregon Evidence-based Practice Center Oregon Health & Science University Mark Helfand, MD, MPH, Director Copyright © 2011 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Update 1 Report Drug Effectiveness Review Project The medical literature relating to this topic is scanned periodically. (See http://www.ohsu.edu/xd/research/centers-institutes/evidence-based-policy- center/derp/documents/methods.cfm for description of scanning process). Prior versions of this report can be accessed at the DERP website.
    [Show full text]
  • System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation
    International Journal of Molecular Sciences Article System, Method and Software for Calculation of a Cannabis Drug Efficiency Index for the Reduction of Inflammation Nicolas Borisov 1,† , Yaroslav Ilnytskyy 2,3,†, Boseon Byeon 2,3,4,†, Olga Kovalchuk 2,3 and Igor Kovalchuk 2,3,* 1 Moscow Institute of Physics and Technology, 9 Institutsky lane, Dolgoprudny, Moscow Region 141701, Russia; [email protected] 2 Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected] (Y.I.); [email protected] (B.B.); [email protected] (O.K.) 3 Pathway Rx., 16 Sandstone Rd. S., Lethbridge, AB T1K 7X8, Canada 4 Biomedical and Health Informatics, Computer Science Department, State University of New York, 2 S Clinton St, Syracuse, NY 13202, USA * Correspondence: [email protected] † First three authors contributed equally to this research. Abstract: There are many varieties of Cannabis sativa that differ from each other by composition of cannabinoids, terpenes and other molecules. The medicinal properties of these cultivars are often very different, with some being more efficient than others. This report describes the development of a method and software for the analysis of the efficiency of various cannabis extracts to detect the anti-inflammatory properties of the various cannabis extracts. The method uses high-throughput gene expression profiling data but can potentially use other omics data as well. According to the signaling pathway topology, the gene expression profiles are convoluted into the signaling pathway activities using a signaling pathway impact analysis (SPIA) method. The method was tested by inducing inflammation in human 3D epithelial tissues, including intestine, oral and skin, and then exposing these tissues to various extracts and then performing transcriptome analysis.
    [Show full text]
  • Montelukast Sodium) Tablets, Chewable Tablets, and Oral
    Merck Sharp & Dohme Corp., a subsidiary of o MERCK & CO., INC. Whitehouse Station, NJ 08889/ USA HIGHLIGHTS OF PRESCRIBING INFORMATION .....................DOSAGE FORMS AND STRENGTHS..................... These highlights do not include all the information needed to use . SINGULAIR 10-mg Film-Coated Tablets SINGULAIR safely and effectively. See full prescribing information . SINGULAIR 5-mg and 4-mg Chewable Tablets for SINGULAIR. SINGULAIR 4.mg Oral Granules SINGULAIRiI .............................. CONTRAINDICATIONS .............................. (montelukast sodium) tablets, chewable tablets, and oral . Hypersensitivity to any component of this product (4). granules ....................... WARNINGS AND PRECAUTIONS ....................... Initial U.S. Approval: 1998 . Do not prescribe SINGULAIR to treat an acute asthma attack. .......................... RECENT MAJOR CHANGES........................... Advise patients to have appropriate rescue medication available Warnings and Precautions, Neuropsychiatric Events (5.4) 04/2010 (5.1). Inhaled corticosteroid may be reduced gradually. Do not abruptly ...........................INDICATIONS AND USAGE ........................... substitute SINGULAIR for inhaled or oral corticosteroids (5.2). SINGULAIRiI is a leukotriene receptor antagonist indicated for: . Patients with known aspirin sensitivity should continue to avoid . Prophylaxis and chronic treatment of asthma in patients aspirin or non-steroidal anti-inflammatory agents while taking 12 months of age and older (1.1). SINGULAIR (5.3). Acute prevention of exercise-induced bronchoconstriction (EIS) in Neuropsychiatric events have been reported with SINGULAIR. patients 15 years of age and older (1.2). Instruct patients to be alert for neuropsychiatric events. Evaluate Relief of symptoms of allergic rhinitis (AR): seasonal allergic the risks and benefits of continuing treatment with SINGULAIR if rhinitis (SAR) in patients 2 years of age and older, and perennial such events occur (5.4 and 6.2).
    [Show full text]
  • Regulation of Immune Cells by Eicosanoid Receptors
    Regulation of Immune Cells by Eicosanoid Receptors The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Kim, Nancy D., and Andrew D. Luster. 2007. “Regulation of Immune Cells by Eicosanoid Receptors.” The Scientific World Journal 7 (1): 1307-1328. doi:10.1100/tsw.2007.181. http://dx.doi.org/10.1100/ tsw.2007.181. Published Version doi:10.1100/tsw.2007.181 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37298366 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Review Article Special Issue: Eicosanoid Receptors and Inflammation TheScientificWorldJOURNAL (2007) 7, 1307–1328 ISSN 1537-744X; DOI 10.1100/tsw.2007.181 Regulation of Immune Cells by Eicosanoid Receptors Nancy D. Kim and Andrew D. Luster* Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston E-mail: [email protected] Received March 13, 2007; Revised June 14, 2007; Accepted July 2, 2007; Published September 1, 2007 Eicosanoids are potent, bioactive, lipid mediators that regulate important components of the immune response, including defense against infection, ischemia, and injury, as well as instigating and perpetuating autoimmune and inflammatory conditions. Although these lipids have numerous effects on diverse cell types and organs, a greater understanding of their specific effects on key players of the immune system has been gained in recent years through the characterization of individual eicosanoid receptors, the identification and development of specific receptor agonists and inhibitors, and the generation of mice genetically deficient in various eicosanoid receptors.
    [Show full text]
  • FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting
    FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting August 31, 2020 sNDA 209482: fluticasone furoate/umeclidinium/vilanterol fixed dose combination to reduce all-cause mortality in patients with chronic obstructive pulmonary disease NDA209482/S-0008 PADAC Clinical and Statistical Briefing Document Fluticasone furoate/umeclidinium/vilanterol fixed dose combination for all-cause mortality DISCLAIMER STATEMENT The attached package contains background information prepared by the Food and Drug Administration (FDA) for the panel members of the advisory committee. The FDA background package often contains assessments and/or conclusions and recommendations written by individual FDA reviewers. Such conclusions and recommendations do not necessarily represent the final position of the individual reviewers, nor do they necessarily represent the final position of the Review Division or Office. We have brought the supplemental New Drug Application (sNDA) 209482, for fluticasone furoate/umeclidinium/vilanterol, as an inhaled fixed dose combination, for the reduction in all-cause mortality in patients with COPD, to this Advisory Committee in order to gain the Committee’s insights and opinions, and the background package may not include all issues relevant to the final regulatory recommendation and instead is intended to focus on issues identified by the Agency for discussion by the advisory committee. The FDA will not issue a final determination on the issues at hand until input from the advisory committee process has been considered
    [Show full text]
  • Understanding Interparticle Interactions in Dry Powder Inhalation: Glass Beads As an Innovative Model Carrier System
    UNDERSTANDING INTERPARTICLE INTERACTIONS IN DRY POWDER INHALATION: GLASS BEADS AS AN INNOVATIVE MODEL CARRIER SYSTEM DOCTORAL THESIS SUMBITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR IN NATURAL SCIENCES AT KIEL UNIVERSITY, GERMANY by Niklas Ludwig Renner Kiel 2017 Referee: Prof. Dr. Regina Scherließ Co-Referee: Prof. Dr. Thomas Kunze Date of Exam: 13.10.2017 Accepted for publication: 13.10.2017 Prof. Dr. Natascha Oppelt (Dean) Published research articles contributing to the present thesis: Renner, N.; Steckel, H.; Urbanetz, N.A.; Scherließ, R. Tailoring the surface topography of a model carrier to alter dry powder inhaler performance Dalby, R.N. (Ed.), RDD Europe 2017 2 (2017), 195-200 Renner, N; Steckel, H.; Urbanetz, N.A.; Scherließ, R. Nano- and microstructured model carrier surfaces to alter dry powder inhaler performance International Journal of Pharmaceutics 518 (2017), 20-28 Conference contributions: Renner, N.; Steckel, H.; Urbanetz, N.A.; Scherließ, R. Tailoring the surface topography of a model carrier to alter dry powder inhaler per- formance Respiratory Drug Delivery, Nice, France (2017) Renner, N.; Steckel, H.; Urbanetz, N.A.; Scherließ, R. A deeper insight into the impact of chemical surface properties on inhalation perfor- mance Drug Delivery to the Lungs 27, Edinburgh, Scotland (2016) Renner, N.; Scherließ, R.; Steckel, H. Glass beads as model carriers in dry powder inhalers: the influence of chemical sur- face properties on inhalation performance International Congress on Particle Technology, Nurnberg, Germany (2016) Renner, N.; Scherließ, R.; Steckel, H. Investigating the influence of carrier surface roughness on drug delivery in DPIs 10th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Tech- nology, Glasgow, Scotland (2016) Renner, N.; Kutelova, Z.; Scherließ, R.; Steckel, H.
    [Show full text]
  • The Role of 5-Lipoxygenase in Pathophysiology and Management of Neuropathic Pain
    REVIEW ARTICLE THE ROLE OF 5-LIPOXYGENASE IN PATHOPHYSIOLOGY AND MANAGEMENT OF NEUROPATHIC PAIN Pascanus Lamsihar PT∗, Faldi Yaputra∗∗, Jimmy FA Barus4 and I Putu Eka Widyadharma∗∗,1 ∗Department of Neurology, Provincial Mental Hospital, West Borneo, Indonesia., ∗∗Department of Neurology, Faculty of Medicine, Udayana University-Sanglah General Hospital, Bali, Indonesia., 4Department of Neurology, Faculty of Medicine, Atma Jaya Catholic University, Jakarta-Indonesia. ABSTRACT Neuropathic pain (NP) is a pain caused by lesions in the nervous system. Several causes of NP are traumatic, metabolic disorders, ischemia, toxins, infections, immune-related, and hereditary. The pathophysiology of NP is very complicated and unknown entirely. Therefore the treatment of NP is still unsatisfactory. Recent studies believed the critical role of primary inflammatory mediators in the pathophysiology of NP especially leukotrienes (LTs). The 5- lipoxygenase enzyme (5-LOX) is an enzyme that plays a role in the metabolism of arachidonic acid into LTs. Leukotrienes (LTs) are the essential inflammatory mediators in the pathophysiology of NP. Leukotriene B4 (LTB4) can cause chemotaxis on neutrophils, lowering nociceptors threshold and may contribute to NP. Several studies believed the administration of 5-LOX inhibitors or LTs receptor antagonists could be useful in the management of NP. The purpose of this review is to summarize the involvement of 5-LOX enzyme as an essential role in the pathophysiology and management of NP. KEYWORDS 5-lipoxygenase, leukotrienes,
    [Show full text]
  • Cytogenetic Analysis of a Pseudoangiomatous Pleomorphic/Spindle Cell Lipoma
    ANTICANCER RESEARCH 37 : 2219-2223 (2017) doi:10.21873/anticanres.11557 Cytogenetic Analysis of a Pseudoangiomatous Pleomorphic/Spindle Cell Lipoma IOANNIS PANAGOPOULOS 1, LUDMILA GORUNOVA 1, INGVILD LOBMAIER 2, HEGE KILEN ANDERSEN 1, BODIL BJERKEHAGEN 2 and SVERRE HEIM 1,3 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 3Faculty of Medicine, University of Oslo, Oslo, Norway Abstract. Background: Pseudoangiomatous pleomorphic/ appearance’ (1). To date, only 20 patients have been described spindle cell lipoma is a rare subtype of pleomorphic/spindle in the literature with this diagnosis, 15 of whom were males cell lipoma. Only approximately 20 such tumors have been (1-10). The pseudoangiomatous pleomorphic/spindle cell described. Genetic information on pseudoangiomatous lipomas were mostly found in the neck (seven patients) and pleomorphic/spindle cell lipoma is restricted to a single case shoulders (four patients), but have also been seen in the in which deletion of the forkhead box O1 (FOXO1) gene was cheek, chest, chin, elbow, finger, subscapular region, and found, using fluorescence in situ hybridization (FISH). thumb. Genetic information on pseudoangiomatous Materials and Methods: G-banding and FISH analyses were pleomorphic/ spindle cell lipoma is restricted to one case only performed on a pseudoangiomatous pleomorphic/spindle cell (8) in which fluorescence in situ hybridization (FISH) with a lipoma. Results: G-banding of tumor cells showed complex probe for the forkhead box O1 ( FOXO1 ) gene, which maps karyotypic changes including loss of chromosome 13. FISH to chromosome sub-band 13q14.11, showed a signal pattern analysis revealed that the deleted region contained the RB1 indicating monoallelic loss of the gene in 57% of the gene (13q14.2) and the part of chromosome arm 13q (q14.2- examined cells.
    [Show full text]
  • Singulair (Montelukast Sodium)
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use --------------------- DOSAGE FORMS AND STRENGTHS --------------------­ SINGULAIR safely and effectively. See full prescribing information SINGULAIR 10-mg Film-Coated Tablets for SINGULAIR. SINGULAIR 5-mg and 4-mg Chewable Tablets SINGULAIR 4-mg Oral Granules (3) SINGULAIR® (montelukast sodium) Tablets, Chewable Tablets, -------------------------------CONTRAINDICATIONS ------------------------------­ and Oral Granules Hypersensitivity to any component of this product (4). Initial U.S. Approval: 1998 ------------------------WARNINGS AND PRECAUTIONS-----------------------­ ---------------------------RECENT MAJOR CHANGES --------------------------­ Do not prescribe SINGULAIR to treat an acute asthma attack Indications and Usage (5.1). Exercise-Induced Bronchoconstriction (EIB) (1.2) 03/2012 Dosage and Administration Advise patients to have appropriate rescue medication available Exercise-Induced Bronchoconstriction (EIB) (2.2) 03/2012 (5.1). Inhaled corticosteroid may be reduced gradually. Do not abruptly ----------------------------INDICATIONS AND USAGE ---------------------------­ substitute SINGULAIR for inhaled or oral corticosteroids (5.2). SINGULAIR is a leukotriene receptor antagonist indicated for: Patients with known aspirin sensitivity should continue to avoid Prophylaxis and chronic treatment of asthma in patients aspirin or non-steroidal anti-inflammatory agents while taking 12 months of age and older (1.1). SINGULAIR (5.3). Acute prevention of exercise-induced bronchoconstriction (EIB) in Neuropsychiatric events have been reported with SINGULAIR. patients 6 years of age and older (1.2). Instruct patients to be alert for neuropsychiatric events. Evaluate Relief of symptoms of allergic rhinitis (AR): seasonal allergic the risks and benefits of continuing treatment with SINGULAIR if rhinitis (SAR) in patients 2 years of age and older, and perennial such events occur (5.4 and 6.2).
    [Show full text]