Lost Creek Coldwater Conservation Plan

Total Page:16

File Type:pdf, Size:1020Kb

Lost Creek Coldwater Conservation Plan Lost Creek Coldwater Conservation Plan 2013 Prepared by the Juniata County Conservation District Page | 1 Funding Provided by the Coldwater Heritage Partnership EXECUTIVE SUMMARY Lost Creek is a tributary to the Juniata River originating in the northeastern part of Juniata County, Pennsylvania. The entire stream is 17.5 miles in length, but only the upper portion, from its origin to where it crosses State Route 35 in Oakland Mills, PA is classified as a High Quality Cold Water Fishery (HQ-CWF) by the Pennsylvania Fish and Boat Commission (25 Pa. Code § 93.9). PA FBC also considers this section of the stream a naturally reproducing, Class A Wild Trout Stream. The entirety of this section of the watershed is located within Fayette Township. In order to determine if this exceptional resource is continuing to serve Juniata County as a high quality cold water resource, the Juniata County Conservation District (JCCD) set out to validate the stream’s ratings via chemical testing (through both lab-verified and in-house tests), lab verified Macroinvertebrate testing, and stream habitat assessment. Additionally, JCCD sought to identify threats and opportunities within the watershed to ensure future conservation of this nearly pristine natural area. According to lab data and data collected by JCCD staff, the Lost Creek watershed upstream of State Route 35 in Oakland Mills, PA does, in fact, measure up to its designation. Although threatened by agricultural industry, residential development, and logging, Lost Creek offers great recreational opportunities and can certainly be preserved for the enjoyment of many generations to come, as well as for the benefit of the plentiful and somewhat rare natural communities that thrive within its boundaries. The Main Stem of Lost Creek within the Lost Creek Rod and Gun Club Property. Page | 2 BACKGROUND Watershed Description: Much of the upper reaches of the Lost Creek watershed above State Route 35 is forested, especially the headwaters region. Steep gradients have prevented intensive development in the headwaters area. Additionally, a large parcel of land covering approximately 1943 acres in the headwaters region of the watershed is owned by Lost Creek Rod and Gun Club and maintained as a recreational area for members to hunt and fish. The watershed is fragmented by State Route 235, as well as other state and township roadways. A variety of hunting camps and permanent rural residences also pepper the area. Further downstream, several agricultural operations can be found within the watershed boundaries, including poultry, dairy, hog, and cropping operations. Of these, four operations are classified as Concentrated Animal Feeding Operations (CAFOs), which are closely monitored by JCCD as well as the Pennsylvania Department of Environmental Protection (DEP) and the Environmental Protection Agency (EPA). At the very base of the portion of watershed lies Lost Creek Golf Course. A few commercial business operations are located in the watershed, specifically four pallet shops and one saw mill. Agricultural activities and roadways are impact concerns within the Lost Creek watershed. Page | 3 Lost Creek Golf Course is located at the very tip of the HQ-CWF portion of the Lost Creek Watershed. The Main Stem of Lost Creek flows directly through the golf course green. The studied portion of the Lost Creek Watershed covers approximately 3554 acres, or 6.2 square miles. Lost Creek is situated in the heart of the Ridge and Valley physiographic province. The most prominent soil type is Allenwood (orange on the map), while other soils in the watershed include Andover (pink and red), Hazelton (light blue), Hazelton- Dekalb (brown), Leetonia (turquoise), Ladig and Morrison (oranges), Brinkerton (dark green), Edom (lighter green), and Newark and Watson (yellows). Page | 4 The Lost Creek watershed is largely forested, especially in the headwaters region, as depicted by the large, green segments on the map above. The purple areas on the map signify areas of rural development, while the brown depicts agricultural lands. The few, scattered dark blue segments are industrial areas. Page | 5 History: In 1752, the area that encompasses the Lost Creek watershed and all of Juniata County was opened to Scot-Irish immigrants via a treaty with the Iroquois. German farmers followed and began to clear land. Lumbering became a primary industry in the area. The Lost Creek watershed was likely timbered in its entirety during this time period. After the land was cleared, farming became prevalent. Several distilleries existed in the watershed during this time period; it was the only market for corn and rice. Local farmers were often given a barrel of whiskey in part pay. Juniata County was officially formed from Mifflin County on March 2nd, 1831, and encompasses 394 square miles. Fayette Township, where the watershed was located, was then formed in 1834. At the time of its formation, the Juniata County was home to less than 10,000 people. Historically, the area was important to both trade and travel, as a canal system built alongside the Juniata River was one of the quickest forms of transportation throughout the state. Later, important railways replaced canal travel. Now Route 322, a major PA State Route highway, cuts through the county. Descendants of the original German settlers remain in the region, which is still home significant Mennonite and Amish communities. Farming remains a primary industry, while logging is no longer quite as prevalent. None of the distilleries remain. Juniata County remains sparsely populated; the 2010 census data shows a population of 24,636. An historic photo of Tennis Sawmill, courtesy of Betsy Phillips, originally published in the McAlisterville and Fayette Township Bicentennial Book. Page | 6 Outstanding Natural Features: According to the Juniata County Natural Heritage Inventory, completed in 2007, several areas of exceptional and local significance are located within the headwaters of the Lost Creek watershed. These include the Slim Valley Wetlands (exceptionally significant), the Lost Creek Headwaters Pool and the Lick Run Headwaters Pool (locally significant). The Slim Valley Wetlands are a series of natural pools, including ephemeral/fluctuating natural pools, which are communities which have a vulnerable status in Pennsylvania, and therefore are of serious conservation priority. Additionally, plant spotted pondweed (Potamogeton pulcher), which is ranked as critically imperiled in Pennsylvania, and the plant twinning screw-stem (Bartonia paniculata), which is a Pennsylvania vulnerable species. Logging and roadwork, if performed without an adequate buffer, threaten this site. Another concern would be fragmentation of the wetlands area. A natural pool within the Slim Valley Wetlands in the early springtime. Page | 7 The Lost Creek and Lick Run Headwaters Pools are separately contained within small topographic saddles in the headwaters of Lost Creek and Lick Run, respectively. The large, isolated pools are surrounded by blackgum forest (Nyssa sylvatica) with a mountain laurel (Kalmia latifolia) understory in the case of Lick Run, and dry oak – heath community with chestnut oak (Quercus montana) dominating the overstory and a thick layer of mountain laurel (Kalmia latifolia) being the understory in the case of the Lost Creek pool. Both pools are in good condition. Logging is the primary threat to theses pools, and a large, no-cut buffer should be established around each area. Additionally, the surrounding area should maintain an intact forest canopy to minimize habitat fragmentation issues to maintain habitat for the species that occur there. Two Pennsylvania Natural Diversity Inventory (PNDI)’s were conducted for the project area; one for the upper portion of the watershed and one for the lower watershed segment. A pair of Mallard Ducks visits an ephemeral pool in the Lost Creek watershed. Page | 8 Neither PNDI indicated that conservation and restoration projects might cause any adverse impacts upon any endangered species or species of special concern that occupy the area. These reports, valid two years from the date they were procured, will be on file with the Juniata County Conservation District. MONITORING AND ASSESSMENT Throughout 2013, Juniata County Conservation District conducted both chemical and macroinvertebrate samples on 8 sites within the Lost Creek Watershed, which were then verified by PA DEP certified laboratories. JCCD also collected data with in-house equipment to compare to the lab-verified data. The goal of this monitoring project was to determine whether or not Lost Creek continues to meet its High Quality designation. Eight sites within the Lost Creek watershed were sampled for this project. Seven of the sites were selected just for this project, while the eighth is a site where JCCD has historically collected chemical data. In the map shown on the following page, sites LC CWH 1-7 are the unique sampling sites, while the site LC 1 is the site where historic data has been collected. The historic site may also be referred to as LC-SC (standing for Lost Creek Saddle Club, the name of the sampling location) later in this text. Chemical monitoring was conducted with a Hach Colorimeter, a pH/TSD/Conductivity multimeter, and a Dissolved Oxygen sensor owned by JCCD. Lab samples were verified by Fairway Laboratories in Altoona, Pennsylvania after being collected by JCCD personnel. In order for a stream to be rated as an HQ-CWF (High Quality Cold Water Fishery), which is the designation of the studied portion of Lost Creek, the DO (Dissolved Oxygen) should be above 7 mg/l, the Nitrate should be below 10mg/l, the pH should be between 6.0 and 9.0, Phosphorus should be between .1mg/l and 1.0 mg/l, and Conductivity should be between 20 and 60 micromhos. TDS should not be more than 750mg/l at any given time, and the temperature should range between 3 and 19 degrees Celsius. The maximum Fecal Coliform should be less than 2000. Macroinvertebrate monitoring was conducted by JCCD staff following DEP established Instream Comprehensive Evaluation (ICE) surveying methods.
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation
    National Park Service U.S. Department of the Interior Natural Resource Program Center Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation Natural Resource Technical Report NPS/NCPN/NRTR—2010/320 ON THE COVER Clockwise from bottom left: Coyote Gulch, Glen Canyon National Recreation Area (USGS/Anne Brasher); Intermittent stream (USGS/Anne Brasher); Coyote Gulch, Glen Canyon National Recreation Area (USGS/Anne Brasher); Caddisfl y larvae of the genus Neophylax (USGS/Steve Fend); Adult damselfi les (USGS/Terry Short). Macroinvertebrate Communities and Habitat Characteristics in the Northern and Southern Colorado Plateau Networks Pilot Protocol Implementation Natural Resource Technical Report NPS/NCPN/NRTR—2010/320 Authors Anne M. D. Brasher Christine M. Albano Rebecca N. Close Quinn H. Cannon Matthew P. Miller U.S. Geological Survey Utah Water Science Center 121 West 200 South Moab, Utah 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network National Park Service P.O. Box 848 Moab, UT 84532 May 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that ad- dress natural resource topics of interest and applicability to a broad audience in the National Park Ser- vice and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission.
    [Show full text]
  • Biological Monitoring of Surface Waters in New York State, 2019
    NYSDEC SOP #208-19 Title: Stream Biomonitoring Rev: 1.2 Date: 03/29/19 Page 1 of 188 New York State Department of Environmental Conservation Division of Water Standard Operating Procedure: Biological Monitoring of Surface Waters in New York State March 2019 Note: Division of Water (DOW) SOP revisions from year 2016 forward will only capture the current year parties involved with drafting/revising/approving the SOP on the cover page. The dated signatures of those parties will be captured here as well. The historical log of all SOP updates and revisions (past & present) will immediately follow the cover page. NYSDEC SOP 208-19 Stream Biomonitoring Rev. 1.2 Date: 03/29/2019 Page 3 of 188 SOP #208 Update Log 1 Prepared/ Revision Revised by Approved by Number Date Summary of Changes DOW Staff Rose Ann Garry 7/25/2007 Alexander J. Smith Rose Ann Garry 11/25/2009 Alexander J. Smith Jason Fagel 1.0 3/29/2012 Alexander J. Smith Jason Fagel 2.0 4/18/2014 • Definition of a reference site clarified (Sect. 8.2.3) • WAVE results added as a factor Alexander J. Smith Jason Fagel 3.0 4/1/2016 in site selection (Sect. 8.2.2 & 8.2.6) • HMA details added (Sect. 8.10) • Nonsubstantive changes 2 • Disinfection procedures (Sect. 8) • Headwater (Sect. 9.4.1 & 10.2.7) assessment methods added • Benthic multiplate method added (Sect, 9.4.3) Brian Duffy Rose Ann Garry 1.0 5/01/2018 • Lake (Sect. 9.4.5 & Sect. 10.) assessment methods added • Detail on biological impairment sampling (Sect.
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Phylum Nemertea Or Rhynchocoela (Minor Phyla)
    Animal Diversity: (Non-Chordates) Phylum Nemertea or Rhynchocoela (Minor Phyla) Hardeep Kaur Assistant Professor, Department of Zoology, Ramjas College, University of Delhi Delhi – 110 007 CONTENTs: ¾ Introduction ¾ External Structure ¾ Body Wall and Locomotion ¾ Nutrition and Digestive System ¾ Circulatory System ¾ Excretory System ¾ Nervous System and Sense Organs ¾ Regeneration ¾ Reproductive System ¾ Embryogeny ¾ Classification of Nemerteans ¾ General Characters of Nemerteans ¾ Affinities of Nemerteans ¾ Glossary ¾ References / Suggested Readings PHYLUM NEMERTEA / PHYLUM RHYNCHOCOELA INTRODUCTION: Phylum Nemertea comprises approximately 1200 species of ¾ elongated and often flattened worms, called ribbon worms (many have flattened body) or ¾ bottle worms (because of narrow anterior end) ¾ proboscis worms, (because of the presence of a remarkable proboscis apparatus used in capturing food). The Nemerteans are named for Nemertes, one of the Nereids, sea-nymph of Greek mythology. They are commonly looked upon related to the Turbellaria and were formerly included in them, but the fact that they possess a complete digestive system with anus and also a blood vascular system makes them higher in organization than the Turbellaria. However, presence of a protrusible proboscis with a separate proboscis pore, other than mouth, is the most characteristic feature of the phylum. Almost all nemerteans are free living, bottom-dwelling, marine animals. Few commensal and parasitic species have been described. Nemertopsis actinophila is a slender form living beneath the pedal disc of sea anemones. Carcinonmertes may be found on gills and egg masses of crabs. Some species of Tetrastemma live in the branchial cavity of tunicates. Only few exibit commensal mode of life eg. Gonomertes parasitica is a commensal species found on crustaceans,.
    [Show full text]
  • Biodiversity from Caves and Other Subterranean Habitats of Georgia, USA
    Kirk S. Zigler, Matthew L. Niemiller, Charles D.R. Stephen, Breanne N. Ayala, Marc A. Milne, Nicholas S. Gladstone, Annette S. Engel, John B. Jensen, Carlos D. Camp, James C. Ozier, and Alan Cressler. Biodiversity from caves and other subterranean habitats of Georgia, USA. Journal of Cave and Karst Studies, v. 82, no. 2, p. 125-167. DOI:10.4311/2019LSC0125 BIODIVERSITY FROM CAVES AND OTHER SUBTERRANEAN HABITATS OF GEORGIA, USA Kirk S. Zigler1C, Matthew L. Niemiller2, Charles D.R. Stephen3, Breanne N. Ayala1, Marc A. Milne4, Nicholas S. Gladstone5, Annette S. Engel6, John B. Jensen7, Carlos D. Camp8, James C. Ozier9, and Alan Cressler10 Abstract We provide an annotated checklist of species recorded from caves and other subterranean habitats in the state of Georgia, USA. We report 281 species (228 invertebrates and 53 vertebrates), including 51 troglobionts (cave-obligate species), from more than 150 sites (caves, springs, and wells). Endemism is high; of the troglobionts, 17 (33 % of those known from the state) are endemic to Georgia and seven (14 %) are known from a single cave. We identified three biogeographic clusters of troglobionts. Two clusters are located in the northwestern part of the state, west of Lookout Mountain in Lookout Valley and east of Lookout Mountain in the Valley and Ridge. In addition, there is a group of tro- globionts found only in the southwestern corner of the state and associated with the Upper Floridan Aquifer. At least two dozen potentially undescribed species have been collected from caves; clarifying the taxonomic status of these organisms would improve our understanding of cave biodiversity in the state.
    [Show full text]
  • Nemertea: Enopla: Hoplonemertea: Tetrastemmatidae
    Tetrastemma albidum Coe 1905 SCAMIT Vol. , No Group: Nemertea: Enopla: Hoplonemertea: Tetrastemmatidae Date Examined: 16 May 2007 Voucher By: Tony Phillips SYNONYMY: Prosorhochmus albidus (Coe 1905) Monostylifera sp B SCAMIT 1995 Monostylifera sp C SCAMIT 1995 LITERATURE: Bernhardt, P. 1979. A key to the Nemertea from the intertidal zone of the coast of California. (Unpublished). Coe, W.R. 1905. Nemerteans of the west and north-west coasts of North America. Bull. Mus. Comp. Zool. Harvard Coll. 47:1-319. Coe, W.R. 1940. Revision of the nemertean fauna of the Pacific Coast of North, Central and northern South America. Allen Hancock Pacific Exped. 2(13):247-323. Coe, W.R. 1944. Geographical distribution of the nemerteans of the Pacific coast of North America, with descriptions of two new species. Journal of the Washington Academy of Sciences, 34(1):27-32. Correa, D.D. 1964. Nemerteans from California and Oregon. Proc. Calif. Acad. Sci., 31(19):515-558. Crandall, F.B. & J.L. Norenborg. 2001. Checklist of the Nemertean Fauna of the United States. Nemertes (http://nemertes.si.edu). Smithsonian Institution, Washington, D.D. pp. 1-36. Maslakova, S.A. et al. 2005. The smile of Amphiporus nelsoni Sanchez, 1973 (Nemertea:Hoplonemertea:Monostilifera:Amphiporidae) leads to a redescription and a change in family. Proceedings of the Biological Society of Washington, 18(3):483-498. Maslakova, S.A. & J.L. Norenburg. 2008. Revision of the smiling worms, genus Prosorhochmus Keferstein, 1862, and description of a new species, Prosorhochmus bellzeanus sp. Nov. (Prosorhochmidae, Hoplonemertea) from Florida and Belize. J. Nat. Hist., 42(17):1219-1260.
    [Show full text]
  • Ceh Code List for Recording the Macroinvertebrates in Fresh Water in the British Isles
    01 OCTOBER 2011 CEH CODE LIST FOR RECORDING THE MACROINVERTEBRATES IN FRESH WATER IN THE BRITISH ISLES CYNTHIA DAVIES AND FRANÇOIS EDWARDS CEH Code List For Recording The Macroinvertebrates In Fresh Water In The British Isles October 2011 Report compiled by Cynthia Davies and François Edwards Centre for Ecology & Hydrology Maclean Building Benson Lane Crowmarsh Gifford, Wallingford Oxfordshire, OX10 8BB United Kingdom Purpose The purpose of this Coded List is to provide a standard set of names and identifying codes for freshwater macroinvertebrates in the British Isles. These codes are used in the CEH databases and by the water industry and academic and commercial organisations. It is intended that, by making the list as widely available as possible, the ease of data exchange throughout the aquatic science community can be improved. The list includes full listings of the aquatic invertebrates living in, or closely associated with, freshwaters in the British Isles. The list includes taxa that have historically been found in Britain but which have become extinct in recent times. Also included are names and codes for ‘artificial’ taxa (aggregates of taxa which are difficult to split) and for composite families used in calculation of certain water quality indices such as BMWP and AWIC scores. Current status The list has evolved from the checklist* produced originally by Peter Maitland (then of the Institute of Terrestrial Ecology) (Maitland, 1977) and subsequently revised by Mike Furse (Centre for Ecology & Hydrology), Ian McDonald (Thames Water Authority) and Bob Abel (Department of the Environment). That list was subject to regular revisions with financial support from the Environment Agency.
    [Show full text]
  • Nemertea (Ribbon Worms)
    ISSN 1174–0043; 118 (Print) ISSN 2463-638X; 118 (Online) Taihoro Nukurc1n,�i COVERPHOTO: Noteonemertes novaezealandiae n.sp., intertidal, Point Jerningham, Wellington Harbour. Photo: Chris Thomas, NIWA. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Invertebrate Fauna of New Zealand: Nemertea (Ribbon Worms) by RAY GIBSON School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street Liverpool L3 3AF, United Kingdom NIWA Biodiversity Memoir 118 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication GIBSON, Ray The invertebrate fauna of New Zealand: Nemertea (Ribbon Worms) by Ray Gibson - Wellington : NIWA (National Institute of Water and Atmospheric Research) 2002 (NIWA Biodiversity memoir: ISSN 0083-7908: 118) ISBN 0-478-23249-7 II. I. Title Series UDC Series Editor: Dennis P. Gordon Typeset by: Rose-Marie C. Thompson National Institute of Water and Atmospheric Research (NIWA) (incorporating N.Z. Oceanographic Institute) Wellington Printed and bound for NIWA by Graphic Press and Packaging Levin Received for publication - 20 June 2001 ©NIWA Copyright 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page 5 ABSTRACT 6 INTRODUCTION 9 Materials and Methods 9 CLASSIFICATION OF THE NEMERTEA 9 Higher Classification CLASSIFICATION OF NEW ZEALAND NEMERTEANS AND CHECKLIST OF SPECIES .
    [Show full text]
  • 410 SCHUYLKILL RIVER BASIN 01473169 VALLEY CREEK at PENNSYLVANIA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA LOCATION.--Lat 40°04'45
    410 SCHUYLKILL RIVER BASIN 01473169 VALLEY CREEK AT PENNSYLVANIA TURNPIKE BRIDGE NEAR VALLEY FORGE, PA LOCATION.--Lat 40°04'45", long 75°27'40", Chester County, Hydrologic Unit 02040202, on right bank 100 ft upstream from Pennsylvania turnpike bridge, 0.9 mi downstream from Little Valley Creek, 2.2 mi upstream from mouth, and 1.0 mi south of Valley Forge. DRAINAGE AREA.--20.8 mi2. WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1982 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 108.62 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair. Several measurements of water temperature were made during the year. Satellite telemetry at station. Intermittent pumpage from quarry upstream. PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft3/s and maximum (*): Discharge Gage Height Discharge Gage Height Date Time ft3/s (ft) Date Time ft3/s (ft) Nov. 17 0300 1,200 7.74 Aug. 9 1715 950 7.20 Dec. 11 1800 765 6.83 Aug. 10 0815 1,430 8.31 Feb. 22 1630 1,130 7.57 Sept. 15 1730 *1,720 *8.95 June 20 2000 1,710 8.92 Sept. 19 0230 985 7.27 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 10 23 18 101 22 29 37 27 68 34 29 20 2 10 21 17 49 22 101 36 27 29 33 20 52 3 10 19 17 50 21 60 35 27 28 39 72 27 4 12 19 16 42 29 38 34 26 188 33 111 44 5 12 19 18 35 22 74 34 27 78 33 54 25 6 9.5 37 17 35 20 140 32 31
    [Show full text]
  • Journal of Cave and Karst Studies
    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]