IV. Early Milestones in Exoplanets Exploration: I. What Is an Exoplanet

Total Page:16

File Type:pdf, Size:1020Kb

IV. Early Milestones in Exoplanets Exploration: I. What Is an Exoplanet I. What is an Exoplanet? EXOPLANETS III. Established Detection Techniques • What is a Planet? II. Finding Exoplanets: Not So Easy A. Radial Velocity B. Pulsar Timing C. Transit Method International Astronomical Union (IAU) definition: A “planet” is a celestial body A star with a planet moves in its own A pulsar is a rotating neutron star: a small Planet crossing (or transiting) in that It is difficult to detect the outer planets in our solar system itself! small orbit due to the planet's gravitational and highly dense remnant of an exploded front of its parent star decreases the 1. is in orbit around the Sun, This is because: force. star (supernova). observed light from the star. 2. has sufficient mass for its self-gravity to overcome rigid body forces so 1. The outer planets are very faint due to their distance This results in variations in the speed with Pulsars emit beams of electromagnetic The amount the star dims is that it assumes a hydrostatic equilibrium (nearly round) shape, and from the sun. which the star moves toward or away from radiation which we detect as extremely dependent on the relative sizes of the 3. has cleared the neighbourhood around its orbit. 2. Again, due to their distance from the sun, they move Earth (i.e. the star’s radial velocity). regular pulses as they rotate star and the planet. Eight planets : Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. very slowly. The variations in radial velocity lead to Since the rotation of a pulsar is very • What is an Exoplanet? Exoplanets are, of course, even more difficult to detect since variations in the frequency of light from the regular, slight changes in the timing of its 1. They are extremely far away and are very faint star (Doppler effect) observed pulses can be used to track the The radial-velocity method of exoplanet pulsar's motion. IAU has proposed a working definition according to which an exoplanet compared to stars. Imagine trying to detect a dot as TRANSIT METHOD thick as a strand of spider web from a distance of 100 detection involves measuring these Thus, variations in the timing of the pulses 1. has a mass below the limiting mass for thermonuclear fusion of km, just using the light from a 10 W bulb 1 m away from variations in the frequency of light from the can reveal the movements of the pulsar due F. Orbital Phase Reflected deuterium (≈ 13 Jupiter masses for solar metallicity), the strand. star in order to confirm the presence of the to orbiting planets. Light Variation 2. has mass above the mass required for a planet in our Solar System, planet. 2. Since telescopes are never perfect, there will always be and some blurring. The blurring of the image of the star, E. Direct Imaging Short period giant planets in close 3. is in orbit around a star or a stellar remnant orbits around their stars will undergo extremely bright compared to the planet, can wash out D. Gravitational Planets are extremely faint light sources the image of the planet. reflected light variations. Microlensing compared to stars and what little light This is because, like our Moon, they comes from them tends to be lost in the Gravitational microlensing takes place also go through phases from full to glare from their parent star. new and back again. IV. Early Milestones in Exoplanets Exploration: V. Exoplanets Statistics: when the gravitational field of one star acts It is very difficult to detect them directly. It like a lens and magnifies the light of a Since telescopes cannot resolve the is easier to obtain images when the planet is planet from the star, they see only the First Published Discovery to The First Ever Declaration of Most Distant: 21500 light years distant background star. especially large (considerably larger than Receive Subsequent Confirmation: Detection (False Alarm): Such an effect occurs only when the two combined light. Least Distant: 4.37 light years (around Alpha-Centauri) Jupiter), widely separated from its parent The brightness of the host star will stars are almost exactly aligned. star, and hot so that it emits intense infrared Least Massive: 0.02 MEarth seem to change over each orbit in a Published: 1988 Confirmed: 2003 Year: 1991 Retraction: 1992 If the lens star has a planet orbiting it, the radiation. Largest Radius: 22.4 REarth periodic manner. Scientists: Campbell, Walker and Yang gravitational field of the planet may cause The images have then been made at Scientists: M. Bailes, Andrew Lyne Smallest Radius: 0.57 REarth With high photometric precision, it Telescope: Canada-France-Hawaii Longest Year: 876 yrs small variations in the observed lensing infrared where the planet is brighter than it 3.6 m Telescope, Hawaii and S.L. Shemar effect. is possible to detect a planet in transit Shortest Year: 5.7768 hrs is at visible wavelengths. across its star. Discovery: Planet around Gamma Telescope: Lovell Telescope, England Most Eccentric Orbit: 0.9349 Coronagraphs are used to block light from Such Jupiter-sized planets are Cephei, a binary star system 45 light Claim: Discovery of a planet in orbit Least Eccentric Orbit: 0.001 the star while leaving the planet visible. years away around the pulsar PSR 1829-10. detectable by space telescopes such as Longest Orbit : ~2740 light min the Kepler space observatory (see Smallest Orbit: ~0.05 light min section VII). First Definitive Detection First planet to be discovered 3 Least Dense: 80-180 kg/m It is expected that in the long run, (around a pulsar [see III B]): around a normal (sun-like) star: 3 Most Dense: 23000 kg/m this method may find the most planets that will be discovered by the Kepler Year: 1992 Confirmation: 1994 Year: 1995 Confirmation: 1995 DIRECT IMAGING DIRECT IMAGING mission. Scientists: Aleksander Wolszczan Scientists: M. Mayor and D. Queloz Sizes of Kepler Exoplanet Candidates and Dale Frail Telescope: Haute-Provence (see section VII for Kepler Mission) Telescope: Arecibo Observatory, Observatory, France No of Planetary Systems Detected: 676 VIII. Habitability: Can Exoplanets Sustain Life ??? Puerto Rico Discovery: Jupiter-mass planet Total no of confirmed Exoplanets: 859 Discovery: Two Earth-Mass planets around the sun-like star 51 Pegasi, in Most No. of Confirmed Exoplanets around one star: 7 NASA ‘s suggested criteria: i) extended regions of liquid water, ii) conditions orbiting the pulsar PSRB 1257+12 an orbit smaller than that of Mercury favourable for the assembly of complex organic molecules and, iii) energy sources to sustain metabolism. VI. Some Programs & Telescopes VII. Kepler Space Mission Habitable Zone (HZ): The region around a star where the temperature is such that a 10th mission in NASA’s Discovery Program. planet could have water in liquid state on its surface. HST Objective: Search for Earth-size habitable exoplanets. Suitable Planets: HabPlanet (Kepler has found 54 Suitable Stars [HabStars]: 1. Kepler Space Mission (see section VII) Advantage: Avoids atmospheric effects, hence, provides exos that may be in HZ) 2. CoRoT Space Mission precise measurements (see graph of light curves below). (We have known 17000 of them from the Hipparcos Mission) Terrestrial i.e. rocky 3. Hubble Space Telescope( HST) Orbit: Earth-like, around sun with a period of 372 days Spectral Class: early F, G, Mid K (Sun : G) Mass: Sufficient gravity to retain thick 4. EPICS for Very Large Telescope (VLT), ESO, Chile (1.8m) Launched on March 9, 2009. Duration of the mission is Photospheric Temp: 4000-7000K (Sun: 5777K) atmosphere and atmospheric pressure (liquid water) 5. European Extremely Large Telescope (EELT)(39.2m, 4.2m) expected to be about 7 to 8 years Life : Few billion years (Life can evolve) Radius: Sufficiently small surface to volume ratio to 6. PRL Advanced Radial-velocity All-sky Search (PARAS), Mt. Abu Surveying our neighbourhood in Milky way Low Variability in temperature and luminosity sustain geological activity and have a magnetic field 7. Gemini Planet Imager for Gemini Space Telescope, Hawaii & Chile(8.1m) As per Jan. 2013, it has found 2740 likely candidates High Metallicity : High proportion of element Geochemistry and Metallicity: Rich in C, H, O, N and 8. Subaru Telescope, Mt. Kea, Hawaii(Japan)(8.2m) 105 of them have been confirmed by further studies other then H and He as it reflects in planets other elements thought to be necessary for life 9. Palomar Observatory, Next space mission: Gaia. To be launched in August Orbit : Small eccentricity (small temperature fluctuations) i. Hale Telescope(5.1m) 2013 Rotation: Tilted axis- moderate seasons, low precession ii. 48-inch Samuel Oschin Telescope Kepler Telescope Day-night cycle should not be too slow iii. The 60-inch Telescope Kepler Orbit 48’’ S-O Hale An earth like satellite of a Jupiter like exoplanet in HZ is also Subaru EELT VLT PARAS Gemini considered as a potential candidate .
Recommended publications
  • 10. Scientific Programme 10.1
    10. SCIENTIFIC PROGRAMME 10.1. OVERVIEW (a) Invited Discourses Plenary Hall B 18:00-19:30 ID1 “The Zoo of Galaxies” Karen Masters, University of Portsmouth, UK Monday, 20 August ID2 “Supernovae, the Accelerating Cosmos, and Dark Energy” Brian Schmidt, ANU, Australia Wednesday, 22 August ID3 “The Herschel View of Star Formation” Philippe André, CEA Saclay, France Wednesday, 29 August ID4 “Past, Present and Future of Chinese Astronomy” Cheng Fang, Nanjing University, China Nanjing Thursday, 30 August (b) Plenary Symposium Review Talks Plenary Hall B (B) 8:30-10:00 Or Rooms 309A+B (3) IAUS 288 Astrophysics from Antarctica John Storey (3) Mon. 20 IAUS 289 The Cosmic Distance Scale: Past, Present and Future Wendy Freedman (3) Mon. 27 IAUS 290 Probing General Relativity using Accreting Black Holes Andy Fabian (B) Wed. 22 IAUS 291 Pulsars are Cool – seriously Scott Ransom (3) Thu. 23 Magnetars: neutron stars with magnetic storms Nanda Rea (3) Thu. 23 Probing Gravitation with Pulsars Michael Kremer (3) Thu. 23 IAUS 292 From Gas to Stars over Cosmic Time Mordacai-Mark Mac Low (B) Tue. 21 IAUS 293 The Kepler Mission: NASA’s ExoEarth Census Natalie Batalha (3) Tue. 28 IAUS 294 The Origin and Evolution of Cosmic Magnetism Bryan Gaensler (B) Wed. 29 IAUS 295 Black Holes in Galaxies John Kormendy (B) Thu. 30 (c) Symposia - Week 1 IAUS 288 Astrophysics from Antartica IAUS 290 Accretion on all scales IAUS 291 Neutron Stars and Pulsars IAUS 292 Molecular gas, Dust, and Star Formation in Galaxies (d) Symposia –Week 2 IAUS 289 Advancing the Physics of Cosmic
    [Show full text]
  • Wojciech Roszkowski Post-Communist Lustration in Poland: a Political and Moral Dilemma Congress of the Societas Ethica, Warsaw 22 August 2009 Draft Not to Be Quoted
    Wojciech Roszkowski Post-Communist Lustration in Poland: a Political and Moral Dilemma Congress of the Societas Ethica, Warsaw 22 August 2009 Draft not to be quoted 1. Introduction Quite recently a well-known Polish writer stated that the major dividing line in the Polish society runs across the attitude towards lustration. Some Poles, he said, have been secret security agents or collaborators or, for some reasons, defend this cooperation, others have not and want to make things clear1. Even if this statement is a bit exaggerated, it shows how heated the debates on lustration in Poland are. Secret services in democratic countries are a different story than security services in totalitarian states. Timothy Garton Ash even calls this comparison “absurd”2. A democratic state is, by definition, a common good of its citizens. Some of them are professionals dealing with the protection of state in police, armed forces and special services, all of them being subordinated to civilian, constitutional organs of the state. Other citizens are recruited by these services extremely rarely and not without their consent. In totalitarian states secret services are the backbone of despotic power of the ruling party and serve not the security of a country but the security of the ruling elites. Therefore they should rather be given the name of security services. They tend to bring under their control all aspects of political, social, economic, and cultural life of the subjects of the totalitarian state, becoming, along with uniformed police and armed forces, a pillar of state coercion. Apart from propaganda, which is to make people believe in the ideological goals of the totalitarian state, terror is the main vehicle of power, aiming at discouraging people from any thoughts and deeds contrary to the said goals and even from any activity independent of the party-state.
    [Show full text]
  • A Planet Made of Diamond (W/ Video) 25 August 2011
    A planet made of diamond (w/ video) 25 August 2011 beam of radio waves. As the star spins and the radio beam sweeps repeatedly over Earth, radio telescopes detect a regular pattern of radio pulses. For the newly discovered pulsar, known as PSR J1719-1438, the astronomers noticed that the arrival times of the pulses were systematically modulated. They concluded that this was due to the gravitational pull of a small companion planet, orbiting the pulsar in a binary system. The pulsar and its planet are part of the Milky Way's plane of stars and lie 4,000 light-years away in the constellation of Serpens (the Snake). The system is about an eighth of the way towards the Galactic Centre from the Earth. The modulations in the radio pulses tell An artist's visualisation of the pulsar and its orbiting astronomers a number of things about the planet. planet. Image credit - Swinburne Astronomy Productions First, it orbits the pulsar in just two hours and ten minutes, and the distance between the two objects is 600,000 km-a little less than the radius of our A once-massive star that's been transformed into a Sun. small planet made of diamond: that is what University of Manchester astronomers think they've Second, the companion must be small, less than found in the Milky Way. 60,000 km (that's about five times the Earth's diameter). The planet is so close to the pulsar that, The discovery has been made by an international if it were any bigger, it would be ripped apart by the research team, led by Professor Matthew Bailes of pulsar's gravity.
    [Show full text]
  • Pulsar Roche Limit Magnetic Field
    Planetary Environment Around a Pulsar David Dunkum, Jacob Houdyschell, Caleb Houdyschell, and Abigail Chaffins Spring Valley High School Huntington, WV Abstract: Pulsars are densely-packed, spinning neutron stars Finally, an orbiting body must survive the that are the remaining cores of massive stars that extreme magnetic fields a pulsar constantly ended in a catastrophic supernova. Due to the emits. Many pulsars have such powerful extreme processes that these stellar objects are magnetic fields that it warps the electron formed, it was believed that any planets orbiting it clouds of atoms into needle-like shapes less would have been annihilated by the explosive events than 1% of their original size, rendering much of their creation or survive the intense conditions of the chemistry of life impossible in close around a pulsar. In 1992, it was discovered that not proximity to the star. only were planetary bodies possible around pulsars, an actual pulsar system (PSR 1257+12) was found by To calculate the magnetic field strength Aleksander Wolszczan and Dale Frail with two bodies (measured in Gauss) of a pulsar, the radius of orbiting the pulsar. the pulsar (R), the angle between the pulsar’s 162 pointings, which contain about 5670 plots, were magnetic poles and it’s rotational axis (α), analyzed to collect data for this research. Out of the and the pulsar’s moment of inertia (I) must be 5670 plots, three known pulsars were found and determined. Since, like before, these values analyzed to collect the relevant data needed to are not easily accessible, a “typical” pulsar’s determine the average conditions one would expect to values are used, which are 10 km, 900, and encounter around a pulsar.
    [Show full text]
  • Seeking and Blundering by Katie Davis
    Seeking and Blundering by Katie Davis [Music] Katie Davis: I’m Katie Davis with a story. An old, moldy one. [Music] Susan Byrnes: So, this image of penicillin mold looks as if you’re looking down on an island almost in a yellow sea looking on – down onto treetops almost with a kind of little, tiny spines and surrounded by a circle of white that then becomes this kind of milky, yellow field that it’s in. So it seems like we’re looking at a close-up of…a close-up of something in a petri dish. Katie Davis: Susan Byrnes, an Ohio artist, likes the color and the movement of mold. Mold is unruly: sometimes sly, temperamental, surprising, spongy or slimy, and it’s best to wash it off with bleach. That’s what we do with mold. Susan Byrnes: As it moves out it’s almost as if there’s this sort of feathery, whiter field around the outside of it and it’s…you can see how the mold has migrated because outside of that ring is the beginnings of another bit of mold growing. And you can see… Katie Davis: Enough with the mold, you’re thinking. Hang on, here’s the backstory. London, 1928. Biologist Alexander Fleming had a messy lab. There were test tubes, beakers, rubber bands, string, and petri dishes. And this story of a mistake has been told and retold. Researchers have questioned some details, and still it survives – like mold, reemerging in books, movies, and cartoons. Cartoon: Having been brought up on a farm in Scotland, scientist Alexander Fleming wasn’t afraid of getting his hands dirty examining nasty bacteria like staphylococcus aureus which in humans as well as horses can cause death as well as vomiting and boils.
    [Show full text]
  • Who Really Discovered the First Exoplanet?
    Who Really Discovered the First Exoplanet? Two Swiss astronomers got a well-deserved Nobel for finding an exoplanet, but there’s an intriguing backstory By Josh Winn The year 1995, like 1492, was the dawn of an age of discovery. The new explorers, instead of using seagoing vessels to discover continents, use telescopes to discover planets revolving around distant stars. Thousands of these extrasolar planets, a term usually shortened to “exoplanets,” have been found, including a few potentially Earth- like worlds, along with bizarre objects that bear no resemblance to any of the planets in our solar system. Two of these exoplanet explorers, Michel Mayor and Didier Queloz, were recently awarded half of the Nobel Prize in Physics for the discovery they made in 1995. My colleagues and I are united in our admiration for their pioneering work, and in our pride to be continuing what they began. But there is something peculiar about the Nobel Prize citation. It says: “for the discovery of an exoplanet orbiting a solar-type star.” Shouldn’t it say the first exoplanet? After all, hundreds of astronomers have discovered an exoplanet. I’ve helped find a few. Even high school students and amateur astronomers have discovered them. Did the Nobel Committee make a typographical error? No, they did not, and thereby hangs a tale. Just as it is problematic to decide who discovered America (Christopher Columbus? John Cabot? Leif Erikson? Amerigo Vespucci, whose name is the one that stuck? Those who came on foot from Siberia tens of thousands of years ago?) it is difficult to say who discovered the first exoplanet.
    [Show full text]
  • Full Curriculum Vitae
    Jason Thomas Wright—CV Department of Astronomy & Astrophysics Phone: (814) 863-8470 Center for Exoplanets and Habitable Worlds Fax: (814) 863-2842 525 Davey Lab email: [email protected] Penn State University http://sites.psu.edu/astrowright University Park, PA 16802 @Astro_Wright US Citizen, DOB: 2 August 1977 ORCiD: 0000-0001-6160-5888 Education UNIVERSITY OF CALIFORNIA, BERKELEY PhD Astrophysics May 2006 Thesis: Stellar Magnetic Activity and the Detection of Exoplanets Adviser: Geoffrey W. Marcy MA Astrophysics May 2003 BOSTON UNIVERSITY BA Astronomy and Physics (mathematics minor) summa cum laude May 1999 Thesis: Probing the Magnetic Field of the Bok Globule B335 Adviser: Dan P. Clemens Awards and fellowships NASA Group Achievement Award for NEID 2020 Drake Award 2019 Dean’s Climate and Diversity Award 2012 Rock Institute Ethics Fellow 2011-2012 NASA Group Achievement Award for the SIM Planet Finding Capability Study Team 2008 University of California Hewlett Fellow 1999-2000, 2003-2004 National Science Foundation Graduate Research Fellow 2000-2003 UC Berkeley Outstanding Graduate Student Instructor 2001 Phi Beta Kappa 1999 Barry M. Goldwater Scholar 1997 Last updated — Jan 15, 2021 1 Jason Thomas Wright—CV Positions and Research experience Associate Department Head for Development July 2020–present Astronomy & Astrophysics, Penn State University Director, Penn State Extraterrestrial Intelligence Center March 2020–present Professor, Penn State University July 2019 – present Deputy Director, Center for Exoplanets and Habitable Worlds July 2018–present Astronomy & Astrophysics, Penn State University Acting Director July 2020–August 2021 Associate Professor, Penn State University July 2015 – June 2019 Associate Department Head for Diversity and Equity August 2017–August 2018 Astronomy & Astrophysics, Penn State University Visiting Associate Professor, University of California, Berkeley June 2016 – June 2017 Assistant Professor, Penn State University Aug.
    [Show full text]
  • Table of Contents
    AAS Newsletter July/August 2011, Issue 159 - The Online Publication for the members of the American Astronomical Society Table of Contents President's Column 2 2011 Chrétien Grant Winner 11 From the Executive Office 4 IAU Membership Deadline 11 Secretary's Corner 5 Highlights from the Hub of the Council Actions 6 Universe 12 Journals Update 8 SPD Meeting 23 25 Things About... 9 Washington News Back Page A A S American Astronomical Society AAS Officers President's Column Debra M. Elmegreen, President David J. Helfand, President-Elect Debra Meloy Elmegreen, [email protected] Lee Anne Willson, Vice-President Nicholas B. Suntzeff, Vice-President Edward B. Churchwell, Vice-President Hervey (Peter) Stockman, Treasurer G. Fritz Benedict, Secretary Richard F. Green, Publications Board Chair We hit a homerun in Boston with Timothy F. Slater, Education Officer one of our biggest summer meetings Councilors ever, including over 1300 registrants; Bruce Balick still, it had the more intimate feel that Richard G. French Eileen D. Friel characterizes our summer gatherings. It Edward F. Guinan was a privilege to share our 218th meeting Patricia Knezek James D. Lowenthal with the American Association of Robert Mathieu Variable Star Observers on the occasion Angela Speck th Jennifer Wiseman of their 100 anniversary, and to present them a certificate to commemorate Executive Office Staff the long-time professional-amateur Kevin B. Marvel, Executive Officer Tracy Beale, Membership Services collaboration we have all enjoyed. Administrator Margaret Geller gave a stirring Henry Chris Biemesderfer, Director of Publishing Laronda Boyce, Meetings & Exhibits Norris Russell Lecture on her discovery Coordinator of large-scale structure in the Universe.
    [Show full text]
  • 3677 Life in the Universe: Extra-Solar Planets Dr
    DEPARTMENT OF PHYSICS AND ASTRONOMY 3677 Life in the Universe: Extra-solar planets Dr. Matt Burleigh www.star.le.ac.uk/mrb1/lectures.html Course outline • Lecture 1 – Definition of a planet – A little history – Pulsar planets – Doppler “wobble” (radial velocity) technique • Lecture 2 – Transiting planets – Transit search projects – Detecting the atmospheres of transiting planets: secondary eclipses & transmission spectroscopy – Transit timing variations Dr. Matt Burleigh 3677: Life in the Universe Course outline • Lecture 3 – Microlensing – Direct Imaging – Other methods: astrometry, eclipse timing – Planets around evolved stars • Lecture 4 – Statistics: mass and orbital distributions, incidence of solar systems, etc. – Hot Jupiters – Super-Earths – Planetary formation – Planetary atmospheres – The host stars Dr. Matt Burleigh 3677: Life in the Universe Course outline • Lecture 5 – The quest for an Earth-like planet – Habitable zones – Results from the Kepler mission • How common are rocky planets? • Amazing solar systems – Biomarkers – Future telescopes and space missions Dr. Matt Burleigh 3677: Life in the Universe Useful web sites • Extra-solar planets encyclopaedia: exoplanets.eu • Exoplanet Data Explorer (California Planet Survey): exoplanets.org • NASA exoplanet archive: exoplanetarchive.ipac.caltech.edu • Planet hunters (Zooniverse): www.planethunters.org • Kepler mission: kepler.nasa.gov • Next Generation Transit Survey: www.ngtransits.org Dr. Matt Burleigh 3677: Life in the Universe Useful books • Extrasolar planets & Astrobiology:
    [Show full text]
  • European VLBI Network Newsletter Number 5 May 2003 EVN User JIVE Newsletter Publications Meetings Proposals Homepage Support Homepage Archive
    European VLBI Network: Newsletter 5 - May 2003 Página 1 de 10 European VLBI Network Newsletter Number 5 May 2003 EVN User JIVE Newsletter Publications Meetings Proposals Homepage Support Homepage Archive Contents 1. Call for Proposals - Deadline 1 June 2003 2. Report from the Chairman of the CBD of the EVN 3. HRH Prince Charles Rededicates the Lovell Telescope 4. Problems with the Effelsberg Track 5. EVN Achieves e-VLBI 1 Gbps Fringes 6. Report on the 2nd e-VLBI Workshop held at JIVE, Dwingeloo, 15-16 May 2003 7. The First Step Towards a Deep Extragalactic VLBI-Optical Survey (DEVOS) 8. High-sensitivity Observations of Radio Supernovae in Arp 220 1. Call for Proposals - Deadline 1 June 2003 Observing proposals are invited for the EVN, a VLBI network of radio telescopes in Europe and beyond operated by an international Consortium of institutes (http://www.evlbi.org). The EVN is open to all astronomers, and encourages use of the Network by astronomers not specialised in the VLBI technique. The Joint Institute for VLBI in Europe, JIVE (http://www.jive.nl), can provide support and advice on project preparation, scheduling, correlation and analysis. See htmlhttp://www.evlbi.org/support/evn_support.html. Complete a coversheet (now available in LaTeX format) and attach a scientific justification (maximum 2 pages). Up to 2 additional pages with diagrams may be included; the total, including cover sheet, should not exceed 6 pages. See http://www.evlbi.org/proposals/prop.html. The detailed "Call for Proposals" has further information on Global VLBI, EVN+MERLIN and guidelines for proposal submission: see http://www.obs.u-bordeaux1.fr/vlbi/EVN/call-long.html.
    [Show full text]
  • SKA Newsetter Volume 1
    SKA Newsetter Volume 1 International Square Kilometre Array Newsletter Volume 1 February 2000 Greetings. This is the first newsletter of the International Square Kilometre Array project.� The SKA project has enjoyed rapid development on the international front in the past year.� An international SKA Steering Committee (ISSC) has been established, with representation from the 7 countries that are signatories to the Memorandum of Understanding for Research and Development (Australia, Canada, China, India, The Netherlands, the U.K., and the USA).� The mandate of the ISSC includes to provide international oversight and a coordinating body, to establish agreed goals and timelines for the SKA project, to organize a joint international technical and scientific proposal for the SKA and, to this end, to establish and oversee working groups as necessary.�� The ISSC meets twice per year.� The inaugural meeting was held in Dwingeloo in February 1999.� A second meeting occurred in Toronto in August.� The third gathering will take place in Munich at the end of March. The first steps are being taken to establish a European SKA Consortium to coordinate the efforts in Europe. This is being done in the context of an EU-funded Infrastructure Cooperation Network in Radio Astronomy.��� Another area of very significant progress in the past year has been the continued organisation of national projects within the participating countries.� This first newsletter is devoted to reports of activities from correspondents in MOU countries.� Efforts around the world
    [Show full text]
  • The Sounds of the Universe Transcript
    The Sounds of the Universe Transcript Date: Wednesday, 23 November 2011 - 1:00PM Location: Museum of London 23 November 2011 The Sounds of the Universe Professor Carolin Crawford Introduction Astronomy is a very visual subject. We’re all familiar with – and captivated by – the stunning images of stars, nebulae and galaxies from both ground-based and space-based telescopes, or pictures direct from the surface of Mars taken by robotic spacecraft. But vision is only part of the whole human experience. In this talk I am going take a different approach to appreciating the universe, through the sense of sound. Astronomers have long realised that sound waves are ‘out there’, and that they play a part in the physical processes going on in space. But it’s only over the last twenty last years or so that the various roles of sound in space has been recognised and actively pursued in astronomical research. In this talk I’ll be looking at how: • Sound can be used a diagnostic of cosmic phenomena, indirectly tracing the behaviour of astronomical objects: whether the presence of lightning on Jupiter, or the physical structure inside distant stars. • Sound can itself be an important physical process, capable of transferring significant amounts of energy across vast volumes of space; for example, the transfer of energy from a black hole out into a surrounding cluster of galaxies. • Sound can be used to convey and illustrate some aspects of astronomy very effectively, particularly radio signals converted into sound. It’s much easier to appreciate features of a signal like the variation in its frequency, or detect the pattern of a repeated beat by ‘hearing’ it.
    [Show full text]