Soo Á Natural Environment Research, Council

Total Page:16

File Type:pdf, Size:1020Kb

Soo Á Natural Environment Research, Council A •ilas a 0 A • 0 0 a a III Ilk a a a - • - - . Soo á Natural Environment Research, Council Dr. P.S. Maitland Institute of Terrestrial Ecology A Coded Checklist of Animals occurring in Fresh Water in the British Isles. First published 1977 Institute of Terrestrial Ecology c /o Nature Conservancy Council 12 Hope Terrace EDINBURGH EH9 2AS 031 447 (Edinburgh) 4784 The Institute of Terrestrial Ecology (ITE) was estab- from natural or man-made change. The results of this lished in 1973, from the former Nature Conservancy's research are available to thoseresponsible for the research stations and staff, joined later by the Institute protection, management and wise use of our natural of Tree Biology and the Culture Centre of Algae and resources. Protozoa. ITE contributes to and draws upon the collective knowledge of the fourteen sister institutes Nearly half of ITE's work is research commissioned by which make up the Natural Environment Research customers, such as the Nature Conservancy Council Council, spanning all the envrionmental sciences. who require information for wildlife conservation, the Forestry Commission and the Department of the The Institute studies the factors determining the Environment. The remainder is fundamental research structure, composition and processes of land and supported by NERC. freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for ITE's expertise is widely used by international organisa- predicting and modelling environmental trends arising tions in overseas projects and programmes of research. 2 Introduction The purpose of this publication is to provide a The format of the check list itself is quite simple comprehensive list of all free-living animals, from and the numbers meaningful taxonomically. The first sponges to mammals but excluding Protozoa, which pair of digits represents the major groupings - usually occur in, or in association with, freshwater systems in phyla, classes or orders. The 2nd, 3rd and 4th pairs of the British Isles. It is organised in such a way that each digits represent families (occasionally subfamilies), species can be represented by a unique 8-digit code, genera and species (with authorities) respectively. The thus establishing a standard and relatively easy basis for numbering of the check list follow's a logical sequence handling species lists, etc. numerically. This check list, and space is available for the addition of new species. containing over 3,800 species has been produced in The present list has a number of advantages in parallel to a coded list of all lakes in Great Britain shown addition to the obvious one of being able to represent on 1: 250,000 maps (ca 5,600 lakes) recently completed any species by only 8 digits. The great majority of lists of by Smith (1976). The two studies, together with other animals from freshwater habitats in this country are proposed projects (eg. coded lists of algae, macro- incomplete as far as identification is concerned and phytes and rivers) provide the basis of a powerful tool many groups (e.g. Chironomidae) are rarely identified for handling and analysing data on freshwater eco- beyond family. The present system is completely systems in this country. flexible in such situations for while a full identification of Chlorohydra viridissima (Pallas) is coded 02010201 if As far as the actual species listed are concerned it identification is taken no further than the family has been necessary to make a nanber of judgement (Hydridae) the coding is 02010000. Thus any form of decisions regarding those to be included or excluded. In taxonomic list of animals can be coded relatively easily. general, where a recent taxonomic key or check-list to freshwater species in the British Isles is available for any The increasing numbers of studies of aquatic group then this has been followed more or less exactly. animals being carried out by freshwater ecologists in Where there is doubt about the validity of records of a many parts of the country, especially by those working species it has normally been included in the list to avoid in the fields of water supply, pollution prevention, possible insertion at a later daie. Thus the presence in fisheries and conservation, mean that acceptance of a the list of any particular species should not be taken as common check list, particularly a coded one, is an assurance that it occurs in the British Isles. As far as becoming more and more desirable. It is suggested that habitat is concerned similar decisions have been made the present list is extensive and versatile enough to where there is doubt as to whether any species is meet the needs of almost all freshwater ecologists in the aquatic or terrestrial, freshwater or marine. Thus parallel British Isles. check lists of terrestrial or marine animals will be likely In addition to relying heavily on the published to contain some of the animals listed here. literature, the author has been helped greatly in the production of this list by general criticism or comments It is intended that this list will be useful to those 'on various groups from the following people: A. Brindle, freshwater ecologists throughout the country who are J.C. Chubb, R.A. Crowson, J.T. Dealtry, J.M. Elliot, G. concerned with sampling, identifying and analysing Fryer, D.C. Geddes, P.S. Gooch, R. Gibson, J. Green, mixed collections of animals. Thus it is closely linked J.D. Hamilton, D.J. Hooper, J.P.K. Horkan, J.N.R. with the taxonomic keys in greatest use. Some Jeffers, D. Jenkins, R. Jones, C.R. Kennedy, E.D. Le problems have arisen, however, related to keys which Cren, R.J. Lincoln, T.T. Macan, R.M. Pontin, S. do not have an accompanying check list or where new Prudhoe, O.W. Richards, G.S. Scott, M.W. Service, species have been discovered since publication. In these K.G.V. Smith, W.J.P. Smyly, S.M. Stone, D.W. cases compromises have been reached based on the Sutcliffe, and J.O. Young. The coding was carried out best literature and advice available. The main published by Dr C.F. Mason. Mrs. J. Garcia, Miss M. MacDonald sources of information used for each group are and Mrs S. Adair helped greatly with the initial indicated in Table 1: this also includes data on the preparation of the list and Mrs M.S. Wilson had the number of species and the location of groups within the unenviable job of typing it. I am grateful to everyone for list. their help. 3 Table 1. The major groups of animals included in the coded check list, with total numbers of species and major references. 4 * All members of these groups are internal parasites and not covered in this list. 5 Table 2. The families of Diptera included in the coded check list, with total number of species and major references. INSECTA TOTAL SPECIES PAGE REFERENCES 40 DIPTERA 01 Tipulidae 117 48 13,64 02 Psychodidae 61 50 32,64 03 Ptychopteridae 7 51 31,64 04 Dixidae 14 52 24 05 t haoboridae 6 52 33,64,95 06 Culicidae 33 52 64,78 07 Thaumaleidae 3 52 26,64 08 Ceratopogonidae 153 52 12,64 09 Chironomidae 450 55 14,64 15 Simuliidae 35 63 22 16 Stratiomyidae 27 63 64,107 17 Empididae 48 64 17,103 18 Dolichopodidae 59 64 84,104 19 Rhagionidae 1 65 56,64 20 Tabanidae 12 65 56,64,83 21 Syrphidae 26 66 15,105 22 Ephydridae 32 66 5,20 23 Sciomyzidae 43 67 85,106 24 Scatophagidae 4 67 16,64,108 25 Muscidae 7 68 21,48 6 Coded Check List 01 PORIFERA DEMOSPONGIAE Spongillidae Spongilla lacustris(L) Eunapius fragilis (Leidy) Ephydatia fluviatilis (L.) mulleri (Leiberkubn) Heteromeyenia baileyi (Bowerbank) stepanowii ( Dybowsky) Anheteromeyenia ryderi (Potts) Trochospongilla horrida Weltner 02 COELENTERATA HYDROZOA Hydridae Hydra attenuata Pallas circumcincta Schulze oligactis (Pallas) graysoni Maxwell Chlorohydra viridissima (Pallas) Protohydra leuckarti Greef Clavidae Cordylophora lacustris Allman Olindiidae Craspedacusta sowerbll Lankester 03 PLATYHELMINTHES TURBELLARIA: MICROTURBELLAR IA Catenulidae Catenula lemnae Duges Stenostomidae Rhynchoscolex simplez Leidy Stenostomum leucops ( Duges) unicolor Schmidt blyophilum Luther grabbskogense Luther Microstomidae Microstomum lineare (Muller) Macrostomidae Macrostomum rostratum (Papi) distinguendum (Papi) johni Young Prorhynchidae Prorhynchus stagnalis Schultze Geocentrophora sphyrocephala Man baltica (Kennel) Plagiostomidae Plagiostomum lemani (Plessis) Bothrioplanidae Bothrioplana semperi Braun Otomesostomidae Otomesostoma auditivum (Plessis) Dalyellidae Microdalyellia fairchildi (Graff) schmidtii (Graff) kupelwieseri (Meisner) brevimana (Beklemischev) Gieysztoria diadema (Hofsten) infundibuliformis Fuhrmann rubra (Fuhrmann) Castrella truncata (Abilgaard) Dalyellia viridis (Shaw) Typhloplanidae Typhloplana viridata (Abildgaard) Castrada luteola Hofsten armata (Fuhrmann) Ian ceolaBraun neocomensis Volz viridis Volz 7 Tetracelis marmorosa (Muller) 03 10 03 01 Strongylostoma radiatum (Muller) 03 10 04 01 elongaturn Hofsten 03 10 04 02 Olisthanella obtusa (Schultze) 03 10 05 01 Rhynchornesostorna rostratum (Muller) 03 10 06 01 Mesostoma lingua (Abildgaard) 03 10 07 01 productum (Schmidt) 03 10 07 02 tetragonum (Muller) 03 10 07 03 ehrenbergll (Focke) 03 10 07 04 Bothrornesostorna personatum (Schmidt) 03 10 08 01 Phaenocora unipunctata (Orsted) 03 10 09 01 typhlops (Vejdovsky) 03 10 09 02 Opistomum pallidum Schmidt 03 10 10 01 Polycystididae Gyratrix hermaphroditus Ehrenberg 03 11 01 01 Opisthocystis goettei (Bresslau) 03 11 02 01 TURBELLARIA: TRICLADIDA Planariidae Planaria torva (Muller) 03 12 01 01 Polycelis nigra (muller) 03 12 02 01 tenuis (Ijima)
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • List of Available Names in Zoology, Candidate Part Phylum Rotifera, Genus-Group Names Established Before 1 January 2000
    List of Available Names in Zoology, Candidate Part Phylum Rotifera, genus-group names established before 1 January 2000 compiled by Christian D. Jersabek Willem H. De Smet Claus Hinz Diego Fontaneto Charles G. Hussey Evangelia Michaloudi Robert L. Wallace Hendrik Segers 05 August 2015 List of Available Names in Zoology, candidate part Phylum Rotifera – Genus-group names Abrochtha, Bryce 1910; Journal of the Quekett Microscopical Club, (ser. 2) 11: p.77; type species, by original mono- typy: Philodina intermedia Beauchamp, 1909 [valid; gender feminine] Acanthodactylus, Tessin 1890; Archiv der Freunde der Naturgeschichte in Mecklenburg, 43: p.152; type species, by subsequent designation (Wiszniewski, 1954: Polskie Archiwum Hydrobiologii, 2: p.121): Trichoda rattus Müller, 1776; preoccupied by Acanthodactylus Wiegmann, 1834 (Reptilia) [permanently invalid, junior objective synonym of Trichocerca Lamarck, 1801; gender masculine] Actinurus, Ehrenberg 1830; in Ehrenberg, C G, Organisation, Systematik und geographisches Verhältnis der Infusi- onsthierchen. Zwei Vorträge in der Akademie der Wissenschaften zu Berlin gehalten in den Jahren 1828 [Die geo- graphische Verbreitung der Infusionsthierchen in Nord-Afrika und West-Asien, beobachtet auf Hemprich und Ehren- bergs Reisen] und 1830 [Beiträge zur Kenntnis der Organisation der Infusorien und ihrer geographischen Verbrei- tung, besonders in Sibirien]: p.68; type species, by original monotypy: Actinurus neptunius Ehrenberg, 1830 [junior subjective synonym of Rotaria Scopoli, 1777; gender masculine]
    [Show full text]
  • Platyhelminthes) at the Queensland Museum B.M
    VOLUME 53 ME M OIRS OF THE QUEENSLAND MUSEU M BRIS B ANE 30 NOVE mb ER 2007 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qm.qld.gov.au National Library of Australia card number ISSN 0079-8835 Volume 53 is complete in one part. NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Editor in Chief. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qm.qld.gov.au/organisation/publications/memoirs/guidetoauthors.pdf A Queensland Government Project Typeset at the Queensland Museum THE STUDY OF TURBELLARIANS (PLATYHELMINTHES) AT THE QUEENSLAND MUSEUM B.M. ANGUS Angus, B.M. 2007 11 30: The study of turbellarians (Platyhelminthes) at the Queensland Museum. Memoirs of the Queensland Museum 53(1): 157-185. Brisbane. ISSN 0079-8835. Turbellarian research was largely ignored in Australia, apart from some early interest at the turn of the 19th century. The modern study of this mostly free-living branch of the phylum Platyhelminthes was led by Lester R.G. Cannon of the Queensland Museum. A background to the study of turbellarians is given particularly as it relates to the efforts of Cannon on symbiotic fauna, and his encouragement of visiting specialists and students.
    [Show full text]
  • R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
    RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available.
    [Show full text]
  • Phylum Nemertea Or Rhynchocoela (Minor Phyla)
    Animal Diversity: (Non-Chordates) Phylum Nemertea or Rhynchocoela (Minor Phyla) Hardeep Kaur Assistant Professor, Department of Zoology, Ramjas College, University of Delhi Delhi – 110 007 CONTENTs: ¾ Introduction ¾ External Structure ¾ Body Wall and Locomotion ¾ Nutrition and Digestive System ¾ Circulatory System ¾ Excretory System ¾ Nervous System and Sense Organs ¾ Regeneration ¾ Reproductive System ¾ Embryogeny ¾ Classification of Nemerteans ¾ General Characters of Nemerteans ¾ Affinities of Nemerteans ¾ Glossary ¾ References / Suggested Readings PHYLUM NEMERTEA / PHYLUM RHYNCHOCOELA INTRODUCTION: Phylum Nemertea comprises approximately 1200 species of ¾ elongated and often flattened worms, called ribbon worms (many have flattened body) or ¾ bottle worms (because of narrow anterior end) ¾ proboscis worms, (because of the presence of a remarkable proboscis apparatus used in capturing food). The Nemerteans are named for Nemertes, one of the Nereids, sea-nymph of Greek mythology. They are commonly looked upon related to the Turbellaria and were formerly included in them, but the fact that they possess a complete digestive system with anus and also a blood vascular system makes them higher in organization than the Turbellaria. However, presence of a protrusible proboscis with a separate proboscis pore, other than mouth, is the most characteristic feature of the phylum. Almost all nemerteans are free living, bottom-dwelling, marine animals. Few commensal and parasitic species have been described. Nemertopsis actinophila is a slender form living beneath the pedal disc of sea anemones. Carcinonmertes may be found on gills and egg masses of crabs. Some species of Tetrastemma live in the branchial cavity of tunicates. Only few exibit commensal mode of life eg. Gonomertes parasitica is a commensal species found on crustaceans,.
    [Show full text]
  • Nemertea (Ribbon Worms)
    ISSN 1174–0043; 118 (Print) ISSN 2463-638X; 118 (Online) Taihoro Nukurc1n,�i COVERPHOTO: Noteonemertes novaezealandiae n.sp., intertidal, Point Jerningham, Wellington Harbour. Photo: Chris Thomas, NIWA. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Invertebrate Fauna of New Zealand: Nemertea (Ribbon Worms) by RAY GIBSON School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street Liverpool L3 3AF, United Kingdom NIWA Biodiversity Memoir 118 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication GIBSON, Ray The invertebrate fauna of New Zealand: Nemertea (Ribbon Worms) by Ray Gibson - Wellington : NIWA (National Institute of Water and Atmospheric Research) 2002 (NIWA Biodiversity memoir: ISSN 0083-7908: 118) ISBN 0-478-23249-7 II. I. Title Series UDC Series Editor: Dennis P. Gordon Typeset by: Rose-Marie C. Thompson National Institute of Water and Atmospheric Research (NIWA) (incorporating N.Z. Oceanographic Institute) Wellington Printed and bound for NIWA by Graphic Press and Packaging Levin Received for publication - 20 June 2001 ©NIWA Copyright 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page 5 ABSTRACT 6 INTRODUCTION 9 Materials and Methods 9 CLASSIFICATION OF THE NEMERTEA 9 Higher Classification CLASSIFICATION OF NEW ZEALAND NEMERTEANS AND CHECKLIST OF SPECIES .
    [Show full text]
  • Species Composition of the Free Living Multicellular Invertebrate Animals
    Historia naturalis bulgarica, 21: 49-168, 2015 Species composition of the free living multicellular invertebrate animals (Metazoa: Invertebrata) from the Bulgarian sector of the Black Sea and the coastal brackish basins Zdravko Hubenov Abstract: A total of 19 types, 39 classes, 123 orders, 470 families and 1537 species are known from the Bulgarian Black Sea. They include 1054 species (68.6%) of marine and marine-brackish forms and 508 species (33.0%) of freshwater-brackish, freshwater and terrestrial forms, connected with water. Five types (Nematoda, Rotifera, Annelida, Arthropoda and Mollusca) have a high species richness (over 100 species). Of these, the richest in species are Arthropoda (802 species – 52.2%), Annelida (173 species – 11.2%) and Mollusca (152 species – 9.9%). The remaining 14 types include from 1 to 38 species. There are some well-studied regions (over 200 species recorded): first, the vicinity of Varna (601 spe- cies), where investigations continue for more than 100 years. The aquatory of the towns Nesebar, Pomorie, Burgas and Sozopol (220 to 274 species) and the region of Cape Kaliakra (230 species) are well-studied. Of the coastal basins most studied are the lakes Durankulak, Ezerets-Shabla, Beloslav, Varna, Pomorie, Atanasovsko, Burgas, Mandra and the firth of Ropotamo River (up to 100 species known). The vertical distribution has been analyzed for 800 species (75.9%) – marine and marine-brackish forms. The great number of species is found from 0 to 25 m on sand (396 species) and rocky (257 species) bottom. The groups of stenohypo- (52 species – 6.5%), stenoepi- (465 species – 58.1%), meso- (115 species – 14.4%) and eurybathic forms (168 species – 21.0%) are represented.
    [Show full text]
  • Cellular Dynamics During Regeneration of the Flatworm Monocelis Sp. (Proseriata, Platyhelminthes) Girstmair Et Al
    Cellular dynamics during regeneration of the flatworm Monocelis sp. (Proseriata, Platyhelminthes) Girstmair et al. Girstmair et al. EvoDevo 2014, 5:37 http://www.evodevojournal.com/content/5/1/37 Girstmair et al. EvoDevo 2014, 5:37 http://www.evodevojournal.com/content/5/1/37 RESEARCH Open Access Cellular dynamics during regeneration of the flatworm Monocelis sp. (Proseriata, Platyhelminthes) Johannes Girstmair1,2, Raimund Schnegg1,3, Maximilian J Telford2 and Bernhard Egger1,2* Abstract Background: Proseriates (Proseriata, Platyhelminthes) are free-living, mostly marine, flatworms measuring at most a few millimetres. In common with many flatworms, they are known to be capable of regeneration; however, few studies have been done on the details of regeneration in proseriates, and none cover cellular dynamics. We have tested the regeneration capacity of the proseriate Monocelis sp. by pre-pharyngeal amputation and provide the first comprehensive picture of the F-actin musculature, serotonergic nervous system and proliferating cells (S-phase in pulse and pulse-chase experiments and mitoses) in control animals and in regenerates. Results: F-actin staining revealed a strong body wall, pharynx and dorsoventral musculature, while labelling of the serotonergic nervous system showed an orthogonal pattern and a well developed subepidermal plexus. Proliferating cells were distributed in two broad lateral bands along the anteroposterior axis and their anterior extension was delimited by the brain. No proliferating cells were detected in the pharynx or epidermis. Monocelis sp. was able to regenerate the pharynx and adhesive organs at the tip of the tail plate within 2 or 3 days of amputation, and genital organs within 8 to 10 days.
    [Show full text]
  • Journal of Cave and Karst Studies
    June 2020 Volume 82, Number 2 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Exploration Paul Burger National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]
  • Thalassic Rotifers from the United States: Descriptions of Two New Species and Notes on the Effect of Salinity and Ecosystem on Biodiversity
    diversity Article Thalassic Rotifers from the United States: Descriptions of Two New Species and Notes on the Effect of Salinity and Ecosystem on Biodiversity Francesca Leasi 1,* and Willem H. De Smet 2 1 Department of Biology, Geology and Environmental Science, University of Tennessee, Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA 2 Department of Biology. ECOBE, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; [email protected] * Correspondence: [email protected] http://zoobank.org:pub:7679CE0E-11E8-4518-B132-7D23F08AC8FA Received: 26 November 2019; Accepted: 7 January 2020; Published: 13 January 2020 Abstract: This study shows the results of a rotifer faunistic survey in thalassic waters from 26 sites located in northeastern U.S. states and one in California. A total of 44 taxa belonging to 21 genera and 14 families were identified, in addition to a group of unidentifiable bdelloids. Of the fully identified species, 17 are the first thalassic records for the U.S., including Encentrum melonei sp. nov. and Synchaeta grossa sp. nov., which are new to science, and Colurella unicauda Eriksen, 1968, which is new to the Nearctic region. Moreover, a refined description of Encentrum rousseleti (Lie-Pettersen, 1905) is presented. During the survey, we characterized samples by different salinity values and ecosystems and compared species composition across communities to test for possible ecological correlations. Results indicate that both salinities and ecosystems are a significant predictor of rotifer diversity, supporting that biodiversity estimates of small species provide fundamental information for biomonitoring. Finally, we provide a comprehensive review of the diversity and distribution of thalassic rotifers in the United States.
    [Show full text]