Bacterial and Fungal Community Composition Across the Soil Depth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fossil Fungi with Suggested Affinities to the Endogonaceae from the Middle Triassic of Antarctica
KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica by Michael Krings. Thomas N. Taylor, Nora Dotzler, and Gianna Persichini 2012 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. [Citation] Published version: http://www.dx.doi.org/10.3852/11-384 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. Mycologia, 104(4), 2012, pp. 835–844. DOI: 10.3852/11-384 # 2012 by The Mycological Society of America, Lawrence, KS 66044-8897 Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica Michael Krings1 INTRODUCTION Department fu¨ r Geo- und Umweltwissenschaften, Pala¨ontologie und Geobiologie, Ludwig-Maximilians- Documenting the evolutionary history of fungi based Universita¨t, and Bayerische Staatssammlung fu¨r on fossils is generally hampered by the incompleteness Pala¨ontologie und Geologie, Richard-Wagner-Straße 10, of the fungal fossil record (Taylor et al. 2011). Only a 80333 Munich, Germany, and Department of Ecology few geologic deposits have yielded fungal fossils and Evolutionary Biology, and Natural History preserved in sufficient detail to permit assignment to Museum and Biodiversity Research Institute, University of Kansas, Lawrence, Kansas 66045 any one of the major lineages of fungi with any degree of confidence. Perhaps the most famous of these Thomas N. -
Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). -
The Fungi of Slapton Ley National Nature Reserve and Environs
THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546). -
Subphyl. Nov., Based on Multi-Gene Genealogies
ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 115, pp. 353–363 January–March 2011 doi: 10.5248/115.353 Mortierellomycotina subphyl. nov., based on multi-gene genealogies K. Hoffmann1*, K. Voigt1 & P.M. Kirk2 1 Jena Microbial Resource Collection, Institute of Microbiology, University of Jena, Neugasse 25, 07743 Jena, Germany 2 CABI UK Centre, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom *Correspondence to: Hoff[email protected] Abstract — TheMucoromycotina unifies two heterogenous orders of the sporangiferous, soil- inhabiting fungi. The Mucorales comprise saprobic, occasionally facultatively mycoparasitic, taxa bearing a columella, whereas the Mortierellales encompass mainly saprobic fungi lacking a columella. Multi-locus phylogenetic analyses based on eight nuclear genes encoding 18S and 28S rRNA, actin, alpha and beta tubulin, translation elongation factor 1alpha, and RNA polymerase II subunits 1 and 2 provide strong support for separation of the Mortierellales from the Mucoromycotina. The existence of a columella is shown to serve as a synapomorphic morphological trait unique to Mucorales, supporting the taxonomic separation of the acolumellate Mortierellales from the columellate Mucoromycotina. Furthermore, irregular hyphal septation and development of subbasally vesiculate sporangiophores bearing single terminal sporangia strongly correlate with the phylogenetic delimitation of Mortierellales, supporting a new subphylum, Mortierellomycotina. Key words — Zygomycetes, SSU rDNA, LSU rDNA, protein-coding genes, monophyly Introduction The type species ofMortierella Coem. 1863, M. polycephala Coem. 1863, was originally isolated from a parasitic interaction with a mushroom and named in honour of M. Du Mortier, the president of the Société de Botanique de Belgique (Coemans 1863). However, the common habit of mortierellalean species is as soil saprobes, enabling the fungi to grow on excrements, decaying plants, or (not infrequently) on decaying mushrooms and mucoralean fungi (Fischer 1892). -
454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome
Diversity 2013, 5, 73-98; doi:10.3390/d5010073 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article 454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome Alberto Orgiazzi 1,2, Valeria Bianciotto 2, Paola Bonfante 1,2, Stefania Daghino 1, Stefano Ghignone 2, Alexandra Lazzari 1, Erica Lumini 2, Antonietta Mello 2, Chiara Napoli 1, Silvia Perotto 1, Alfredo Vizzini 1, Simonetta Bagella 3, Claude Murat 4 and Mariangela Girlanda 1,* 1 Department of Life Science and Systems Biology, University of Turin, Torino 10125, Italy; E-Mails: [email protected] (A.O.); [email protected] (P.B.); [email protected] (S.D.); [email protected] (A.L.); [email protected] (C.N.); [email protected] (S.P.); [email protected] (A.V.) 2 Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), Torino 10125, Italy; E-Mails: [email protected] (V.B.); [email protected] (S.G.); [email protected] (E.L.); [email protected] (A.M.) 3 Department of Scienze della Natura e del Territorio, University of Sassari, Sassari 07100, Italy; Nucleo di Ricerca sulla Desertificazione—NRD, University of Sassari, Sassari 07100, Italy; E-Mail: [email protected] 4 INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, Champenoux 54280, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-011-670-5968; Fax: +39-011-670-5962. -
Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al
UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1). -
A List of the Terrestrial Fungi, Flora and Fauna of Madeira and Selvagens Archipelagos
Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos Coordenadores | Coordinators Paulo A. V. Borges, Cristina Abreu, António M. Franquinho Aguiar, Palmira Carvalho, Roberto Jardim, Ireneia Melo, Paulo Oliveira, Cecília Sérgio, Artur R. M. Serrano e Paulo Vieira Composição da capa e da obra | Front and text graphic design DPI Cromotipo – Oficina de Artes Gráficas, Rua Alexandre Braga, 21B, 1150-002 Lisboa www.dpicromotipo.pt Fotos | Photos A. Franquinho Aguiar; Dinarte Teixeira João Paulo Mendes; Olga Baeta (Jardim Botânico da Madeira) Impressão | Printing Tipografia Peres, Rua das Fontaínhas, Lote 2 Vendas Nova, 2700-391 Amadora. Distribuição | Distribution Secretaria Regional do Ambiente e dos Recursos Naturais do Governo Regional da Madeira, Rua Dr. Pestana Júnior, n.º 6 – 3.º Direito. 9054-558 Funchal – Madeira. ISBN: 978-989-95790-0-2 Depósito Legal: 276512/08 2 INICIATIVA COMUNITÁRIA INTERREG III B 2000-2006 ESPAÇO AÇORES – MADEIRA - CANÁRIAS PROJECTO: COOPERACIÓN Y SINERGIAS PARA EL DESARROLLO DE LA RED NATURA 2000 Y LA PRESERVACIÓN DE LA BIODIVERSIDAD DE LA REGIÓN MACARONÉSICA BIONATURA Instituição coordenadora: Dirección General de Política Ambiental del Gobierno de Canarias Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos COORDENADO POR | COORDINATED BY PAULO A. V. BORGES, CRISTINA ABREU, -
Fungal Allergy and Pathogenicity 20130415 112934.Pdf
Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher. -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
1-Assoc.Prof.Dr.Halil Barı Ş ÖZEL-Caspian Coastal Sea
BARTIN UNIVERSITRY FACULTY OF FORESTRY BARTIN ÜNİVERSİTESİ ISSN:1302-0943 EISSN:1308- 5875 International Journal of Bartın Faculty of Forestry Bartın Orman Fakültesi Dergisi YEAR/YIL 2013 VOLUME /CİLT 15 http://bof.bartin.edu.tr/journal NUMBER /SAYI 1 JOURNAL OF THE BARTIN FACULTY OF FORESTRY BARTIN ORMAN FAKÜLTESİ DERGİSİ 2013, VOLUME: 15, ISSUE: 1 2013, CİLT: 15, SAYI: 1 ISSN: 1302–0943 - EISSN: 1308–5875 JOURNAL OWNER Bartın University EDITOR Prof. Dr. Selman KARAYILMAZLAR ASSOCIATE EDITOR Assoc. Prof. Dr. Halil BarıĢ ÖZEL EDITORIAL BOARD Prof.Dr.Selman KARAYILMAZLAR University of Bartın TURKEY Prof.Dr.Azize TOPER KAYGIN University of Bartın TURKEY Prof.Dr.Ġsmet DAġDEMĠR University of Bartın TURKEY Prof.Dr.Nedim SARAÇOĞLU University of Bartın TURKEY Prof.Dr.Mehmet SABAZ University of Bartın TURKEY Prof. Dr. Nebi BĠLĠR University of SDÜ TURKEY Prof.Dr.Abdullah ĠSTEK University of Bartın TURKEY Assoc.Prof.Dr.Hüseyin SĠVRĠKAYA University of Bartın TURKEY Assoc.Prof.Dr.Halil BarıĢ ÖZEL University of Bartın TURKEY Assist.Prof.Dr. Yıldız ÇABUK University of Bartın TURKEY Prof. Dr. Vasilije V. ISAJEV University of Serbia SERBIA Prof.Dr.Albert REIF Freiburg Albert Ludwigs University GERMANY Prof.Dr.Brendt-Michael WILKE Berlin Technical University GERMANY Prof.Dr.Csaba MATYAS Western Hungray University GERMANY Prof.Dr.Dieter R.PELZ Freiburg Albert Ludwigs University GERMANY Prof.Dr.Ingo KOWARIK Berlin Technical University GERMANY Prof.Dr.Kevin L.O’HARA TheUniversity of Georgia USA Prof.Dr.Martin KAUPENJOHANN Berlin Technical Universiy GERMANY Prof.Dr.Raphael T.KLUMPP University of Badenkultur (BOKU)Wien AUSTRIA Prof.Dr.Valery Yu LYUBĠMOV Russian Academy of Sciences RUSSIA Prof.Dr.G.Keith DOUCE The University of California USA Assist.Prof.Dr. -
The Origin and Evolution of Mycorrhizal Lifestyle in Mucoromycota Fungi
Title The first fungal partners of early land plants -- the origin and evolution of mycorrhizal lifestyle in Mucoromycota fungi Abstract Mycorrhizal association between fungi and plants is one of the most common symbioses on earth and play critical roles in today’s terrestrial ecosystems. The two main types of mycorrhizal association include the arbuscular mycorrhizae (AM) of Glomeromycotina (Mucoromycota) and ectomycorrhizae (EcM) formed primarily by members from the crown fungal lineages Ascomycota and Basidiomycota. The enigmatic fungal order Endogonales, from the early- diverging Mucoromycota, represent an independent origin of EcM in fungi. Moreover, some members of Endogonales form mycorrhizal-like relationships with various early-diverging plant lineages, leading to the recent hypothesis that Endogonales were one of the first mycorrhizal partners of the earliest land plants and key to the formation of the early terrestrial ecosystems. Using metagenomic, phylogenomic and reverse ecology approaches, I generated genome data, characterized the genomic features and inferred the evolution of mycorrhizal lifestyle in Endogonales. My work supports the hypothesis that Endogonales share the common molecular tool kit with EcM species from Ascomycota and Basidiomycota. The molecular dating analyses are consistent with endogonalean ancestors co-existing with the earliest land plants, lending support to the hypothesis that Endogonales were one of the first mycorrhizal partners of earliest land plants. Together with arbuscular mycorrhizae, Endogonales represent ancient and independent origins of mycorrhizae within Mucoromycota, suggesting that nonflagellated fungi colonized land prior to land plants. Biography My Ph.D training at the University of British Columbia focused on the inference of higher-level phylogenetic relationships among the major bryophyte groups in the context of early land plant evolution. -
Fossil Evidence of the Zygomycetous Fungi
Persoonia 30, 2013: 1–10 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158513X664819 Fossil evidence of the zygomycetous fungi M. Krings1,2, T.N. Taylor 2, N. Dotzler1 Key words Abstract Molecular clock data indicate that the first zygomycetous fungi occurred on Earth during the Precambrian, however, fossil evidence of these organisms has been slow to accumulate. In this paper, the fossil record of the Endogonales zygomycetous fungi is compiled, with a focus on structurally preserved Carboniferous and Triassic fossils interpreted fossil record as zygosporangium-gametangia complexes and resembling those of modern Endogonales. Enigmatic microfossils morphology from the Precambrian to Cenozoic that have variously been interpreted as, or compared to, zygomycetous fungi reproductive biology are also discussed. Among these, the spherical structures collectively termed ‘sporocarps’ are especially interesting sporocarp because of their complex investments and abundance in certain Carboniferous and Triassic rocks. Circumstantial zygosporangium-gametangia complex evidence suggests that at least some ‘sporocarp’ types represent mantled zygosporangia. Zygomycetous fungi probably were an important element in terrestrial paleoecosystems at least by the Carboniferous. Article info Received: 10 September 2012; Accepted: 1 January 2013; Published: 18 February 2013. INTRODUCTION group are to date based exclusively on the analysis of extant members (e.g., White et al. 2006, Liu et al. 2009, Petkovits et The zygomycetous fungi (formerly Zygomycota) comprise ~1 % al. 2011). of the true fungi; approximately 900 living species have been The scarcity of fossil evidence of zygomycetous fungi remains described (Kirk et al. 2001). They are an ecologically hetero- perplexing, especially in light of the fact that habitats conducive geneous, para- or polyphyletic assemblage of predominantly to the growth of these organisms, together with depositional terrestrial organisms (White et al.