Introducing and Growing Some Fruiting Columnar Cacti in a New Arid Environment

Total Page:16

File Type:pdf, Size:1020Kb

Introducing and Growing Some Fruiting Columnar Cacti in a New Arid Environment Journal of Fruit and Ornamental Plant Research Vol. 12, 2004: 127•136 INTRODUCING AND GROWING SOME FRUITING COLUMNAR CACTI IN A NEW ARID ENVIRONMENT Ahmed A. ElObeidy Department of Fruit Horticulture, Faculty of Agriculture Cairo University, Giza, EGYPT e•mail: [email protected] (Received January 23, 2004/Accepted August 11, 2004) ABSTRACT One of the most important ways of coping with increasingly frequent water shortages is improving the efficiency of water use. Planting drought•resistant crops is a promising way of reducing the demand for water. Columnar cacti are especially drought•tolerant and highly productive even though they consume very little water. In the United Arab Emirates, seven columnar fruiting cacti were evaluated in terms of their capacity for vegetative growth in a new arid environment. The cacti evaluated were: Carnegiea gigantea, Myrtillocactus geometrizans, Pachycereus pecten• aboriginum, P. pringlii, Stenocereus griseus, S. stellatus and S. thurberi. Plants were propagated from cuttings in a greenhouse. Roots developed within two to four weeks of planting. The plants were acclimatized and transplanted in an orchard in the desert. Although the cacti varied widely in terms of growth, most of them are promising species for cultivation in desert environments. Keywords: arid environment, cactus, fruits, new crops, water use efficiency INTRODUCTION major step in coping with imminent water shortages is the formulation and One•third of the world's popu• implementation of a comprehensive lation faces water shortages, and this water management plan that reduces is expected to rise to two•thirds by the the imbalance between supply and year 2025 (U.N. Report, 2000). demands. A well•designed plan will Government•sponsored investments focus primarily on wise water mana• have increased urban landscaping and gement and on curbing rising demand agriculture activities, which has resul• (Rogers, 1994). ted in severe over•use of water There is a growing need for new resources beyond the natural renewal approaches to water management in capacity (Wilhite, 2000). The first arid and semi•arid environments, as A.A. ElObeidy were as in other environments were smaller cacti with more segments. rainfall is unreliable. A search for Cactus spines create a microclimate highly productive, drought•resistant around the stem, which is covered fruit crops is underway to address the with a waxy cuticle. needs of farmers living in drought• Among the adaptations which prone areas. enable cacti to tolerate harsh con• Columnar cacti are among the ditions are: a stem capable of storing drought resistant plants under consi• water; the reduction or absence of deration. Many columnar cacti leaves; a waxy cuticle (Sowell, 2001); produce unique fruits which can be opening of the tissues during the eaten fresh or dried, or be processed night to facilitate the uptake of into juice. Some cacti promise to be carbon dioxide; and Crassulacean profitable commercial crops (Casas Acid Metabolism (CAM) (Malda et et al., 1997). al., 1999). Two cactus structures, ribs The Cactaceae are a large family and tubercles, enable the stem to of succulents whose natural range is expand and contract in response to almost entirely restricted to the New changes in water availability. Cactus World (Anderson, 2001). They have roots are usually shallow and non• evolved physiological and morpho• succulent, and require little water. logical adaptations which enable When the soil dries, the fine lateral them to grow in habitats far too dry roots generally die, while the larger for other plants (Mauseth, 2000). roots become covered with a corky They also tolerate high temperatures layer (periderm) (Sowell, 2001). Water and poor soils, which makes them conductivity in the roots decreases highly adaptable to new environ• dramatically during soil drying, which ments. Cacti can grow in dry, infertile reduces water loss from the plant marginal land where common crops tissues to the soil (Huang and Nobel, cannot grow. As succulents, cacti can 1994; Nobel and Cui, 1992). survive long periods of drought by The aim of this study was to living off water stored in their tissues. evaluate the capacity of seven species Water taken up into the stem is of fruiting columnar cacti for vege• incorporated in a mucilaginous sub• tative growth in a new arid environ• stance that does not evaporate as ment in Al•Oha, United Arab Emirates. readily as water (Saag et al., 1975). Cacti are not only resistant to MATERIAL AND METHODS desiccation, but are also extremely Plant material and propagation tolerant of desiccation when it occurs (Sowell, 2001). However, they are Cacti can be propagated either extremely susceptible to root rot from seed or cuttings (Lopez•Gomez et when they are grown in waterlogged al., 2000). Asexual propagation soil. Large columnar cacti consisting produces daughter plants which are of only a few cylinders transpire less genetically identical to the parent plant. and are more drought resistant than This allows a superior genotype to be 128 J. Fruit Ornam. Plant Res. vol.12, 2004: 127•136 Growing some fruiting columnar cacti in a new arid environment perpetuated without losing any desir• The cacti were carefully slipped able traits (ElObeidy, 2001). out of the flowerpots and planted in Cuttings of seven fruiting cacti holes which were about 15 cm wider were obtained from private nurseries and a few centimeters deeper than in Brazil, Mexico and the United the flowerpots. Heavy gloves and 30 States. The cacti evaluated were: cm forceps were used to avoid Carnegiea gigantea, Myrtillocactus injuring the technicians and plants. geometrizans, Pachycereus pecten• The soil was lightly firmed around aboriginum, P. pringlii, Stenocereus the plants. The plants were then griseus, S. stellatus and S. thurberi. watered thoroughly. The cuttings were allowed to dry A drip irrigation system was used in a warm, dry area for ten days to in the orchard. Fertilizer (12:4:24) was permit the cut surface to heal and applied one month after transplanting, develop callus. The callus helps and once a month after that. prevent rotting when the cutting is placed in a rooting material. The larger Data analysis the cutting, the longer it should be Data were collected in two dried. successive seasons (2001/2002 and After drying, each cutting was 2002/2003). The data recorded placed in the center of a 60 cm included: percentage of surviving flowerpot one•third filled with a pot• plants; growth rate (stem length and ting mix of one part peat and two parts diameter); number of ribs; number, soil. The flowerpots were then filled to length and distribution of spines; and the two•thirds level with the same root development. Other observations potting mix and kept in a green• on growth behavior were also house. recorded. Thirty plants of each species were evaluated. Thirty more plants of Orchard and transplantation Pachycereus pecten•aboriginum were The orchard used in this study evaluated to determine the effect of was located in the Al•Oha area, planting time on growth and United Arab Emirates. The soil is development (Tab. 2). sandy and has a salinity of 2200 ppm. Means were compared using The chief salt in the soil is sodium Duncan’s multiple range t•test at chloride. An underground aquifer is P = 0.05. the only source of irrigation water, which has a salinity of up to 2800 RESULTS AND DISCUSSION ppm. Local temperatures can reach 49°C during the summer. The average Seven species of columnar fruiting annual rainfall is 77 mm. cacti were evaluated in terms of their In the autumn, plants were taken capacity for vegetative growth in out of the greenhouse, acclimated for a new arid environment in Al•Oha, ten days in the shade, and planted in United Arab Emirates. the orchard. J. Fruit Ornam. Plant Res. vol.12, 2004: 127•136 129 A.A. ElObeidy Most of the cacti adapted well to 0.8 cm/month in diameter. Each the new environment. In the local areole consisted of fourteen 1.0 to climate, the growing season lasted 3.0 cm long spines, one to three of from the middle of September until which were central spines. All the middle of June. No growth or spines on the new growth were red development was observed during and turned white with age. the hot summer months. Pachycereus pecten•aboriginum After being planted in the had stems which had eight to ten ribs orchard, Myrtillocactus geometrizans and which grew 3.9 cm/month in showed yellowing in response to height and 0.7 cm/month in diameter. stress. The stems were blue•green Spines on the new growth were bright with four to six ribs, and grew 3.3 reddish•brown and turned white with cm/month in height and 0.7 cm/month age (Fig. 4). Each areole consisted of in diameter (Tab. 1). Numerous up• one 3.3 cm long central spine curving branches began to develop surrounded seven or eight 1.0 cm a month after transplanting (Fig. 1 and long peripheral spines. Tab. 3). Each areole consisted of Neither species of Pachycereus a 3.0 cm long central spine surrounded developed branches or sprouts during by five 1.0 to 1.5 cm long peripheral the first two seasons. However, in spines. New spines were reddish, and their natural habitat, Pachycereus old spines were lead•colored. On the species develop erect branches close older parts of the stem, the spines to the ground which grow almost had fallen off and smaller, 0.1 to straight up. The branches are almost 0.3 cm long spines had developed in as big as the main stem (Anderson, their place. 2001). Native to Central Mexico and Both species of Pachycereus Guatemala, M. geometrizans produ• produce edible fruits with sweet, ces berry•like fruits in large numbers juicy, pink or red flesh and small along the rib edges.
Recommended publications
  • The Huntington Botanical Gardens) Who Was Employed at the UC Garden at the Time
    June 30, 2005 Gary Lyons, Editor-in-Chief Joanne Gram, Editor Welcome to The Jumping Cholla. Click on the titles below to go directly to each article, or simply read the articles in order by scrolling down. Most photos may be viewed in a larger size if you click on them. When you want to return to the newsletter, just click on your Back button. If you have questions or comments, please feel free to email the editors by clicking on their names above. That will open a blank email pre-addressed to them. Contents Yuccas in the Huntington Desert Garden Milieu The Weird and Wonderful Boojum Tree, Fouquieria columnaris, and its Relatives Curator’s Comments New Additions to the Huntington's Website and a Little Desert Collections History Yuccas in the Huntington Desert Garden Milieu by Gary Lyons, Curator of the Desert Garden The spiky-leaved yuccas are among the oldest plants in the Huntington landscape. Plantings dating back to 1908 and still thriving give the garden much of its character. Their bright festive panicles of white blossoms add a cheery background and accent to the symphony of spring color in the lower Desert Garden. According to the latest authorities there are 45 yucca species and 14 varieties and they are placed in the agave family. Most of the species are found in the Southwest, northern and central Mexico and Baja California. But the genus is more widespread with species found along the Atlantic seaboard, the Great Plains, into Canada, and south as far as Guatemala. Yucca blossoms, with the exception of at least one species (the rose-tinged Yucca endlichiana) are mostly creamy white.
    [Show full text]
  • Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson
    Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson http://www.tucsoncactus.org/c-s_database/index.html Item ID: 1 Item ID: 2 Family: Cactaceae Family: Cactaceae Genus: Ferocactus Genus: Echinocactus Species: wislizenii Species: grusonii Common Name: Fishhook Barrel Common Name: Golden Barrel Habitat: Various soil types from 1,000 Cactus to 6,000 feet elevation from grasslands Habitat: Located on rolling hills to rocky mountainous areas. and cliffs. Range: Arizona, southwestern New Range: Limited to small areas in Mexico, limited extremes of western Queretaro, Mexico. The popula- Texas, Sonora, northwest Chihuahua tion had become very low in num- and northern Sinaloa, Mexico bers over the years but is just Care: An extremely easy plant to grow now beginning to increase due to in and around the Tucson area. It re- protective laws and the fact that Photo Courtesy of Vonn Watkins quires little attention or special care as this plant is now in mass cultiva- ©1999 it is perfectly at home in almost any tion all over the world. garden setting. It is very tolerant of ex- Photo Courtesy of American Desert Care: The Golden Barrel has slow- Description treme heat as well as cold. Cold hardi- Plants ly become one of the most pur- This popular barrel cactus is noted ness tolerance is at around 10 degrees chased plants for home landscape for the beautiful golden yellow farenheit. Description in Tucson. It is an easy plant to spines that thickly surround the Propagation: Propagation of this cac- This plant is most recognized by the grow and takes no special care.
    [Show full text]
  • Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 29 | Issue 1 Article 4 2011 Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa Alan B. Harper Terra Peninsular, Coronado, California Sula Vanderplank Rancho Santa Ana Botanic Garden, Claremont, California Mark Dodero Recon Environmental Inc., San Diego, California Sergio Mata Terra Peninsular, Coronado, California Jorge Ochoa Long Beach City College, Long Beach, California Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Biodiversity Commons, Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Harper, Alan B.; Vanderplank, Sula; Dodero, Mark; Mata, Sergio; and Ochoa, Jorge (2011) "Plants of the Colonet Region, Baja California, Mexico, and a Vegetation Map of Colonet Mesa," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 29: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol29/iss1/4 Aliso, 29(1), pp. 25–42 ’ 2011, Rancho Santa Ana Botanic Garden PLANTS OF THE COLONET REGION, BAJA CALIFORNIA, MEXICO, AND A VEGETATION MAPOF COLONET MESA ALAN B. HARPER,1 SULA VANDERPLANK,2 MARK DODERO,3 SERGIO MATA,1 AND JORGE OCHOA4 1Terra Peninsular, A.C., PMB 189003, Suite 88, Coronado, California 92178, USA ([email protected]); 2Rancho Santa Ana Botanic Garden, 1500 North College Avenue, Claremont, California 91711, USA; 3Recon Environmental Inc., 1927 Fifth Avenue, San Diego, California 92101, USA; 4Long Beach City College, 1305 East Pacific Coast Highway, Long Beach, California 90806, USA ABSTRACT The Colonet region is located at the southern end of the California Floristic Province, in an area known to have the highest plant diversity in Baja California.
    [Show full text]
  • Succulentopi@ 2014-11
    ISSN 2259-1060 Succulentopi@ n° 11 Octobre 2014 Le Cactus Francophone en revue Sommaire Édito ................................................................... par Laurent Dehay .......... 3 Galerie photos .................................................................... par Olivier Arnoud .......... 4 Encyclopédie : Austrocylindropuntia ...................................... par Philippe Corman ...................................................................................... et Alain Laroze ............... 7 Encyclopédie : Punotia ....................................................... par Philippe Corman ..... 22 Lophophora fricii. .................................................................. ...................................... L'histoire d'une plante mystérieuse. ............... par Jaroslav Bohata et al.25 L'hivernage en serre des cactacées et succulentes .................. par Patrick Cazuguel ..... 33 Philatélie ..................................................................... par Jean-Pierre Pailler ... 39 Aperçu de discussions sur le forum ........................................ .................................. 40 Bibliothèque numérique de CactusPro … ............................... .................................. 42 Histoire du premier ISBN du Cactus Francophone ................... .................................. 44 Informations diverses ............................................................ .................................. 46 Agenda ...............................................................................
    [Show full text]
  • Cochemiea Halei on Peninsular Baja California Sur
    S Root Gorelick Cochemiea halei on peninsular Baja California Sur ochemiea halei (also known as Baja California Sur (the state making up the south- Mammillaria halei) is the only ern half of the Baja peninsula). Ira Wiggins, in his member of the small, segregate Flora of Baja California (1980), mentions that genus Cochemiea to completely this species is occasionally found on the peninsula lack hooked spines. It is almost itself, but provides no further details. I happened exclusively found on Isla Santa across a single clump on the peninsular mainland Margarita and Isla Magdalena, both in San Carlos, approximately 55 km west of the of which are Pacific islands off large agricultural center Ciudad Constitución. CL Cochemiea halei with Simmondsia chinensis and in fruit and flower. 274 CACTUS AND SUCCULENT JOURNAL K Top Stenocereus eruca, the Creeping Devil. Middle Ferocactus townsendianus. Bottom New growth on Stenocereus gummosus. A clump of a few hundred stems, in two discrete groups that may be separate plants, was found in stabilized, sandy soil approximate- ly 20 meters from the Pacific Ocean growing amongst Simmondsia chinensis (Jojoba) and Cylindropuntia cholla. Despite the proximity to the ocean, the view here is hardly scenic, with the huge San Pedro Electric Generation Plant loom- ing less than two kilome- ters to the east. This specimen of Cochemiea halei had several withered floral remains, fresh fruits, and only a single open flower on the 8th of June, 2007. This plant appeared quite healthy and active- ly growing, but no other individuals were found in the immediate vicinity. Sand dwellers, such as Abronia sp (Sand Verbena) and Probos- cidea parviflora grew here along with succu- lents Stenocereus eruca (the Creeping Devil), Ferocactus townsendi- anus, and the following taxa that are ubiquitous throughout the peninsu- la: Pachycereus pringlei, Stenocereus gummo- sus, Mammillaria dio- ica, Fouquieria diguetii, Bursera microphylla, and B.
    [Show full text]
  • 42562784041.Pdf
    Revista mexicana de biodiversidad ISSN: 1870-3453 ISSN: 2007-8706 Instituto de Biología Alvarado-Sizzo, Hernán; Casas, Alejandro; González- Rodríguez, Antonio; Arreola-Nava, Hilda Julieta; Terrazas, Teresa Clave dicotómica y distribución del complejo de especies de Stenocereus griseus (Cactaceae) Revista mexicana de biodiversidad, vol. 90, 2019 Instituto de Biología DOI: 10.22201/ib.20078706e.2019.90.2675 Disponible en: http://www.redalyc.org/articulo.oa?id=42562784041 Cómo citar el artículo Número completo Sistema de Información Científica Redalyc Más información del artículo Red de Revistas Científicas de América Latina y el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 90 (2019): e902675 Taxonomía y sistemática Clave dicotómica y distribución del complejo de especies de Stenocereus griseus (Cactaceae) Dichotomous key and distribution of the Stenocereus griseus species complex (Cactaceae) Hernán Alvarado-Sizzo a, Alejandro Casas a, Antonio González-Rodríguez a, Hilda Julieta Arreola-Nava b y Teresa Terrazas c, * a Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro Núm. 8701, Col. Ex Hacienda de San José de la Huerta, 58190 Morelia, Michoacán, México b Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez Núm. 2100, 45110
    [Show full text]
  • Stenocereus Stellatus
    Revista Internacional de International Journal of BOTANICA EXPERIMENTAL EXPERIMENTAL BOTANY Fundada en 1951 por Founded 1951 by Miguel Raggio & Nora Moro de Raggio Editor Fundador: Dr. Miguel Raggio | Editor Ejecutivo: Dr. Carlos A. Busso FUNDACION ROMULO RAGGIO Gaspar Campos 861, 1638 Vicente Lòpez (BA), Argentina www.revistaphyton.fund-romuloraggio.org.ar ISSN 0031-9457 56º ANIVERSARIO (2007) 76: 19-26 56th ANNIVERSARY Pitaya (Stenocereus stellatus) fruit growth is associated to wet season in Mexican dry tropic (With 2 Figures & 1 Table) El crecimiento del fruto de pitaya (Stenocereus stellatus) está asociado a la estación húmeda en el trópico seco mexicano (Con 2 Figuras y 1 Tabla) García-Suárez1 F, L Carreto-Montoya2, R Cárdenas-Navarro3, JC Díaz-Pérez4, R López-Gómez Abstract. In this work we contribute to the knowledge of the reproduc- tive phenology of Stenocereus stellatus (Pfeiffer,Riccobono), a columnar cactus that produces fruits of high commercial perspectives known as “pitayas”. This kind of pitayas are produced for local commercialization in back orchards in some regions of the Mexican dry tropics. These fruits are produced only in the apical part of the cactus “arms”. Our results show that fruit development of pita- yas is highly associated to the rainy season of the year. This behavior is different from the reproductive strategy of other columnar cactus species that produce other kinds of pitaya in the same ecological region. Key words: Columnar cacti, pitaya fruit, phenology, water stress. 1 Centro de Desarrollo de Productos Bioticos IPN, Km 7.5 Carretera Yautepec-Jojutla, Morelos, México. 2 Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3 Ciudad Universitaria, Morelia, Mich.
    [Show full text]
  • Organ Pipe Cactus, Stenocereus Thurberi, with Fleshy Leaves On
    Haseltonia 23: 117–125. 2017 117 ORGAN PIPE CACTUS, STENOCEREUS THURBERI, WITH FLESHY LEAVES ON SPHERICAL SHORT-SHOOTS THAT HAVE INDETERMINATE GROWTH ROOT GORELICK Department of Biology, School of Mathematics & Statistics, and Institute of Interdisciplinary Studies Carleton University 1125 Raven Road Ottawa, Ontario, Canada K1S 5B6 email [email protected] Abstract: Neoraimondia have short-shoots comprised of a large areole with indeterminate growth (‘Kurz- triebcephalien’). Flowers of some other cacti are subtended by modestly large photosynthetic leaves. Many specimens of the organ pipe cactus, Stenocereus thurberi, seem to have all these traits: large short-shoots with indeterminate growth and fleshy photosynthetic leaves. Short-shoots in organ pipe cactus grow new photosyn- thetic leaves at their apical meristem and sometimes flower, branch, and form discrete areoles with new spines. However, unlike short-shoots in Neoraimondia, spherical short-shoots of Stenocereus thurberi seem to retain chlorenchyma and lack extensive cork development. Keywords: Stenocereus, cactus, short-shoot, spur-shoot, leaf INTRODUCTION with this odd phenotype not only were relatively com- Organ Pipe Cactus National Monument in south- mon and otherwise quite healthy looking, but some- ern Arizona is a remarkable place to see four species times in easy-to-find locations. One of these was a of massive cacti that are far more common on the massive specimen surrounded by a circle of pavement Sonora side of the border: the eponymous organ pipe at the Twin Peaks Campground entrance, where a cactus (Stenocereus thurberi; Fig. 1), senita (Pachycereus park ranger checks campers in and collects camping schottii = Lophocereus schottii), saguaro (Carnegiea gi- fees (Figs.
    [Show full text]
  • Shared Flora of the Alta and Baja California Pacific Islands
    Monographs of the Western North American Naturalist Volume 7 8th California Islands Symposium Article 12 9-25-2014 Island specialists: shared flora of the Alta and Baja California Pacific slI ands Sarah E. Ratay University of California, Los Angeles, [email protected] Sula E. Vanderplank Botanical Research Institute of Texas, 1700 University Dr., Fort Worth, TX, [email protected] Benjamin T. Wilder University of California, Riverside, CA, [email protected] Follow this and additional works at: https://scholarsarchive.byu.edu/mwnan Recommended Citation Ratay, Sarah E.; Vanderplank, Sula E.; and Wilder, Benjamin T. (2014) "Island specialists: shared flora of the Alta and Baja California Pacific slI ands," Monographs of the Western North American Naturalist: Vol. 7 , Article 12. Available at: https://scholarsarchive.byu.edu/mwnan/vol7/iss1/12 This Monograph is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Monographs of the Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Monographs of the Western North American Naturalist 7, © 2014, pp. 161–220 ISLAND SPECIALISTS: SHARED FLORA OF THE ALTA AND BAJA CALIFORNIA PACIFIC ISLANDS Sarah E. Ratay1, Sula E. Vanderplank2, and Benjamin T. Wilder3 ABSTRACT.—The floristic connection between the mediterranean region of Baja California and the Pacific islands of Alta and Baja California provides insight into the history and origin of the California Floristic Province. We present updated species lists for all California Floristic Province islands and demonstrate the disjunct distributions of 26 taxa between the Baja California and the California Channel Islands.
    [Show full text]
  • A Phylogenetic Study of Ferocactus Britton and Rose (Cactaceae: Cactoideae) Jorge Hugo Cota-Sánchez Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 A phylogenetic study of Ferocactus Britton and Rose (Cactaceae: Cactoideae) Jorge Hugo Cota-Sánchez Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Botany Commons, Other Ecology and Evolutionary Biology Commons, Other Genetics and Genomics Commons, and the Plant Breeding and Genetics Commons Recommended Citation Cota-Sánchez, Jorge Hugo, "A phylogenetic study of Ferocactus Britton and Rose (Cactaceae: Cactoideae) " (1997). Retrospective Theses and Dissertations. 11453. https://lib.dr.iastate.edu/rtd/11453 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. TJMI fihns the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Crafting and Consuming an American Sonoran Desert: Global Visions, Regional Nature and National Meaning
    Crafting and Consuming an American Sonoran Desert: Global Visions, Regional Nature and National Meaning Item Type text; Electronic Dissertation Authors Burtner, Marcus Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 02/10/2021 04:13:17 Link to Item http://hdl.handle.net/10150/268613 CRAFTING AND CONSUMING AN AMERICAN SONORAN DESERT: GLOBAL VISIONS, REGIONAL NATURE AND NATIONAL MEANING by Marcus Alexander Burtner ____________________________________ copyright © Marcus Alexander Burtner 2012 A Dissertation Submitted to the Faculty of the DEPARTMENT OF HISTORY In Partial Fulfillment of the Requirements for the degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2012 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Marcus A. Burtner entitled “Crafting and Consuming an American Sonoran Desert: Global Visions, Regional Nature, and National Meaning.” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy ____________________________________________________________Date: 1/7/13 Katherine Morrissey ____________________________________________________________Date: 1/7/13 Douglas Weiner ____________________________________________________________Date: 1/7/13 Jeremy Vetter ____________________________________________________________Date: 1/7/13 Jack C. Mutchler Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • A Close Look at Betacyanin Synthesis Genes in Stenocereus Queretaroensis
    ORIGINAL RESEARCH published: 25 August 2021 doi: 10.3389/fsufs.2021.698195 Defining Color Change in Pitaya: A Close Look at Betacyanin Synthesis Genes in Stenocereus queretaroensis Javier Morales 1, Jorge Araujo-Sanchez 1, Lizbeth Castro-Concha 1, Angela Ku 1, Alejandro Pereira-Santana 2, María de Lourdes Miranda-Ham 1 and Enrique Castaño 1* 1 Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Mérida, Mexico, 2 División de Biotecnología Industrial, CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Mexico Betalains are tyrosine-derived plant pigments present in several species of the Caryophyllales order. Betalains are classified in red betacyanins and yellow betaxanthins and are implicated in plant stress tolerance and visual attraction for pollinators. The compounds are used as natural colorants in many industries. Today, there is little information on betalain biosynthesis with several key enzymes that remain unknown on Edited by: plants of the Caryophyllales order. Omic tools have proven to be very useful in gaining Viji Sarojini, The University of Auckland, insights into various molecular mechanisms. In this study, we used suspension cells New Zealand from fruits of the cactus Stenocereus queretaroensis. Two growing conditions were Reviewed by: used to perform RNA-seq and differential expression analysis to help identify betalain Guadalupe Virginia Nevárez-Moorillón, biosynthesis-related genes. We found 98 differential expressed genes related to aromatic Autonomous University of Chihuahua, Mexico amino acids and betalain biosynthesis pathways. Interestingly, we found that only one Rebogile Mphahlele, gene of the betalain synthesis pathway was differentially expressed.
    [Show full text]