Bacterial and Fungal Community Composition Across the Soil Depth

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial and Fungal Community Composition Across the Soil Depth Ko et al. Journal of Ecology and Environment (2017) 41:34 Journal of Ecology DOI 10.1186/s41610-017-0053-0 and Environment RESEARCH Open Access Bacterial and fungal community composition across the soil depth profiles in a fallow field Daegeun Ko1, Gayoung Yoo2, Seong-Taek Yun3, Seong-Chun Jun4 and Haegeun Chung1* Abstract Background: Soil microorganisms play key roles in nutrient cycling and are distributed throughout the soil profile. Currently, there is little information about the characteristics of the microbial communities along the soil depth because most studies focus on microorganisms inhabiting the soil surface. To better understand the functions and composition of microbial communities and the biogeochemical factors that shape them at different soil depths, we analyzed microbial activities and bacterial and fungal community composition in soils up to a 120 cm depth at a fallow field located in central Korea. To examine the vertical difference of microbial activities and community composition, β-1,4-glucosidase, cellobiohydrolase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, and acid phosphatase activities were analyzed and barcoded pyrosequencing of 16S rRNA genes (bacteria) and internal transcribed spacer region (fungi) was conducted. Results: The activity of all the soil enzymes analyzed, along with soil C concentration, declined with soil depth. For example, acid phosphatase activity was 125.9 (± 5.7 (± 1 SE)), 30.9 (± 0.9), 15.7 (± 0.6), 6.7 (± 0.9), and 3.3 (± 0.3) nmol g−1 h−1 at 0–15, 15–30, 30–60, 60–90, and 90–120 cm soil depths, respectively. Among the bacterial groups, the abundance of Proteobacteria (38.5, 23.2, 23.3, 26.1, and 17.5% at 0–15, 15–30, 30–60, 60–90, and 90–120 cm soil depths, respectively) and Firmicutes (12.8, 11.3, 8.6, 4.3, and 0.4% at 0–15, 15–30, 30–60, 60–90, and 90–120 cm soil depths, respectively) decreased with soil depth. On the other hand, the abundance of Ascomycota (51.2, 48.6, 65.7, 46.1, and 45.7% at 15, 30, 60, 90, and 120 cm depths, respectively), a dominant fungal group at this site, showed no clear trend along the soil profile. Conclusions: Our results show that soil C availability can determine soil enzyme activity at different soil depths and that bacterial communities have a clear trend along the soil depth at this study site. These metagenomics studies, along with other studies on microbial functions, are expected to enhance our understanding on the complexity of soil microbial communities and their relationship with biogeochemical factors. Keywords: Soil enzymes, Pyrosequencing, Microbial community composition, Diversity Background different soil depths is still insufficient. Majority of Soil microorganisms play an essential role in mediating studies on soil microorganisms have focused on those nutrient cycling in the terrestrial ecosystem by decom- inhabiting the topsoil (~ 25 cm of the soil surface) where position of organic matters and transformation of inor- organic matter content and the abundance of soil micro- ganic compounds (Nannipieri et al. 2003, Xu et al. 2013, organisms are high (Fierer et al. 2003, Eilers et al. 2012). Sengupta and Dick 2015). Although soil microorganisms Despite the fact that large numbers of microorganisms are present throughout the soil profile, our understand- exist at deeper soil profiles, the characteristics of these ing of the composition of microbial communities at communities and the distributions of microorganisms along the soil profiles remain less understood (Blume * Correspondence: [email protected] et al. 2002, Fierer et al. 2003, Eilers et al. 2012). 1Department of Environmental Engineering, Konkuk University, Seoul 05029, South Korea The microbial communities inhabiting subsurface soil Full list of author information is available at the end of the article layers are known to have a greater influence on the © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Ko et al. Journal of Ecology and Environment (2017) 41:34 Page 2 of 10 process of soil formation compared to those at the Soil enzyme activity topsoil (Buss et al. 2005). In addition, subsurface soil To determine microbial community metabolism, fluoro- microbial communities may play an important role in metric assays using methylumbelliferone (MUB)-linked soil C sequestration since large amounts of organic C substrates were performed. The activities of β-1,4- with long turnover times are stored in the subsurface glucosidase, cellobiohydrolase, β-1,4-xylosidase, β-1,4- horizons (Trumbore 2000, Fierer et al. 2005, Rumpel N-acetylglucosaminidase, and acid phosphatase were and Kogel-Knabner 2011). Therefore, determining the analyzed which are extracellular enzymes that de- composition and characteristics of microbial communi- grade cellulose, hemicellulose, chitin, and organic P ties at different soil depths will allow us to understand substrate in soil (Saiya-Cork et al. 2002). Two grams the important subsurface soil processes. of soil was placed in 125 ml of sodium acetate buffer, and Significant differences in microbial community com- then, the slurry was transferred to a 96-well microplate that position and function at different soil depths have been included eight analytical replicates of each enzyme assay. reported (Hansel et al. 2008, Will et al. 2010, Eilers et al. Plates for all five enzymes were incubated at the room 2012). The diversity of microorganisms typically de- temperature for 2 h. Fluorescence was measured using a creases with depth, whether diversity is determined by SynergyHTMulti-ModeMicroplateReader(BioTek phospholipid fatty acid profiles (Fierer et al. 2003), DNA Instruments Inc., Winooski, VT, USA), in which the fingerprinting (LaMontagne et al. 2003, Agnelli et al. excitation energy was set at 360 nm and emission was 2004, Goberna et al. 2005), 16S ribosomal RNA (rRNA) measured at 460 nm. Enzyme activity was expressed as − − gene sequences (Will et al. 2010), or internal transcribed nmol 4-MUB g 1 h 1. spacer (ITS) regions of the rRNA (Baldrian et al. 2012). This is due to changes in edaphic factors such as pH, DNA extraction, PCR, and pyrosequencing moisture contents, the quality and quantity of organic DNA was extracted from the soil samples using the matters, and O2 concentrations throughout the soil FastDNA SPIN Kit (MP Biomedicals, OH, USA) follow- depth profile. There is still little information on whether ing the manufacturer’s instructions. The extracted DNA certain bacterial or fungal taxa are limited to specific soil was amplified via PCR with the universal primers that depths and how that may relate to distinct microbial target V1 to V3 hypervariable regions of the 16S rRNA functions at different soil depths (Eilers et al. 2012). gene. The primers used to amplify the 16S rRNA genes Here, we analyzed the soil enzyme activities and used for bacteria were 27F (5′-GAGTTTGATCMTGGCT- barcoded pyrosequencing to understand differences in CAG-3′) and 518R (5′-WTTACCGCGGCTGCTGG-3′). the function and composition of soil bacterial and fungal For fungal amplification, barcoded primers of ITS3F communities at different soil depth in a fallow field lo- (5′-GCATCGATGAAGAACGCAGC-3′)andITS4R cated in central Korea. Our objective was to determine (5′-TCCTCCGCTTATTGATATGC-3′)wereused.PCR the differences in soil microbial community composition conditions were as follows: initial denaturation at 95 °C and function along the soil depth at this site. for 5 min, 30 cycles of denaturation at 95 °C for 30 s, primer annealing at 55 °C for 30 s, extension at 72 °C Methods for 30 s, and a final elongation at 72 °C for 5 min. The Site description and sampling PCR products were purified using the QIAquick PCR The study site is a fallow field located in Eumsung-gun, purification kit (Qiagen, Valencia, CA, USA), and the North Chungcheong Province, in the central region of non-target products were removed employing Ampure Korea (36° 57′ 36.54″ N 127° 27′ 59.80″ E). The site is beads kit (Agencourt Bioscience, MA, USA). The qual- situated on a small hillock area in the uppermost stream ity and product size were analyzed on a Bioanalyzer of Mihocheon, a primary tributary of the Geum River. 2100 (Agilent, Palo Alto, CA, USA) employing a DNA The site is a fallow dry field surrounded by rice paddies. 7500 chip. Emulsion PCR was conducted on the mixed Within this site (60 m × 20 m), eight soil samples were amplicons, and the sequencing was performed at Chunlab, collected in September 2014 to a depth of 120 cm using Inc. (Seoul, Korea) using GS Junior Sequencing a manual geoprobe. These samples were classified to five System (Roche, Branford, CT, USA) following the different depths: 0–15, 15–30, 30–60, 60–90, and 90– manufacturer’sprotocol. 120 cm. In our study, results of analyses of soils from one sampling point are reported because the soil enzyme Pyrosequencing data analysis activity at the other sampling points was too low for Pyrosequencing data were analyzed following the de- meaningful study on microbial activity and community scriptions in previous studies (Chun et al. 2010, Hur composition to be conducted. Soil physicochemical et al. 2011, Kim et al. 2012a). Reads obtained were properties including pH, total C and N concentrations, sorted according to unique barcodes of the PCR prod- and soil texture were determined. ucts.
Recommended publications
  • Fossil Fungi with Suggested Affinities to the Endogonaceae from the Middle Triassic of Antarctica
    KU ScholarWorks | http://kuscholarworks.ku.edu Please share your stories about how Open Access to this article benefits you. Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica by Michael Krings. Thomas N. Taylor, Nora Dotzler, and Gianna Persichini 2012 This is the published version of the article, made available with the permission of the publisher. The original published version can be found at the link below. [Citation] Published version: http://www.dx.doi.org/10.3852/11-384 Terms of Use: http://www2.ku.edu/~scholar/docs/license.shtml KU ScholarWorks is a service provided by the KU Libraries’ Office of Scholarly Communication & Copyright. Mycologia, 104(4), 2012, pp. 835–844. DOI: 10.3852/11-384 # 2012 by The Mycological Society of America, Lawrence, KS 66044-8897 Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica Michael Krings1 INTRODUCTION Department fu¨ r Geo- und Umweltwissenschaften, Pala¨ontologie und Geobiologie, Ludwig-Maximilians- Documenting the evolutionary history of fungi based Universita¨t, and Bayerische Staatssammlung fu¨r on fossils is generally hampered by the incompleteness Pala¨ontologie und Geologie, Richard-Wagner-Straße 10, of the fungal fossil record (Taylor et al. 2011). Only a 80333 Munich, Germany, and Department of Ecology few geologic deposits have yielded fungal fossils and Evolutionary Biology, and Natural History preserved in sufficient detail to permit assignment to Museum and Biodiversity Research Institute, University of Kansas, Lawrence, Kansas 66045 any one of the major lineages of fungi with any degree of confidence. Perhaps the most famous of these Thomas N.
    [Show full text]
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • The Fungi of Slapton Ley National Nature Reserve and Environs
    THE FUNGI OF SLAPTON LEY NATIONAL NATURE RESERVE AND ENVIRONS APRIL 2019 Image © Visit South Devon ASCOMYCOTA Order Family Name Abrothallales Abrothallaceae Abrothallus microspermus CY (IMI 164972 p.p., 296950), DM (IMI 279667, 279668, 362458), N4 (IMI 251260), Wood (IMI 400386), on thalli of Parmelia caperata and P. perlata. Mainly as the anamorph <it Abrothallus parmeliarum C, CY (IMI 164972), DM (IMI 159809, 159865), F1 (IMI 159892), 2, G2, H, I1 (IMI 188770), J2, N4 (IMI 166730), SV, on thalli of Parmelia carporrhizans, P Abrothallus parmotrematis DM, on Parmelia perlata, 1990, D.L. Hawksworth (IMI 400397, as Vouauxiomyces sp.) Abrothallus suecicus DM (IMI 194098); on apothecia of Ramalina fustigiata with st. conid. Phoma ranalinae Nordin; rare. (L2) Abrothallus usneae (as A. parmeliarum p.p.; L2) Acarosporales Acarosporaceae Acarospora fuscata H, on siliceous slabs (L1); CH, 1996, T. Chester. Polysporina simplex CH, 1996, T. Chester. Sarcogyne regularis CH, 1996, T. Chester; N4, on concrete posts; very rare (L1). Trimmatothelopsis B (IMI 152818), on granite memorial (L1) [EXTINCT] smaragdula Acrospermales Acrospermaceae Acrospermum compressum DM (IMI 194111), I1, S (IMI 18286a), on dead Urtica stems (L2); CY, on Urtica dioica stem, 1995, JLT. Acrospermum graminum I1, on Phragmites debris, 1990, M. Marsden (K). Amphisphaeriales Amphisphaeriaceae Beltraniella pirozynskii D1 (IMI 362071a), on Quercus ilex. Ceratosporium fuscescens I1 (IMI 188771c); J1 (IMI 362085), on dead Ulex stems. (L2) Ceriophora palustris F2 (IMI 186857); on dead Carex puniculata leaves. (L2) Lepteutypa cupressi SV (IMI 184280); on dying Thuja leaves. (L2) Monographella cucumerina (IMI 362759), on Myriophyllum spicatum; DM (IMI 192452); isol. ex vole dung. (L2); (IMI 360147, 360148, 361543, 361544, 361546).
    [Show full text]
  • Subphyl. Nov., Based on Multi-Gene Genealogies
    ISSN (print) 0093-4666 © 2011. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON Volume 115, pp. 353–363 January–March 2011 doi: 10.5248/115.353 Mortierellomycotina subphyl. nov., based on multi-gene genealogies K. Hoffmann1*, K. Voigt1 & P.M. Kirk2 1 Jena Microbial Resource Collection, Institute of Microbiology, University of Jena, Neugasse 25, 07743 Jena, Germany 2 CABI UK Centre, Bakeham Lane, Egham, Surrey TW20 9TY, United Kingdom *Correspondence to: Hoff[email protected] Abstract — TheMucoromycotina unifies two heterogenous orders of the sporangiferous, soil- inhabiting fungi. The Mucorales comprise saprobic, occasionally facultatively mycoparasitic, taxa bearing a columella, whereas the Mortierellales encompass mainly saprobic fungi lacking a columella. Multi-locus phylogenetic analyses based on eight nuclear genes encoding 18S and 28S rRNA, actin, alpha and beta tubulin, translation elongation factor 1alpha, and RNA polymerase II subunits 1 and 2 provide strong support for separation of the Mortierellales from the Mucoromycotina. The existence of a columella is shown to serve as a synapomorphic morphological trait unique to Mucorales, supporting the taxonomic separation of the acolumellate Mortierellales from the columellate Mucoromycotina. Furthermore, irregular hyphal septation and development of subbasally vesiculate sporangiophores bearing single terminal sporangia strongly correlate with the phylogenetic delimitation of Mortierellales, supporting a new subphylum, Mortierellomycotina. Key words — Zygomycetes, SSU rDNA, LSU rDNA, protein-coding genes, monophyly Introduction The type species ofMortierella Coem. 1863, M. polycephala Coem. 1863, was originally isolated from a parasitic interaction with a mushroom and named in honour of M. Du Mortier, the president of the Société de Botanique de Belgique (Coemans 1863). However, the common habit of mortierellalean species is as soil saprobes, enabling the fungi to grow on excrements, decaying plants, or (not infrequently) on decaying mushrooms and mucoralean fungi (Fischer 1892).
    [Show full text]
  • 454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome
    Diversity 2013, 5, 73-98; doi:10.3390/d5010073 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article 454 Pyrosequencing Analysis of Fungal Assemblages from Geographically Distant, Disparate Soils Reveals Spatial Patterning and a Core Mycobiome Alberto Orgiazzi 1,2, Valeria Bianciotto 2, Paola Bonfante 1,2, Stefania Daghino 1, Stefano Ghignone 2, Alexandra Lazzari 1, Erica Lumini 2, Antonietta Mello 2, Chiara Napoli 1, Silvia Perotto 1, Alfredo Vizzini 1, Simonetta Bagella 3, Claude Murat 4 and Mariangela Girlanda 1,* 1 Department of Life Science and Systems Biology, University of Turin, Torino 10125, Italy; E-Mails: [email protected] (A.O.); [email protected] (P.B.); [email protected] (S.D.); [email protected] (A.L.); [email protected] (C.N.); [email protected] (S.P.); [email protected] (A.V.) 2 Plant Protection Institute (IPP)-Turin UOS, National Research Council (CNR), Torino 10125, Italy; E-Mails: [email protected] (V.B.); [email protected] (S.G.); [email protected] (E.L.); [email protected] (A.M.) 3 Department of Scienze della Natura e del Territorio, University of Sassari, Sassari 07100, Italy; Nucleo di Ricerca sulla Desertificazione—NRD, University of Sassari, Sassari 07100, Italy; E-Mail: [email protected] 4 INRA, UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, Champenoux 54280, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +39-011-670-5968; Fax: +39-011-670-5962.
    [Show full text]
  • Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al
    UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1).
    [Show full text]
  • A List of the Terrestrial Fungi, Flora and Fauna of Madeira and Selvagens Archipelagos
    Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos Coordenadores | Coordinators Paulo A. V. Borges, Cristina Abreu, António M. Franquinho Aguiar, Palmira Carvalho, Roberto Jardim, Ireneia Melo, Paulo Oliveira, Cecília Sérgio, Artur R. M. Serrano e Paulo Vieira Composição da capa e da obra | Front and text graphic design DPI Cromotipo – Oficina de Artes Gráficas, Rua Alexandre Braga, 21B, 1150-002 Lisboa www.dpicromotipo.pt Fotos | Photos A. Franquinho Aguiar; Dinarte Teixeira João Paulo Mendes; Olga Baeta (Jardim Botânico da Madeira) Impressão | Printing Tipografia Peres, Rua das Fontaínhas, Lote 2 Vendas Nova, 2700-391 Amadora. Distribuição | Distribution Secretaria Regional do Ambiente e dos Recursos Naturais do Governo Regional da Madeira, Rua Dr. Pestana Júnior, n.º 6 – 3.º Direito. 9054-558 Funchal – Madeira. ISBN: 978-989-95790-0-2 Depósito Legal: 276512/08 2 INICIATIVA COMUNITÁRIA INTERREG III B 2000-2006 ESPAÇO AÇORES – MADEIRA - CANÁRIAS PROJECTO: COOPERACIÓN Y SINERGIAS PARA EL DESARROLLO DE LA RED NATURA 2000 Y LA PRESERVACIÓN DE LA BIODIVERSIDAD DE LA REGIÓN MACARONÉSICA BIONATURA Instituição coordenadora: Dirección General de Política Ambiental del Gobierno de Canarias Listagem dos fungos, flora e fauna terrestres dos arquipélagos da Madeira e Selvagens A list of the terrestrial fungi, flora and fauna of Madeira and Selvagens archipelagos COORDENADO POR | COORDINATED BY PAULO A. V. BORGES, CRISTINA ABREU,
    [Show full text]
  • Fungal Allergy and Pathogenicity 20130415 112934.Pdf
    Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • 1-Assoc.Prof.Dr.Halil Barı Ş ÖZEL-Caspian Coastal Sea
    BARTIN UNIVERSITRY FACULTY OF FORESTRY BARTIN ÜNİVERSİTESİ ISSN:1302-0943 EISSN:1308- 5875 International Journal of Bartın Faculty of Forestry Bartın Orman Fakültesi Dergisi YEAR/YIL 2013 VOLUME /CİLT 15 http://bof.bartin.edu.tr/journal NUMBER /SAYI 1 JOURNAL OF THE BARTIN FACULTY OF FORESTRY BARTIN ORMAN FAKÜLTESİ DERGİSİ 2013, VOLUME: 15, ISSUE: 1 2013, CİLT: 15, SAYI: 1 ISSN: 1302–0943 - EISSN: 1308–5875 JOURNAL OWNER Bartın University EDITOR Prof. Dr. Selman KARAYILMAZLAR ASSOCIATE EDITOR Assoc. Prof. Dr. Halil BarıĢ ÖZEL EDITORIAL BOARD Prof.Dr.Selman KARAYILMAZLAR University of Bartın TURKEY Prof.Dr.Azize TOPER KAYGIN University of Bartın TURKEY Prof.Dr.Ġsmet DAġDEMĠR University of Bartın TURKEY Prof.Dr.Nedim SARAÇOĞLU University of Bartın TURKEY Prof.Dr.Mehmet SABAZ University of Bartın TURKEY Prof. Dr. Nebi BĠLĠR University of SDÜ TURKEY Prof.Dr.Abdullah ĠSTEK University of Bartın TURKEY Assoc.Prof.Dr.Hüseyin SĠVRĠKAYA University of Bartın TURKEY Assoc.Prof.Dr.Halil BarıĢ ÖZEL University of Bartın TURKEY Assist.Prof.Dr. Yıldız ÇABUK University of Bartın TURKEY Prof. Dr. Vasilije V. ISAJEV University of Serbia SERBIA Prof.Dr.Albert REIF Freiburg Albert Ludwigs University GERMANY Prof.Dr.Brendt-Michael WILKE Berlin Technical University GERMANY Prof.Dr.Csaba MATYAS Western Hungray University GERMANY Prof.Dr.Dieter R.PELZ Freiburg Albert Ludwigs University GERMANY Prof.Dr.Ingo KOWARIK Berlin Technical University GERMANY Prof.Dr.Kevin L.O’HARA TheUniversity of Georgia USA Prof.Dr.Martin KAUPENJOHANN Berlin Technical Universiy GERMANY Prof.Dr.Raphael T.KLUMPP University of Badenkultur (BOKU)Wien AUSTRIA Prof.Dr.Valery Yu LYUBĠMOV Russian Academy of Sciences RUSSIA Prof.Dr.G.Keith DOUCE The University of California USA Assist.Prof.Dr.
    [Show full text]
  • The Origin and Evolution of Mycorrhizal Lifestyle in Mucoromycota Fungi
    Title The first fungal partners of early land plants -- the origin and evolution of mycorrhizal lifestyle in Mucoromycota fungi Abstract Mycorrhizal association between fungi and plants is one of the most common symbioses on earth and play critical roles in today’s terrestrial ecosystems. The two main types of mycorrhizal association include the arbuscular mycorrhizae (AM) of Glomeromycotina (Mucoromycota) and ectomycorrhizae (EcM) formed primarily by members from the crown fungal lineages Ascomycota and Basidiomycota. The enigmatic fungal order Endogonales, from the early- diverging Mucoromycota, represent an independent origin of EcM in fungi. Moreover, some members of Endogonales form mycorrhizal-like relationships with various early-diverging plant lineages, leading to the recent hypothesis that Endogonales were one of the first mycorrhizal partners of the earliest land plants and key to the formation of the early terrestrial ecosystems. Using metagenomic, phylogenomic and reverse ecology approaches, I generated genome data, characterized the genomic features and inferred the evolution of mycorrhizal lifestyle in Endogonales. My work supports the hypothesis that Endogonales share the common molecular tool kit with EcM species from Ascomycota and Basidiomycota. The molecular dating analyses are consistent with endogonalean ancestors co-existing with the earliest land plants, lending support to the hypothesis that Endogonales were one of the first mycorrhizal partners of earliest land plants. Together with arbuscular mycorrhizae, Endogonales represent ancient and independent origins of mycorrhizae within Mucoromycota, suggesting that nonflagellated fungi colonized land prior to land plants. Biography My Ph.D training at the University of British Columbia focused on the inference of higher-level phylogenetic relationships among the major bryophyte groups in the context of early land plant evolution.
    [Show full text]
  • Fossil Evidence of the Zygomycetous Fungi
    Persoonia 30, 2013: 1–10 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158513X664819 Fossil evidence of the zygomycetous fungi M. Krings1,2, T.N. Taylor 2, N. Dotzler1 Key words Abstract Molecular clock data indicate that the first zygomycetous fungi occurred on Earth during the Precambrian, however, fossil evidence of these organisms has been slow to accumulate. In this paper, the fossil record of the Endogonales zygomycetous fungi is compiled, with a focus on structurally preserved Carboniferous and Triassic fossils interpreted fossil record as zygosporangium-gametangia complexes and resembling those of modern Endogonales. Enigmatic microfossils morphology from the Precambrian to Cenozoic that have variously been interpreted as, or compared to, zygomycetous fungi reproductive biology are also discussed. Among these, the spherical structures collectively termed ‘sporocarps’ are especially interesting sporocarp because of their complex investments and abundance in certain Carboniferous and Triassic rocks. Circumstantial zygosporangium-gametangia complex evidence suggests that at least some ‘sporocarp’ types represent mantled zygosporangia. Zygomycetous fungi probably were an important element in terrestrial paleoecosystems at least by the Carboniferous. Article info Received: 10 September 2012; Accepted: 1 January 2013; Published: 18 February 2013. INTRODUCTION group are to date based exclusively on the analysis of extant members (e.g., White et al. 2006, Liu et al. 2009, Petkovits et The zygomycetous fungi (formerly Zygomycota) comprise ~1 % al. 2011). of the true fungi; approximately 900 living species have been The scarcity of fossil evidence of zygomycetous fungi remains described (Kirk et al. 2001). They are an ecologically hetero- perplexing, especially in light of the fact that habitats conducive geneous, para- or polyphyletic assemblage of predominantly to the growth of these organisms, together with depositional terrestrial organisms (White et al.
    [Show full text]