Molecular Network Pathways and Functional Analysis of Tumor

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Network Pathways and Functional Analysis of Tumor Cancer Gene Therapy (2012) 19, 38–48 r 2012 Nature America, Inc. All rights reserved 0929-1903/12 www.nature.com/cgt ORIGINAL ARTICLE Molecular network pathways and functional analysis of tumor signatures associated with development of resistance to viral gene therapy T-J Song1,2,*, D Haddad1,3,*, P Adusumilli1, T Kim1, B Stiles1, M Hezel1, ND Socci1,4,MGo¨nen5 and Y Fong1 1Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA; 2Department of Surgery, New York College of Medicine, Korea University, Seoul, South Korea; 3Institute for Biochemistry and Virchow Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany; 4Department of Bioinformatics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA and 5Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA Replication-competent attenuated herpes simplex viruses have proven effective in killing many cancer cell lines. However, determinants of resistance to oncolytic therapy are mostly unknown. We developed viral therapy-resistant cells and examined changes in gene-expression pattern compared with therapy-sensitive parental cells. Colon cancer cell line HT29 and hepatoma cell line PLC5 were exposed to increasing concentrations of virus G207. Therapy-resistant cells were isolated and grown in vitro. Tumorigenicity was confirmed by ability of cell lines to form tumors in mice. Human Genome U133A complementary DNA microarray chips were used to determine gene-expression patterns, which were analyzed in the context of molecular network interactions, pathways and gene ontology. In parental cell lines, 90–100% of cells were killed by day 7 at 1.0 multiplicity of infection. In resistant cell lines, cytotoxicity assay confirmed 200- to 400-fold resistance. Microarray analysis confirmed changes in gene expressions associated with resistance: cell surface proteins affecting viral attachment and entry, cellular proteins affecting nucleotide pools and proteins altering apoptotic pathways. These changes would decrease viral infection and replication. Our study identifies gene-expression signatures associated with resistance to oncolytic viral therapy. These data provide potential targets to overcome resistance, and suggest that molecular assays may be useful in selecting patients for trial with this novel treatment. Cancer Gene Therapy (2012) 19, 38–48; doi:10.1038/cgt.2011.64; published online 21 October 2011 Keywords: herpes simplex virus; oncolytic viral therapy; G207; molecular networks; signaling pathways Introduction expression analysis using complementary DNA (cDNA) GeneChip microarray Human Genome U133A Genetically engineered, attenuated herpes simplex virus (Affymetrix, Santa Clara, CA) to determine the possible (HSV) is a promising new modality to treat cancer. Such predictive gene changes in viral-resistant cells compared HSV viruses have been shown to be effective against with viral-sensitive cells. These changes may enable many cancer types, including colorectal, hepatoma, lung, identification of cancers resistant to viral therapy, thus prostate, bladder and breast.1–11 Among these viruses, avoiding undesirable side effects associated with higher G207 and NV1020 are currently in clinical trials. The doses of viral treatment. Moreover, if gene-expression efficacy of HSV therapy depends on both infectivity and changes associated with resistance to therapy are identi- replication. Although initial higher cell kill is achieved fied, new strategies can potentially be developed in order with a higher concentration of virus, this in turn has an to overcome them. increased potential for toxicity in vivo and may therefore not be desirable. In this study, we conducted gene- Materials and methods Correspondence: Dr Y Fong, Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY Cell lines and cell culture 10065, USA. One colon cancer (HT29) and one hepatoma cell line E-mail: [email protected] (PLC5) were used for constructing resistance to oncolytic *These authors contributed equally to this work. HSV. Colon cancer cell line HT29 (HTB-38) was grown in Received 22 June 2011; accepted 16 August 2011; published online American Type Culture Collection (ATCC) medium 21 October 2011 (Manassas, VA; McCoy’s 5a medium with 1.5 mmol l–1 Gene expression in therapy-resistant cancer T-J Song et al 39 L-glutamine and 10% fetal calf serum), and maintained were noted to be resistant up to an MOI of 400 via under standard cell culture conditions. cytotoxic assay. These resistant cells were then frozen and The human hepatoma cell line PLC5 (PLC/PRF/5) was used for subsequent experiments, as described below. This grown in ATCC medium (Eagle’s minimum essential resulted in a pressure selection of viral-resistant tumor –1 medium with 2 mmol l L-glutamine and Earle’s balanced cells with a differing cellular makeup than the parent cells. salt solution adjusted to contain 1.5 g l–1 sodium bicarbo- Cytotoxicity profiles were assessed by cellular LDH nate, 0.1 mmol l–1 nonessential amino acids and release assay. 1.0 mmol l–1 sodium pyruvate with 10% fetal calf serum) under standard cell culture conditions. Tumorigenicity assay To confirm the tumor origin of the resistant cell lines, 7 Virus normal parent cells (1 Â 10 ) were injected subcutaneously in the left flank of athymic nude mice, whereas resistant G207 is an engineered HSV type 1 (HSV-1) replication- 7 competent, second-generation oncolytic HSV. Con- cells (1 Â 10 ) were injected in the right flank, to assess for structed from R3616, it has a mutation of the ICP6 gene, tumor growth over a period of 14 days. deletion of both copies of the g134.5 genes and an insertion of the Escherichia coli lac Z marker gene into Preparation of RNA for microarray the U 39 gene.11,12 The g 34.5 gene deletion decreases Total mRNA preparation was performed in a 10-cm L 1 7 neurovirulence of the virus,11–13 and disruption of the (diameter) petri dish culture vessel (monolayer, 1 Â 10 cells UL39 gene eliminates ribonucleotide reductase activity, in confluence). Lysis was performed directly in the vessel thereby increasing specificity of the virus to proliferating following RNeasy mini kit protocol (Qiagen, Valencia, cells such as tumor cells.12,14–16 The G207 virus was CA). The mRNA samples were measured by spectro- propagated as previously described, and titer levels were photometer for proof of purity and hybridized to Human determined by standard viral plaque assay.17 Genome U133A cDNA microarray chips (Affymetrix) by the genomic core laboratory at Memorial Sloan-Kettering Cancer Center. Two samples each of parent and G207- Lactate dehydrogenase cytotoxicity assay resistant tumor cells were prepared and used. CytoTox 96 nonradioactive cytotoxic assay kit (Promega, Madison, WI) was used for lactate dehydrogenase (LDH) cytotoxicity assays. This is a colorimetric assay, where the Data analysis The chip images were scanned and processed to CEL intensity of color formation post addition of reagent is files using the standard GeneChip Operating Software proportional to the number of lysed cells (which release (GCOS) analysis suite (Affymetrix). The CEL files were LDH), thus allowing quantification of the proportion of then normalized and processed to signal intensities using cells killed by infection with the virus. the gcRMA algorithm from the Bioconductor library Assays were performed for both nonresistant parent for the R statistical programming system (Institute for cells and resistant cells. 1 Â 104 cells per well were plated Statistics and Mathematics, Wein, Austria; http://cran. in 24-well plates in 1 ml medium per well. After r-project.org/). All subsequent analyses were done on the incubation for 6 h, cells were infected with variable log (base 2) transformed data. To find differentially combinations of multiplicity of infection (MOI), which expressed genes, a moderated t-test was used as imple- describes the proportion of viral particles per cell. Viral mented in the Bioconductor LIMMA package (Fred toxicity was measured at certain time points over 7 days. Hutchinson Cancer Research Center, Seattle, WA, USA; Infected cells were washed with phosphate-buffered saline http://www.bioconductor.org). To control for multiple and lysed by 1.5% Triton X-100 (Dow, Midland, MI) to testing, the false discovery rate (FDR) method was used, release intracellular LDH. A total of 50 ml of the lysates with a cutoff of 0.05. Genes were then grouped into was then placed in 96-well reading plates, and after specific ontology functional groups using the Ingenuity addition of 50 ml of assay reagent-buffer solution, the Pathways Analysis software (Ingenuity Systems, Red- visible wavelength absorbance (490 nm) data were col- wood City, CA), also known as IPA. Network and lected using a 96-well plate reader. All samples were pathway analysis was then performed to find direct and analyzed in triplicate and results expressed as the indirect interactions on common same-directional up- or surviving fraction of cells, as determined by the measured down-regulated genes 42-fold. Functional analysis was absorbance of each sample relative to control untreated performed, also utilizing IPA. cell lysates. Isolation of virus-resistant cells The two hepatoma and two colon cancer cell lines were Results cultured and serially infected with increasing G207 doses Generation of viral-resistant cells at variable MOIs ranging from 0.001 to 200 plaque- Serial passaging with increasing MOIs of G207 in the one forming units. When B80% cell kill was achieved with hepatoma and one colon cancer cell line resulted in the each dose, the surviving cells were re-cultured in fresh development of virally resistant tumor cells with differing medium, allowed to proliferate and subsequently infected cellular makeup compared with the parent cell lines. with a higher MOI of virus. This was repeated until cells These were used for our study. Cancer Gene Therapy Gene expression in therapy-resistant cancer T-J Song et al 40 Tumorigenicity the total common genes) and 38 downregulated (51.35%).
Recommended publications
  • Do Persistent Organic Pollutants Interact
    Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor Wilson, J., Berntsen, H. F., Elisabeth Zimmer, K., Verhaegen, S., Frizzell, C., Ropstad, E., & Connolly, L. (2016). Do persistent organic pollutants interact with the stress response? Individual compounds, and their mixtures, interaction with the glucocorticoid receptor. Toxicology Letters, 241, 121-132. https://doi.org/10.1016/j.toxlet.2015.11.014 Published in: Toxicology Letters Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2015 Elsevier Ireland Ltd This is an open access article published under a Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:26.
    [Show full text]
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • Functions of the Mineralocorticoid Receptor in the Hippocampus By
    Functions of the Mineralocorticoid Receptor in the Hippocampus by Aaron M. Rozeboom A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Cellular and Molecular Biology) in The University of Michigan 2008 Doctoral Committee: Professor Audrey F. Seasholtz, Chair Professor Elizabeth A. Young Professor Ronald Jay Koenig Associate Professor Gary D. Hammer Assistant Professor Jorge A. Iniguez-Lluhi Acknowledgements There are more people than I can possibly name here that I need to thank who have helped me throughout the process of writing this thesis. The first and foremost person on this list is my mentor, Audrey Seasholtz. Between working in her laboratory as a research assistant and continuing my training as a graduate student, I spent 9 years in Audrey’s laboratory and it would be no exaggeration to say that almost everything I have learned regarding scientific research has come from her. Audrey’s boundless enthusiasm, great patience, and eager desire to teach students has made my time in her laboratory a richly rewarding experience. I cannot speak of Audrey’s laboratory without also including all the past and present members, many of whom were/are not just lab-mates but also good friends. I also need to thank all the members of my committee, an amazing group of people whose scientific prowess combined with their open-mindedness allowed me to explore a wide variety of interests while maintaining intense scientific rigor. Outside of Audrey’s laboratory, there have been many people in Ann Arbor without whom I would most assuredly have gone crazy.
    [Show full text]
  • Mapk8ip1 (NM 011162) Mouse Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for MG226852 Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone Tag: TurboGFP Symbol: Mapk8ip1 Synonyms: IB1; JIP-1; Jip1; mjip-2a; Prkm8ip; Skip Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 5 Mapk8ip1 (NM_011162) Mouse Tagged ORF Clone – MG226852 ORF Nucleotide >MG226852 representing NM_011162 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGGCGGAGCGAGAGAGCGGCCTGGGCGGGGGCGCCGCGTCCCCACCGGCCGCTTCCCCATTCCTGGGAC TGCACATCGCGTCGCCTCCCAATTTCAGGCTCACCCATGACATCAGCCTGGAGGAGTTTGAGGATGAAGA CCTTTCGGAGATCACTGACGAGTGTGGCATCAGCCTGCAGTGCAAAGACACCCTGTCTCTCCGGCCCCCG CGCGCCGGGCTGCTGTCTGCGGGTAGCAGCGGCAGCGCGGGGAGCCGGCTGCAGGCGGAGATGCTGCAGA TGGACCTGATCGACGCGGCAGGTGACACTCCGGGCGCCGAGGACGACGAGGAGGAGGAGGACGACGAGCT CGCTGCCCAACGACCAGGAGTGGGGCCTCCCAAAGCGGAGTCCAACCAGGATCCGGCGCCTCGCAGCCAG GGCCAGGGCCCGGGCACAGGCAGCGGAGACACCTACCGACCCAAGAGGCCTACCACGCTCAACCTTTTCC CGCAGGTGCCGCGGTCTCAGGACACGCTGAATAATAACTCTTTAGGCAAAAAGCACAGTTGGCAGGACCG TGTGTCTCGATCATCCTCCCCTCTGAAGACAGGAGAACAGACGCCTCCACATGAACACATCTGCCTGAGT
    [Show full text]
  • Hormonal Regulation of Oestrogen and Progesterone Receptors in Cultured Bovine Endometrial Cells
    Hormonal regulation of oestrogen and progesterone receptors in cultured bovine endometrial cells C. W. Xiao and A. K. Goff Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 Rue Sicotte, St-Hyacinthe, Quebec J2S 7C6, Canada Changes in the number of progesterone and oestradiol receptors in the endometrium are thought to play a role in the induction of luteolysis. The effect of oestradiol and progesterone on the regulation of their receptors in cultured bovine uterine epithelial and stromal cells was examined to determine the mechanisms involved in this process. Cells were obtained from cows at days 1\p=n-\3of the oestrous cycle and were cultured for 4 or 8 days in medium alone (RPMI medium + 5% (v/v) charcoal\p=n-\dextranstripped newborn calf serum) or with oestradiol, progesterone or oestradiol and progesterone. At the end of culture, receptor binding was measured by saturation analysis. Specific binding of both [3H]ORG 2058 (16\g=a\-ethyl-21-hydroxy-19-nor(6,7-3H) pregn-4-ene-3,20-dione) and [3H]oestradiol to epithelial and stromal cells showed high affinities (Kd = 1.1 x 10\m=-\9and 6 \m=x\ 10\m=-\10mol l\m=-\1,respectively, for progesterone receptors; Kd = 5.5 \m=x\10\m=-\9and 7 \m=x\10\m=-\10 mol l\m=-\1 respectively, for oestradiol receptors). In the stromal cells, oestradiol (0.1-10 nmol l\m=-\1 increased the number of oestradiol receptors from 0.21 \m=+-\0.06 to 0.70 \m=+-\0.058 fmol \g=m\g\m=-\1 DNA and the number of progesterone receptors from 1.4 \m=+-\0.83 to 6.6 \m=+-\0.70 fmol \g=m\g\m=-\1 DNA in a dose-dependent manner after 4 days of culture (P < 0.01).
    [Show full text]
  • Gelişimsel Çocuk Nörolojisi 2017
    Baskı Mart, 2017 Bu yayının telif hakları Düzen Laboratuvarlar Grubu’na aittir. Bu yayının tümü ya da bir bölümü Düzen Laboratuvarlar Grubu’nun yazılı izni olmadan kopya edilemez. Bu yayın Düzen Laboratuvarlar Grubu tarafından tanıtım ve bilgilendirme amacıyla hazırlanmış olup hazırlanma ve basım esnasında metin ya da grafiklerde oluşabilecek her türlü hata ve eksikliklerden Düzen Laboratuvarlar Grubu sorumlu tutulamaz. Kaynak göstermek ve Düzen Laboratuvarlar Grubu’ndan yazılı izin almak suretiyle bu yayında alıntı yapılabilir. Düzen Laboratuvarlar Grubu Tunus Cad. No. 95 Kavaklıdere Çankaya 06680 Ankara www.duzen.com.tr VİZYONUMUZ Hasta haklarına saygılı, bilgilendirmeyi esas alan, testleri en doğru, izlenebilir ve tekrarlanabilir yöntemlerle çalışmak ve en az hatayı esas kabul edip, iç ve dış kalite kontrolleri ile bu kavramın gerçekleştiğini göstermektedir. MİSYONUMUZ Test sonuçları üzerinde laboratuvarmızın sorumluluğu, testin klinik laboratuvarcılık standartları ve iyi laboratuvar uygulamaları sınırları içinde, tüm kontoller yapılarak çalışılması ile sınırlıdır. Test sonuçları klinik bulgular ve diğer tüm yardımcı veriler dikkate alınarak değerlendirilmektedir. AKREDİTASYON Laboratuvarımız 2004 yılında Türk Akreditasyon Kurumu (TÜRKAK) tarafından TS EN IS IEC 17025 kapsamında akredite edilmiş, 2011 yılından itibaren ise ISO15189 kapsamında akreditasyona hak kazanmıştır. Hasta kayıt, numune alma, raporlama, kurumsal hizmetler ve tüm işletim sistemi akreditasyon kapsamındadır. GÜVENİRLİLİK Laboratuvarımız CLSI programlarına üyedir
    [Show full text]
  • Prox1regulates the Subtype-Specific Development of Caudal Ganglionic
    The Journal of Neuroscience, September 16, 2015 • 35(37):12869–12889 • 12869 Development/Plasticity/Repair Prox1 Regulates the Subtype-Specific Development of Caudal Ganglionic Eminence-Derived GABAergic Cortical Interneurons X Goichi Miyoshi,1 Allison Young,1 Timothy Petros,1 Theofanis Karayannis,1 Melissa McKenzie Chang,1 Alfonso Lavado,2 Tomohiko Iwano,3 Miho Nakajima,4 Hiroki Taniguchi,5 Z. Josh Huang,5 XNathaniel Heintz,4 Guillermo Oliver,2 Fumio Matsuzaki,3 Robert P. Machold,1 and Gord Fishell1 1Department of Neuroscience and Physiology, NYU Neuroscience Institute, Smilow Research Center, New York University School of Medicine, New York, New York 10016, 2Department of Genetics & Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, 3Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan, 4Laboratory of Molecular Biology, Howard Hughes Medical Institute, GENSAT Project, The Rockefeller University, New York, New York 10065, and 5Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Neurogliaform (RELNϩ) and bipolar (VIPϩ) GABAergic interneurons of the mammalian cerebral cortex provide critical inhibition locally within the superficial layers. While these subtypes are known to originate from the embryonic caudal ganglionic eminence (CGE), the specific genetic programs that direct their positioning, maturation, and integration into the cortical network have not been eluci- dated. Here, we report that in mice expression of the transcription factor Prox1 is selectively maintained in postmitotic CGE-derived cortical interneuron precursors and that loss of Prox1 impairs the integration of these cells into superficial layers. Moreover, Prox1 differentially regulates the postnatal maturation of each specific subtype originating from the CGE (RELN, Calb2/VIP, and VIP).
    [Show full text]
  • Molecular Cancer Biomed Central
    Molecular Cancer BioMed Central Research Open Access Androgen-regulated genes differentially modulated by the androgen receptor coactivator L-dopa decarboxylase in human prostate cancer cells Katia Margiotti†2,3, Latif A Wafa†1,2, Helen Cheng2, Giuseppe Novelli3, Colleen C Nelson1,2 and Paul S Rennie*1,2 Address: 1Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada, 2The Prostate Centre at Vancouver General Hospital, 2660 Oak Street, V6H 3Z6, Vancouver, BC, Canada and 3Department of Biopathology and Diagnostic Imaging, Tor Vergata University of Rome, Viale Oxford, 81-00133, Rome, Italy Email: Katia Margiotti - [email protected]; Latif A Wafa - [email protected]; Helen Cheng - [email protected]; Giuseppe Novelli - [email protected]; Colleen C Nelson - [email protected]; Paul S Rennie* - [email protected] * Corresponding author †Equal contributors Published: 6 June 2007 Received: 27 March 2007 Accepted: 6 June 2007 Molecular Cancer 2007, 6:38 doi:10.1186/1476-4598-6-38 This article is available from: http://www.molecular-cancer.com/content/6/1/38 © 2007 Margiotti et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Maple Syrup Urine Disease Mutation Spectrum in a Cohort of 40 Consanguineous Patients and Insilico Analysis of Novel Mutations
    Metabolic Brain Disease (2019) 34:1145–1156 https://doi.org/10.1007/s11011-019-00435-y ORIGINAL ARTICLE Maple syrup urine disease mutation spectrum in a cohort of 40 consanguineous patients and insilico analysis of novel mutations Maryam Abiri1 & Hassan Saei1,2 & Maryam Eghbali3 & Razieh Karamzadeh4 & Tina Shirzadeh5,6 & Zohreh Sharifi5,6 & Sirous Zeinali5,7 Received: 28 February 2019 /Accepted: 13 May 2019 /Published online: 22 May 2019 # Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Maple syrup urine disease is the primary aminoacidopathy affecting branched-chain amino acid (BCAA) metabolism. The disease is mainly caused by the deficiency of an enzyme named branched-chained α-keto acid dehydrogenase (BCKD), which consist of four subunits (E1α,E1β, E2, and E3), and encoded by BCKDHA, BCKDHB, DBT,andDLD gene respectively. BCKD is the main enzyme in the catabolism pathway of BCAAs. Hight rate of autosomal recessive disorders is expected from consanguineous populations like Iran. In this study, we selected two sets of STR markers linked to the four genes, that mutation in which can result in MSUD disease. The patients who had a homozygous haplotype for selected markers of the genes were sequenced. In current survey, we summarized our recent molecular genetic findings to illustrate the mutation spectrum of MSUD in our country. Ten novel mutations including c.484 A > G, c.834_836dup CAC, c.357del T, and c. (343 + 1_344–1) _ (742 + 1_743–1)del in BCKDHB,c.355–356 ins 7 nt ACAAGGA, and c.703del T in BCKDHA, and c.363delCT/c.1238 T > C, c.
    [Show full text]
  • HCC and Cancer Mutated Genes Summarized in the Literature Gene Symbol Gene Name References*
    HCC and cancer mutated genes summarized in the literature Gene symbol Gene name References* A2M Alpha-2-macroglobulin (4) ABL1 c-abl oncogene 1, receptor tyrosine kinase (4,5,22) ACBD7 Acyl-Coenzyme A binding domain containing 7 (23) ACTL6A Actin-like 6A (4,5) ACTL6B Actin-like 6B (4) ACVR1B Activin A receptor, type IB (21,22) ACVR2A Activin A receptor, type IIA (4,21) ADAM10 ADAM metallopeptidase domain 10 (5) ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 (4) ADCY2 Adenylate cyclase 2 (brain) (26) AJUBA Ajuba LIM protein (21) AKAP9 A kinase (PRKA) anchor protein (yotiao) 9 (4) Akt AKT serine/threonine kinase (28) AKT1 v-akt murine thymoma viral oncogene homolog 1 (5,21,22) AKT2 v-akt murine thymoma viral oncogene homolog 2 (4) ALB Albumin (4) ALK Anaplastic lymphoma receptor tyrosine kinase (22) AMPH Amphiphysin (24) ANK3 Ankyrin 3, node of Ranvier (ankyrin G) (4) ANKRD12 Ankyrin repeat domain 12 (4) ANO1 Anoctamin 1, calcium activated chloride channel (4) APC Adenomatous polyposis coli (4,5,21,22,25,28) APOB Apolipoprotein B [including Ag(x) antigen] (4) AR Androgen receptor (5,21-23) ARAP1 ArfGAP with RhoGAP domain, ankyrin repeat and PH domain 1 (4) ARHGAP35 Rho GTPase activating protein 35 (21) ARID1A AT rich interactive domain 1A (SWI-like) (4,5,21,22,24,25,27,28) ARID1B AT rich interactive domain 1B (SWI1-like) (4,5,22) ARID2 AT rich interactive domain 2 (ARID, RFX-like) (4,5,22,24,25,27,28) ARID4A AT rich interactive domain 4A (RBP1-like) (28) ARID5B AT rich interactive domain 5B (MRF1-like) (21) ASPM Asp (abnormal
    [Show full text]
  • Areca Catechu-(Betel-Nut)-Induced Whole Transcriptome Changes Associated With
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233932; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Areca catechu-(Betel-nut)-induced whole transcriptome changes associated with 2 diabetes, obesity and metabolic syndrome in a human monocyte cell line 3 4 Short title: Betel-nut induced whole transcriptome changes 5 6 7 Shirleny Cardoso1¶ , B. William Ogunkolade1¶, Rob Lowe2, Emanuel Savage3, Charles A 8 Mein3, Barbara J Boucher1, Graham A Hitman1* 9 10 11 1Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of 12 Medicine and Dentistry, Queen Mary University of London, United Kingdom 13 14 2Omnigen Biodata Ltd, Cambridge, United Kingdom 15 16 3Barts and The London Genome Centre, Blizard Institute, Queen Mary University of London, 17 United Kingdom 18 19 * Corresponding author 20 Email: [email protected] 21 22 ¶These authors contributed equally to the work 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.03.233932; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 25 Abstract 26 Betel-nut consumption is the fourth most common addictive habit globally and there is good 27 evidence to link it with obesity, type 2 diabetes and the metabolic syndrome.
    [Show full text]