ISTA Accreditation Scope: Revision of the Crop Groups

Total Page:16

File Type:pdf, Size:1020Kb

ISTA Accreditation Scope: Revision of the Crop Groups INTERNATIONAL SEED TESTING ASSOCIATION (ISTA) Secretariat, Zürichstrasse 50, 8303 Bassersdorf, CH-Switzerland Phone: +41-44-838 60 00, Fax: +41-44-838 60 01, Email: [email protected], http://www.seedtest.org ACCREDITATION ISTA Accreditation Scope: Revision of the Crop Groups Rita Zecchinelli, Florina Palada THE EXECUTIVE COMMITTEE (ECOM) ACCREDITATION WORKING GROUP (AWG) formed by Steve Jones (ISTA President), Rita Zecchinelli (Chair), Berta Killermann, Valerie Cockerell, Sylvie Ducournau, Andreas Wais and Florina Palada, has worked to revise and improve the table of crop groups that serves as a reference in the framework of ISTA accreditation. The crop groups represent an important criterion for defining the scope of accreditation for laboratories. The revision required the following activities: - Table 2C Parts 1, 2 and 3 of the ISTA Rules were carefully checked versus the crop groups table. - A few missing species were added in the crop groups table (the Bulking and Sampling, Purity, Germination and the Forest Tree and Shrub Seed TCOM chairs were consulted). - The scientific names of the genera were aligned to the revised ISTA List of Stabilised Plant Names, 7th edition. - All genera were listed in groups 7 (forest species) and 8 (flower species). (In the previous version of the table there was just a reference to the ISTA Rules Table 2C, Part 2 or 3.) - In some cases, a genus was added in more than one crop group (e.g. genera with species that can be cultivated for different purposes). - The subgroups within the groups were removed, as the ISTA accreditation is granted for each crop group and not for subgroups. Below you will find four tables: 1. the ‘old’ crop groups table (as it was in the application for re-accreditation); 2. the ‘new’ table, clean and with the genera in alphabetical order (as approved by the ECOM in June 2020); 3. the ‘new’ crop groups table with colours (used to highlight the changes); 4. the crop groups for viability tests using the tetrazolium method, with the scientific name aligned with the revision of the ISTA List of Stabilised Plant Names, 7th edition We would like to give some examples of the changes and the rationale behind these changes. Brassica was under group 5 only and it was added to group 6 as well, as several brassicas are in fact vegetable species. Salvia was initially listed only in group 8 (flower species), but now we have it in crop group 6 (vegetable species) and group 5 as well (other agricultural species), due to the new addition to the ISTA Rules of Salvia hyspanica (chia). It is to be noted that for the ISTA Rules 2022, a proposal is prepared by the Bulking and Sampling Committee to add Salvia hyspanica, in Table 2C Part 1, as it is considered a ‘food’ crop in several countries, especially popular in South America. 1 INTERNATIONAL SEED TESTING ASSOCIATION (ISTA) Secretariat, Zürichstrasse 50, 8303 Bassersdorf, CH-Switzerland Phone: +41-44-838 60 00, Fax: +41-44-838 60 01, Email: [email protected], http://www.seedtest.org Levisticum was initially introduced in crop group 8, because the leaves can be used as an aromatic herb, but the seeds can be considered a spice and the root consumed as a vegetable. For these reasons, in the revision it is also listed in group 6. For some ISTA laboratories, a possible consequence of the approved changes is a reduction of their accreditation scope (e.g. several laboratories are accredited for group 5 because they test Brassica vegetable species; or a laboratory interested in testing Salvia hyspanica will not be obliged to extend the accreditation scope to the flower species group thanks to the changes). We hope that this simplification will lead to better administration of the audit time and more appropriate participation in the ISTA Proficiency Test programme. Table 1. Crop groups for purity, other seed determination and germination tests before the table revision Crop group Size Species belonging to the following genera 1 (grasses) A Poa pratensis, Poa trivialis, Dactylis B Agrostis, Anthoxanthum, Cynodon, Cynosurus, Deschampsia, Eragrostis, Holcus, Phleum, Poa, Schizachyrium C Agropyron, Alopecurus, Arrhenatherum, Beckmannia, Bromus, Ehrharta, Elymus, Elytrigia, Festuca, xFestulolium, Koeleria, Lolium, Pascopyrum, Phalaris, Piptatherum, Psathyrostachys, Pseudoroegneria, Trisetum, Zoysia D Andropogon, Astrebla, Bothriochloa, Bouteloua, Cenchrus, Chloris, Dichanthium, Pennisetum, Sorghastrum E Axonopus, Brachiaria, Digitaria, Echinochloa, Eleusine, Melinis, Panicum, Paspalum, Pennisetum glaucum, Setaria, Urochloa 2 (cereals) A Avena, Hordeum, Secale, xTriticosecale, Triticum B Oryza, Sorghum, Zea 3 (small A Aeschynomene, Alysicarpus, Anthyllis, Astragalus, Centrosema, legumes) Chamaecrista, Securigera, Crotalaria, Desmodium, Galega, Hedysarum, Kummerowia, Lespedeza, Leucaena, Lotus, Macroptilium, Macrotyloma, Medicago, Melilotus, Onobrychis, Ornithopus, Securigera, Trifolium, Trigonella 4 (pulses) A Vicia (small) B Cajanus, Cicer, Lathyrus, Lens, Mucuna, Phaseolus coccineus, Pisum, Psophocarpus, Vicia (large) 2 INTERNATIONAL SEED TESTING ASSOCIATION (ISTA) Secretariat, Zürichstrasse 50, 8303 Bassersdorf, CH-Switzerland Phone: +41-44-838 60 00, Fax: +41-44-838 60 01, Email: [email protected], http://www.seedtest.org C Arachis, Cyamopsis, Glycine, Lablab, Lupinus, Phaseolus, Pueraria, Vigna 5 (other A Beta, Brassica, Crambe, Dichondra, Hibiscus, Linum, Plantago, agricultural Sinapis, Spergula, Raphanus species) B Cannabis, Carthamus, Fagopyrum, Helianthus 6 (vegetables, A Achillea, Anethum, Anthriscus, Apium, Arctium, Atriplex, Atropa, including fruits, Camelina, Campanula, Carum, Chrysanthemum, Glebionis, Cichorium, spices and Claytonia, Cuminum, Daucus, Eruca, Fragaria, Lactuca, Lepidium, condiments) Solanum, Solanum hybrids, Marrubium, Matricaria, Melissa, Mentha, Nasturtium, Nicotiana, Ocimum, Oenothera, Origanum, Papaver, Petroselinum, Phacelia, Physalis, Pimpinella, Portulaca, Rheum, Rosmarinus, Rumex, Satureja, Sesamum, Stylosanthes, Taraxacum, Thymus, Valerianella B Allium, Asparagus, Capsicum, Corchorus, Coriandrum, Cynara, Foeniculum, Pastinaca, Raphanus, Sanguisorba, Scorzonera, Solanum, Spinacia, Tragopogon C Abelmoschus, Borago, Cucumis, Cucurbita, Cucurbita hybrids, Citrullus, Gossypium, Ipomoea, Lagenaria, Luffa, Momordica, Ricinus, Tetragonia 7 (forest See Table 2C Part 2 of the ISTA Rules species) 8 (flower See Table 2C Part 3 of the ISTA Rules species) Table 2. Crop groups for purity, other seed determination and germination tests, revised – groups 1 to 8 cover species/genera of Table 2C Parts 1, 2 and 3 after the table revision Crop group Species belonging to the following genera 1 (grasses) Agrostis, Anthoxanthum, Agropyron, Alopecurus, Arrhenatherum, Andropogon, Astrebla, Avenella, Axonopus, Beckmannia, Bothriochloa, Bouteloua, Bromus, Cenchrus, Chloris, Cynodon, Cynosurus, Dactylis, Deschampsia, Dichanthium, Digitaria, Echinochloa, Ehrharta, Eleusine, Elymus, Eragrostis, Festuca, xFestulolium, Holcus, Koeleria, Lolium, Megathyrsus, Melinis, Oloptum, Panicum, Pascopyrum, Paspalum, Pennisetum, Phalaris, Phleum, Poa, Psathyrostachys, Pseudoroegneria, Schizachyrium, Setaria, Sorghastrum, Thinopyrum, Trisetum, Urochloa, Zoysia 2 (cereals) Avena, Hordeum, Oryza, Secale, Sorghum, Triticum, xTriticosecale, Zea 3 INTERNATIONAL SEED TESTING ASSOCIATION (ISTA) Secretariat, Zürichstrasse 50, 8303 Bassersdorf, CH-Switzerland Phone: +41-44-838 60 00, Fax: +41-44-838 60 01, Email: [email protected], http://www.seedtest.org 3 (small Aeschynomene, Alysicarpus, Anthyllis, Astragalus, Calopogonium, Centrosema, legumes) Chamaecrista, Crotalaria, Desmodium, Galega, Hedysarum, Kummerowia, Lespedeza, Leucaena, Listia, Lotus, Macroptilium, Macrotyloma, Medicago, Melilotus, Onobrychis, Ornithopus, Securigera, Trifolium, Trigonella 4 (pulses) Arachis, Cajanus, Cicer, Cyamopsis, Glycine, Lablab, Lathyrus, Lens, Lupinus, Mucuna, Neonotonia, Neustanthus, Phaseolus, Pisum, Psophocarpus, Pueraria, Vicia, Vigna 5 (other Beta, Brassica, Cannabis, Carthamus, Crambe, Dichondra, Fagopyrum, Helianthus, agricultural Hibiscus, Linum, Nicotiana, Plantago, Phacelia, Raphanus, Salvia, Sinapis, Spergula species) 6 (vegetables, Abelmoschus, Achillea, Allium, Anethum, Anthriscus, Apium, Arctium, Asparagus, spices, herbs, Atriplex, Atropa, Beta, Borago, Brassica, Camelina, Campanula, Cannabis, Capsicum, and medicinal Carum, Chrysanthemum, Cichorium, Citrullus, Claytonia, Corchorus, Coriandrum, species) Cucumis, Cucurbita, Cuminum, Cynara, Datura, Daucus, Eruca, Fragaria, Foeniculum, Gossypium, Glebionis, Ipomoea, Lactuca, Lagenaria, Lepidium, Levisticum, Luffa, Marrubium, Matricaria, Melissa, Mentha, Momordica, Nasturtium, Nicotiana, Ocimum, Oenothera, Origanum, Papaver, Pastinaca, Petroselinum, Phacelia, Physalis, Pimpinella, Portulaca, Raphanus, Rheum, Ricinus, Rosmarinus, Rumex, Salvia, Sanguisorba, Satureja, Scorzonera, Sesamum, Silybum, Solanum, Spinacia, Stylosanthes, Taraxacum, Tetragonia, Thymus, Tragopogon, Valerianella, Valeriana, Verbena 7 (forest Abies, Acacia, Acer, Aesculus, Ailanthus, Alnus, Amorpha, Berberis, Betula, Calocedrus, species) Caragana, Carica, Carpinus, Castanea, Catalpa, Cedrela, Cedrus, Chamaecyparis, Cornus, Corylus, Corymbia, Cotoneaster, Crataegus, Cryptomeria, Cupressus, Cydonia, Cytisus, Elaeagnus, Eucalyptus, Euonymus, Fagus, Fraxinus, Ginkgo, Gleditsia, Ilex, Juniperus, Koelreuteria, Laburnum, Larix, Ligustrum, Liquidambar, Liriodendron, Malus, Morus, Nothofagus, Picea, Pinus, Platanus, Platycladus, Populus, Prunus,
Recommended publications
  • Density, Distribution and Habitat Requirements for the Ozark Pocket Gopher (Geomys Bursarius Ozarkensis)
    DENSITY, DISTRIBUTION AND HABITAT REQUIREMENTS FOR THE OZARK POCKET GOPHER (Geomys bursarius ozarkensis) Audrey Allbach Kershen, B. S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2004 APPROVED: Kenneth L. Dickson, Co-Major Professor Douglas A. Elrod, Co-Major Professor Thomas L. Beitinger, Committee Member Sandra L. Terrell, Interim Dean of the Robert B. Toulouse School of Graduate Studies Kershen, Audrey Allbach, Density, distribution and habitat requirements for the Ozark pocket gopher (Geomys bursarius ozarkensis). Master of Science (Environmental Science), May 2004, 67 pp., 6 tables, 6 figures, 69 references. A new subspecies of the plains pocket gopher (Geomys bursarius ozarkensis), located in the Ozark Mountains of north central Arkansas, was recently described by Elrod et al. (2000). Current range for G. b. ozarkensis was established, habitat preference was assessed by analyzing soil samples, vegetation and distance to stream and potential pocket gopher habitat within the current range was identified. A census technique was used to estimate a total density of 3, 564 pocket gophers. Through automobile and aerial survey 51 known fields of inhabitance were located extending the range slightly. Soil analyses indicated loamy sand as the most common texture with a slightly acidic pH and a broad range of values for other measured soil parameters and 21 families of vegetation were identified. All inhabited fields were located within an average of 107.2m from waterways and over 1,600 hectares of possible suitable habitat was identified. ACKNOWLEDGMENTS Appreciation is extended to the members of my committee, Dr. Kenneth Dickson, Dr. Douglas Elrod and Dr.
    [Show full text]
  • Types of American Grasses
    z LIBRARY OF Si AS-HITCHCOCK AND AGNES'CHASE 4: SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM oL TiiC. CONTRIBUTIONS FROM THE United States National Herbarium Volume XII, Part 3 TXE&3 OF AMERICAN GRASSES . / A STUDY OF THE AMERICAN SPECIES OF GRASSES DESCRIBED BY LINNAEUS, GRONOVIUS, SLOANE, SWARTZ, AND MICHAUX By A. S. HITCHCOCK z rit erV ^-C?^ 1 " WASHINGTON GOVERNMENT PRINTING OFFICE 1908 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM Issued June 18, 1908 ii PREFACE The accompanying paper, by Prof. A. S. Hitchcock, Systematic Agrostologist of the United States Department of Agriculture, u entitled Types of American grasses: a study of the American species of grasses described by Linnaeus, Gronovius, Sloane, Swartz, and Michaux," is an important contribution to our knowledge of American grasses. It is regarded as of fundamental importance in the critical sys- tematic investigation of any group of plants that the identity of the species described by earlier authors be determined with certainty. Often this identification can be made only by examining the type specimen, the original description being inconclusive. Under the American code of botanical nomenclature, which has been followed by the author of this paper, "the nomenclatorial t}rpe of a species or subspecies is the specimen to which the describer originally applied the name in publication." The procedure indicated by the American code, namely, to appeal to the type specimen when the original description is insufficient to identify the species, has been much misunderstood by European botanists. It has been taken to mean, in the case of the Linnsean herbarium, for example, that a specimen in that herbarium bearing the same name as a species described by Linnaeus in his Species Plantarum must be taken as the type of that species regardless of all other considerations.
    [Show full text]
  • The Degradation of the Asphalt Alleys by Rhizomes of Herbaceous Plant Species of Couch Grass
    Recent Advances in Energy, Environment and Geology The Degradation of the Asphalt Alleys by Rhizomes of Herbaceous Plant Species of Couch Grass FILIPOV Feodor*1, ROBU Teodor**2 1* Soil sciences Department, Faculty of Agriculture 3, Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine of Iasi, Mihail Sadoveanu Alley, 700490, Iasi, Romania, +40232407450, [email protected] **2Crop science department, Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine of Iasi, Mihail Sadoveanu Alley, 700490, Iasi, Romania, +40232407450, teorobu@uaiasi Abstract: - The soil cover of urban areas consists of several soil taxonomic units with significantly altered properties and functions. Soils covered by asphalt or another compact materials (such as concrete materials), also known under the name of or ekranic Technosols [1, 2], have strongly modified properties and perform only part of the specific functions that allow only low biological activity and root growth of some plants species. Soil under asphalted alleys have water retention capacity and allows expansion of the roots of woody plants and grasses. The soil horizons under asphalt pavers can be developed only a small number of plant species that are tolerant of deficient aeration. It is well known that the concentration of oxygen decrease considerable and the concentration of carbon dioxide increase significantly (>10% or even 20%) in the compacted soil layers or in the soil layers under asphalt [3, 4]. Some physical soil properties of such as bulk density, compaction degree, air porosity, total soil porosity are substantially modified. Frequentlly, the values of physical properties of soils covered with asphalt indicate that soils are a strong compacted.
    [Show full text]
  • Identifying and Appreciating the Native and Naturalized Grasses of California
    IDENTIFYING AND APPRECIATING THE NATIVE AND NATURALIZED GRASSES OF CALIFORNIA Materials Selected and Presented by David Amme for class offered on May 8, 2003, Seaside, CA under the auspices of California Native Grass Association P.O Box 72405 • Davis, CA 95617 Voice: 530-759-8458 FAX 530-753-1553 Email: [email protected] Web: http://www.cnga.org Identifying and Appreciating the Native and Naturalized Grasses of California California Native Grass Association California Native Grass Association Identifying and Appreciating the Native and Naturalized Grasses of California WHAT IS A GRASS? KEY TO GRASSES, SEDGES AND RUSHES 1a Flowers with stiff, greenish or brownish, 6 parted perianth (calyx and corolla); stamens 6 or 3; fruit a many-seeded capsule; leaves usually wiry and round in cross section . RUSH FAMILY (Juncaceae) lb Flowers without evident calyx or corolla, gathered into short scaly clusters (spikelets); stamens 3; fruit with a single seed. 2 2a Leaves in 2 vertical rows or ranks; leaf sheaths usually split, with overlapping edges; stems usually round in cross section and hollow between the joints; each flower of the spikelet contained between 2 bracts, the lemma and the palea . GRASS FAMILY (Cramineae) 2b Leaves in 3 vertical rows or ranks; leaf sheaths tubular, not split; stems often triangular in cross section and solid between joints; each flower of the spikelet in the axil of a single bract, the glume . SEDGE FAMILY (Cyperaceae) From: HOW TO KNOW THE GRASSES by Richard W. Pohl; Wm. C. Brown Company Publishers; Dubuque, Iowa. Identifying
    [Show full text]
  • Alien Plants in Central European River Ports
    A peer-reviewed open-access journal NeoBiota 45: 93–115 (2019) Alien plants in Central European river ports 93 doi: 10.3897/neobiota.45.33866 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions Alien plants in Central European river ports Vladimír Jehlík1, Jiří Dostálek2, Tomáš Frantík3 1 V Lesíčku 1, 150 00 Praha 5 – Smíchov, Czech Republic 2 Silva Tarouca Research Institute for Landscape and Ornamental Gardening, CZ-252 43 Průhonice, Czech Republic 3 Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic Corresponding author: Jiří Dostálek ([email protected]) Academic editor: Ingo Kowarik | Received 14 February 2019 | Accepted 27 March 2019 | Published 7 May 2019 Citation: Jehlík V, Dostálek J, Frantík T (2019) Alien plants in Central European river ports. NeoBiota 45: 93–115. https://doi.org/10.3897/neobiota.45.33866 Abstract River ports represent a special type of urbanized area. They are considered to be an important driver of biological invasion and biotic homogenization on a global scale, but it remains unclear how and to what degree they serve as a pool of alien species. Data for 54 river ports (16 German, 20 Czech, 7 Hungarian, 3 Slovak, and 8 Austrian ports) on two important Central European waterways (the Elbe-Vltava and Dan- ube waterways) were collected over 40 years. In total, 1056 plant species were found. Of these, 433 were alien, representing 41% of the total number of species found in all the studied Elbe, Vltava, and Danube ports. During comparison of floristic data from literary sources significant differences in the percentage of alien species in ports (50%) and cities (38%) were found.
    [Show full text]
  • Cynodon Dactylon (L.) Pers
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Cynodon dactylon (L.) Pers. Bermudagrass Family: Poaceae Range: Most western states, except Wyoming, North and South Dakota. Habitat: Disturbed sites, gardens, agronomic crops, orchards, turf, landscaped and forestry areas, on most soil types. Typically in areas that are irrigated or receive some warm-season moisture. Tolerates acidic, alkaline, or saline conditions or limited flooding. Aboveground growth does not tolerate freezing temperatures (below -1°C). Optimum growth occurs when daytime temperatures are 35 to 38°C. Grows poorly in shaded conditions. Origin: Native to Africa. Impact: Because of its vigorous creeping habit bermudagrass is a noxious weed in many areas where some moisture is available in the warm season. In wildland areas, it is particularly a problem in riparian sites. Western states listed as Noxious Weed: California, Utah California Invasive Plant Council (Cal-IPC) Inventory: Moderate Invasiveness Bermudagrass is a warm-climate perennial with an extensive system of creeping rhizomes and stolons. Although it typically grows prostrate to the soil, it can grow to 1.5 ft tall, particularly under somewhat shady conditions.
    [Show full text]
  • Additions to the New Flora of Vermont
    Gilman, A.V. Additions to the New Flora of Vermont. Phytoneuron 2016-19: 1–16. Published 3 March 2016. ISSN 2153 733X ADDITIONS TO THE NEW FLORA OF VERMONT ARTHUR V. GILMAN Gilman & Briggs Environmental 1 Conti Circle, Suite 5, Barre, Vermont 05641 [email protected] ABSTRACT Twenty-two species of vascular plants are reported for the state of Vermont, additional to those reported in the recently published New Flora of Vermont. These are Agrimonia parviflora, Althaea officinalis , Aralia elata , Beckmannia syzigachne , Bidens polylepis , Botrychium spathulatum, Carex panicea , Carex rostrata, Eutrochium fistulosum , Ficaria verna, Hypopitys lanuginosa, Juncus conglomeratus, Juncus diffusissimus, Linum striatum, Lipandra polysperma , Matricaria chamomilla, Nabalus racemosus, Pachysandra terminalis, Parthenocissus tricuspidata , Ranunculus auricomus , Rosa arkansana , and Rudbeckia sullivantii. Also new are three varieties: Crataegus irrasa var. irrasa , Crataegus pruinosa var. parvula , and Viola sagittata var. sagittata . Three species that have been reported elsewhere in 2013–2015, Isoetes viridimontana, Naias canadensis , and Solidago brendiae , are also recapitulated. This report and the recently published New Flora of Vermont (Gilman 2015) together summarize knowledge of the vascular flora of Vermont as of this date. The New Flora of Vermont was recently published by The New York Botanical Garden Press (Gilman 2015). It is the first complete accounting of the vascular flora of Vermont since 1969 (Seymour 1969) and adds more than 200 taxa to the then-known flora of the state. However, the manuscript for the New Flora was finalized in spring 2013 and additional species are now known: those that have been observed more recently, that have been recently encountered (or re-discovered) in herbaria, or that were not included because they were under study at the time of finalization.
    [Show full text]
  • Habitat Characteristics That Influence Maritime Pocket Gopher Densities
    The Texas Journal of Agriculture and Natural Resources 26:14-24 (2013) 14 © Agricultural Consortium of Texas Habitat Characteristics That Influence Maritime Pocket Gopher Densities Jorge D. Cortez1 Scott E. Henke*,1 Richard Riddle2 1Caesar Kleberg Wildlife Research Institute, MSC 218, Texas A&M University- Kingsville, Kingsville, TX 78363 2United States Navy, 8851 Ocean Drive, Corpus Christi, TX 78419-5226 ABSTRACT The Maritime pocket gopher (Geomys personatus maritimus) is a subspecies of Texas pocket gopher endemic to the Flour Bluff area of coastal southern Texas. Little is known about the habitat and nutritional requirements of this subspecies. The amount and quality of habitat necessary to sustain Maritime pocket gophers has not been studied. Our objectives were to assess the habitat, vegetation, and nutritional parameters available to Maritime pocket gophers at four different levels of gopher mound density. We chose study sites with zero, low (25-50 mounds/ha), intermediate (75-150 mounds/ha), and high (>200 mounds/ha) gopher mound densities. Vegetation and soil samples were collected using 0.25 m2 quadrats; vegetation was divided into above- and below-ground biomass for analysis. Maritime pocket gophers avoided areas of clay soils with high levels of calcium, magnesium, sulfur, and sodium compounds. A direct relationship existed between gopher activity within an area and vegetation biomass. However, nutritional quality of an area did not appear to be a determining factor for the presence of Maritime pocket gophers. KEY WORDS: Population density, Geomys personatus maritimus, habitat selection, Maritime pocket gopher, preference INTRODUCTION The Maritime pocket gopher (MPG, Geomys personatus maritimus) is endemic to the coastal areas of Kleberg and Nueces counties of southern Texas, between Baffin Bay and Flour Bluff (Williams and Genoways 1981).
    [Show full text]
  • Economic Geasses
    Historic, archived document Do not assume content reflects current scientific knowledge, policies, or practices. ^Wri ""' BULLETIN NO. 14. Agros.34. •|U. S. DEPARTMENT OF AGRICULTURE. ';i DIVISION OF AGROSTOLOGY. [Grass and Forage Plant Investigations.] ECONOMIC GEASSES. BY F. LAMSON-SCRIBNER, AGROSTOLOGIST. WASHINGTON: GOVERNMENT PRINTING OFFICE* BULLETIN NO. 14. Agros. 34. U. S. DEPARTMENT OF AGRICULTURE. DIVISION OF AGROSTOLOGY. [Grata and Forage Plant luvcntigatioiiM.] ECONOMIC GKASSES. BY F. LAMSON-SCRIBNER, AGKOSTOLOGIST. WASHINGTON: GOVERNMENT PRINTING OFFICE. 1898. LETTER OF TRANSMITTAL. U. S. DEPARTMENT OF AGRICULTURE, DIVISION OF AGROSTOLOGY, Washington, D. (7., June 29,1898. SIR : I have the honor to present and recommend for publication as Bulletin No. 14 of this Division manuscript containing brief descriptions of the more important economic grasses of this country or those which have been introduced because possessing some merit. This publication it is believed will afford a ready answer to the usual inquiries respecting a large number of our grasses. Much of the matter here presented is taken from Bulletin No. 3 of this Division, but owing to the fact that that bulletin exceeded 100 pages the edition published was limited to 1,000 copies, and consequently was very quickly exhausted. The matter has here been condensed in order that a larger edition may be published to meet the demands of correspondents. Bespectfully, F. LAMSON-SCRIBNER, Agrostologiot. Hon. JAMES WILSON, Secretary of Agriculture, CONTENTS. Page. Descriptions 7 Grasses for special soils or uses 77 Hay grasses 77 Pasture grasses 77 Lawn grasses 77 Grasses for wet lands 77 Grasses for embankments 78 Grasses for holding shifting sands -,, 78 ILLUSTRATIONS.
    [Show full text]
  • Cynodon Dactylon (L.) Pers
    Cynodon dactylon (L.) Pers. Origin and diffusion Origin: Africa Distribution: tropical and subtropical regions Invasive potential: high Source: msuturfweeds.net Source: aphotoflora.com Source: montshire- dev.newenglandwild.org Introduction It is a clonal, perennial grass from tropical and warm-temperate areas, where it usually inhabits open locations which are subject to frequent disturbances such as grazing, fire, flooding and drought. The genetic of this species is enormously variable and C. Dactylon populations can evolve tolerance to several extreme environmental condition as salinity or high concentrations of heavy metals in soil, leading to highly adapted ecotypes. Commonly used as a lawn grass, it is a potential agricultural weed because it spreads by rhizomes and is difficult to control. Common names: Bermuda grass, devil's grass (English), gramigna comune (Italian) Description Life-form and periodicity: perennial grass Height: it can grow 5 to 45 cm (rarely to 90 or even 130 cm). Roots habit: Fibrous root system. It forms above-ground stolons and below-ground rhizomes simultaneously; the grass creeps along the ground and roots wherever a node touches the ground, forming a dense mat. In drought situations with penetrable soil, roots can grow to over 2 m deep, though most of the root mass is less than 60 cm under the surface. Culm/Stem/Trunk: prostate or ascending stems, slightly flattened, often tinged purple in colour. Fam. Poaceae Description Leaf: short, flat, narrow leaf blades occur on upright stem branches that arise from nodes of stolons and rhizomes. The margin is rough. Rate of transpiration: 4,5 – 14,1 mm/day Reproductive structure: The inflorescence is composed of 3-7, sometimes purplish, spikes in a fingerlike arrangement (digitately), 3 to 10 cm long.
    [Show full text]
  • Target-Site Resistance to Glyphosate in Chloris Virgata Biotypes and Alternative Herbicide Options for Its Control
    agronomy Article Target-Site Resistance to Glyphosate in Chloris Virgata Biotypes and Alternative Herbicide Options for its Control Het Samir Desai 1,2,*, Michael Thompson 1 and Bhagirath Singh Chauhan 1,2 1 Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton 4343, Australia; [email protected] (M.T.); [email protected] (B.S.C.) 2 School of Agriculture and Food Sciences (SAFS), The University of Queensland, Gatton 4343, Australia * Correspondence: [email protected]; Tel.: +61-468411416 Received: 31 July 2020; Accepted: 25 August 2020; Published: 27 August 2020 Abstract: Due to the overdependence on glyphosate to manage weeds in fallow conditions, glyphosate resistance has developed in various biotypes of several grass weeds, including Chloris virgata Sw. The first case of glyphosate resistance in C. virgata was found in 2015 in Australia, and since then several cases have been confirmed in several biotypes across Australia. Pot studies were conducted with 10 biotypes of C. virgata to determine glyphosate resistance levels. The biotypes were identified as either susceptible, moderately resistant or highly resistant based on the glyphosate dose required to kill 50% of plants. Two glyphosate-susceptible (GS) and two glyphosate-resistant (GR) biotypes were identified by the dose-response study and analyzed for the presence of target-site mutation in the 5–enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene. Performance of alternative herbicides to glyphosate as well as the double-knock herbicide approach was evaluated on the two GS (Ch and SGM2) and two GR (SGW2 and CP2) biotypes. Three herbicides, clethodim, haloxyfop and paraquat, were found to be effective (100% control) against all four biotypes when applied at the 4–5 leaf stage.
    [Show full text]
  • Book of Abstracts
    th International Workshop of European Vegetation Survey Book of Abstracts „Flora, vegetation, environment and land-use at large scale” April– May, University of Pécs, Hungary ABSTRACTS 19th EVS Workshop “Flora, vegetation, environment and land-use at large scale” Pécs, Hungary 29 April – 2 May 2010 Edited by Zoltán Botta-Dukát and Éva Salamon-Albert with collaboration of Róbert Pál, Judit Nyulasi, János Csiky and Attila Lengyel Revised by Members of the EVS 2010 Scientifi c Committee Pécs, EVS Scientific Committee Prof MHAS Attila BORHIDI, University of Pécs, Hungary Assoc prof Zoltán BOTTA-DUKÁT, Institute of Ecology & Botany, Hungary Assoc prof Milan CHYTRÝ, Masaryk University, Czech Republic Prof Jörg EWALD, Weihenstephan University of Applied Sciences, Germany Prof Sandro PIGNATTI, La Sapientia University, Italy Prof János PODANI, Eötvös Loránd University, Hungary Canon Prof John Stanley RODWELL, Lancaster University, United Kingdom Prof Francesco SPADA, La Sapientia University, Italy EVS Local Organizing Committee Dr. Éva SALAMON-ALBERT, University of Pécs Dr. Zoltán BOTTA-DUKÁT, Institute of Ecology & Botany HAS, Vácrátót Prof. Attila BORHIDI, University of Pécs Sándor CSETE, University of Pécs Dr. János CSIKY, University of Pécs Ferenc HORVÁTH, Institute of Ecology & Botany HAS, Vácrátót Prof. Balázs KEVEY, University of Pécs Dr. Zsolt MOLNÁR, Institute of Ecology & Botany HAS, Vácrátót Dr. Tamás MORSCHHAUSER, University of Pécs Organized by Department of Plant Systematics and Geobotany, University of Pécs H-7624 Pécs, Ifj úság útja 6. Tel.: +36-72-503-600, fax: +36-72-501-520 E-mail: [email protected] http://www.ttk.pte.hu/biologia/botanika/ Secretary: Dr. Róbert Pál, Attila Lengyel Institute of Ecology & Botany, Hungarian Academy of Sciences (HAS) H-2163 Vácrátót, Alkotmány út 2-4 Tel.: +36-28-360-147, Fax: +36-28-360-110 http://www.obki.hu/ Directorate of Duna-Dráva National Park, Pécs H-7602 Pécs, P.O.B.
    [Show full text]