Grass Subfamilies III

Total Page:16

File Type:pdf, Size:1020Kb

Grass Subfamilies III Grass Subfamilies III Subfamily Panicoideae • 12 tribes • 3560 species • mostly tropical to warm temperate • economically important for: – Zea mays – Saccharum officinale – Sorghum bicolor – various weeds Subfamily Panicoideae • Tribe Paniceae • Tribe Andropogoneae Subfamily Panicoideae • Tribe Paniceae – Digitaria – Dichanthelium – Echinochloa – Panicum – Cenchrus – Setaria Digitaria Dichanthelium Echinochloa Panicum Cenchrus Setaria Setaria Pennisetum Cenchrus Subfamily Panicoideae • Tribe Paniceae • Tribe Andropogoneae Subfamily Panicoideae • Tribe Paniceae • Tribe Andropogoneae – Andropogon – Schizachyrium – Miscanthus – Sorghum – Zea Andropogon Sorghum Schizachyrium Zea Miscanthus Subfamily Panicoideae • Tribe Andropogoneae – Saccharum officinarum (sugar cane) used for sugar in India since at least 3000 BCE – Columbus brought sugarcane to the New World on his second voyage and successfully established crops – Sugar Triangle in 1700s • Raw sugar or molasses from West Indies to Connecticut • Rum made in Connecticut sent to Africa to buy slaves • Slaves brought to West Indies for labor in cane fields • Sugar Act – British taxes on sugar in colonies Subfamily Panicoideae • Sorghum bicolor – up to three separate domestications in Africa 2000-4000 BCE – grain sorghum – sweet sorghum – kafir – careful with usage of term – durra – milo – ethanol – edible oils Subfamily Panicoideae • Zea mays – maize, corn – base crop of New World civilizations including Maya, Aztecs, Incas – domesticated in Mexico around 7000 BCE – by the time Columbus arrived, 300 races of corn in New World. – Teosinte (some perennial species) is probably ancestor of modern corn Corn in the United States • 65% animal feed • 13 % ethanol • 3.5 % corn syrup and sugars • 1.5 % cornflakes, corn chips, corn muffins etc. • 90 million acres of corn planted per year • 8 X more ethanol produced last year than in 2000 • Average American consumes 1500 lb of corn per year Subfamily Arundinoideae • 2 tribes • 16 genera • 40 species • all are C3 plants Subfamily Arundinoideae • Arundo donax Subfamily Arundinoideae • Phragmites australis – may be most widespread flowering plant Subfamily Danthonioideae • 20 genera • 293 species • mostly in southern hemisphere • all are C3 plants Subfamily Danthonioideae • Danthonia spicata Subfamily Chloridoideae • 5 tribes • 131 genera • 1601 species • found mostly in arid temperate grasslands • nearly all C4 species Subfamily Chloridoideae • Tribe Eragrostideae • Tribe Zoysieae • Tribe Cynodonteae Subfamily Chloridoideae • Tribe Eragrostideae – Eragrostis cilianensis Subfamily Chloridoideae • Tribe Eragrostideae • Tribe Zoysieae • Tribe Cynodonteae Subfamily Chloridoideae • Tribe Zoysieae – Zoysia (lawns) – Sporobolus – Calamovilfa – Spartina Sporobolus cryptandrus Spartina pectinata Calamovilfa longifolia Subfamily Chloridoideae • Tribe Eragrostideae • Tribe Zoysieae • Tribe Cynodonteae – Chloris – Distichlis – Bouteloua – Muhlenbergia Chloris verticellata Distichlis spicata Muhlenbergia racemosa Bouteloua gracilis.
Recommended publications
  • Types of American Grasses
    z LIBRARY OF Si AS-HITCHCOCK AND AGNES'CHASE 4: SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM oL TiiC. CONTRIBUTIONS FROM THE United States National Herbarium Volume XII, Part 3 TXE&3 OF AMERICAN GRASSES . / A STUDY OF THE AMERICAN SPECIES OF GRASSES DESCRIBED BY LINNAEUS, GRONOVIUS, SLOANE, SWARTZ, AND MICHAUX By A. S. HITCHCOCK z rit erV ^-C?^ 1 " WASHINGTON GOVERNMENT PRINTING OFFICE 1908 BULLETIN OF THE UNITED STATES NATIONAL MUSEUM Issued June 18, 1908 ii PREFACE The accompanying paper, by Prof. A. S. Hitchcock, Systematic Agrostologist of the United States Department of Agriculture, u entitled Types of American grasses: a study of the American species of grasses described by Linnaeus, Gronovius, Sloane, Swartz, and Michaux," is an important contribution to our knowledge of American grasses. It is regarded as of fundamental importance in the critical sys- tematic investigation of any group of plants that the identity of the species described by earlier authors be determined with certainty. Often this identification can be made only by examining the type specimen, the original description being inconclusive. Under the American code of botanical nomenclature, which has been followed by the author of this paper, "the nomenclatorial t}rpe of a species or subspecies is the specimen to which the describer originally applied the name in publication." The procedure indicated by the American code, namely, to appeal to the type specimen when the original description is insufficient to identify the species, has been much misunderstood by European botanists. It has been taken to mean, in the case of the Linnsean herbarium, for example, that a specimen in that herbarium bearing the same name as a species described by Linnaeus in his Species Plantarum must be taken as the type of that species regardless of all other considerations.
    [Show full text]
  • A Phylogeny of the Hubbardochloinae Including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae)
    Peterson, P.M., K. Romaschenko, and Y. Herrera Arrieta. 2020. A phylogeny of the Hubbardochloinae including Tetrachaete (Poaceae: Chloridoideae: Cynodonteae). Phytoneuron 2020-81: 1–13. Published 18 November 2020. ISSN 2153 733 A PHYLOGENY OF THE HUBBARDOCHLOINAE INCLUDING TETRACHAETE (CYNODONTEAE: CHLORIDOIDEAE: POACEAE) PAUL M. PETERSON AND KONSTANTIN ROMASCHENKO Department of Botany National Museum of Natural History Smithsonian Institution Washington, D.C. 20013-7012 [email protected]; [email protected] YOLANDA HERRERA ARRIETA Instituto Politécnico Nacional CIIDIR Unidad Durango-COFAA Durango, C.P. 34220, México [email protected] ABSTRACT The phylogeny of subtribe Hubbardochloinae is revisited, here with the inclusion of the monotypic genus Tetrachaete, based on a molecular DNA analysis using ndhA intron, rpl32-trnL, rps16 intron, rps16- trnK, and ITS markers. Tetrachaete elionuroides is aligned within the Hubbardochloinae and is sister to Dignathia. The biogeography of the Hubbardochloinae is discussed, its origin likely in Africa or temperate Asia. In a previous molecular DNA phylogeny (Peterson et al. 2016), the subtribe Hubbardochloinae Auquier [Bewsia Gooss., Dignathia Stapf, Gymnopogon P. Beauv., Hubbardochloa Auquier, Leptocarydion Hochst. ex Stapf, Leptothrium Kunth, and Lophacme Stapf] was found in a clade with moderate support (BS = 75, PP = 1.00) sister to the Farragininae P.M. Peterson et al. In the present study, Tetrachaete elionuroides Chiov. is included in a phylogenetic analysis (using ndhA intron, rpl32- trnL, rps16 intron, rps16-trnK, and ITS DNA markers) in order to test its relationships within the Cynodonteae with heavy sampling of species in the supersubtribe Gouiniodinae P.M. Peterson & Romasch. Chiovenda (1903) described Tetrachaete Chiov. with a with single species, T.
    [Show full text]
  • CATALOGUE of the GRASSES of CUBA by A. S. Hitchcock
    CATALOGUE OF THE GRASSES OF CUBA By A. S. Hitchcock. INTRODUCTION. The following list of Cuban grasses is based primarily upon the collections at the Estaci6n Central Agron6mica de Cuba, situated at Santiago de las Vegas, a suburb of Habana. The herbarium includes the collections made by the members of the staff, particularly Mr. C. F. Baker, formerly head of the department of botany, and also the Sauvalle Herbarium deposited by the Habana Academy of Sciences, These specimens were examined by the writer during a short stay upon the island in the spring of 1906, and were later kindly loaned by the station authorities for a more critical study at Washington. The Sauvalle Herbarium contains a fairly complete set of the grasses col- lected by Charles Wright, the most important collection thus far obtained from Cuba. In addition to the collections at the Cuba Experiment Station, the National Herbarium furnished important material for study, including collections made by A. H. Curtiss, W. Palmer and J. H. Riley, A. Taylor (from the Isle of Pines), S. M. Tracy, Brother Leon (De la Salle College, Habana), and the writer. The earlier collections of Wright were sent to Grisebach for study. These were reported upon by Grisebach in his work entitled "Cata- logus Plant arum Cubensium," published in 1866, though preliminary reports appeared earlier in the two parts of Plantae Wrightianae. * During the spring of 1907 I had the opportunity of examining the grasses in the herbarium of Grisebach in Gottingen.6 In the present article I have, with few exceptions, accounted for the grasses listed by Grisebach in his catalogue of Cuban plants, and have appended a list of these with references to the pages in the body of this article upon which the species are considered.
    [Show full text]
  • Construction of High-Resolution Genetic Maps Of
    Huang et al. BMC Genomics (2016) 17:562 DOI 10.1186/s12864-016-2969-7 RESEARCH ARTICLE Open Access Construction of high-resolution genetic maps of Zoysia matrella (L.) Merrill and applications to comparative genomic analysis and QTL mapping of resistance to fall armyworm Xiaoen Huang1†, Fangfang Wang1†, Ratnesh Singh1†, James A. Reinert1, M. C. Engelke1, Anthony D. Genovesi1, Ambika Chandra1,2 and Qingyi Yu1,3* Abstract Background: Zoysia matrella, widely used in lawns and sports fields, is of great economic and ecological value. Z. matrella is an allotetraploid species (2n =4x = 40) in the genus zoysia under the subfamily Chloridoideae. Despite its ecological impacts and economic importance, the subfamily Chloridoideae has received little attention in genomics studies. As a result, limited genetic and genomic information are available for this subfamily, which have impeded progress in understanding evolutionary history of grasses in this important lineage. The lack of a high-resolution genetic map has hampered efforts to improve zoysiagrass using molecular genetic tools. Results: We used restriction site-associated DNA sequencing (RADSeq) approach and a segregating population developed from the cross between Z. matrella cultivars ‘Diamond’ and ‘Cavalier’ to construct high-resolution genetic maps of Z. matrella. The genetic map of Diamond consists of 2,375 Single Nucleotide Polymorphism (SNP) markers mapped on 20 linkage groups (LGs) with a total length of 1754.48 cM and an average distance between adjacent markers at 0.74 cM. The genetic map of Cavalier contains 3,563 SNP markers on 20 LGs, covering 1824. 92 cM, with an average distance between adjacent markers at 0.51 cM.
    [Show full text]
  • Grasses of Oklahoma
    osu p.llaotten Technical Bulletin No. 3 October, 1938 OKLABOJIA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL ExPERIMENT STATION Lippert S. Ellis, Acting Director GRASSES OF OKLAHOMA By B. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma Technical Bulletin No. 3 October, 1938 OKLAHOMA AGRICULTURAL AND MECHANICAL COLLEGE AGRICULTURAL EXPERIMENT STATION Lippert S. Ellis. Acting Director GRASSES OF OI(LAHO~lA By H. I. FEATHERLY Professor of Botany and Plant Pathology Stillwater, Oklahoma ERRATA Page 6, No. 6: For "Leptochlea" read "Leptochloa." Page 10, No. 3 (second line): For "E. colona" read "E. colonum." Page 11, in "Distribution" of Phalaris caroliniana (Walt.): For "Ste-.vens" read "Stevens." Page 23, No. 2b: J:o"'or "Elymus canadensis ar. brachystachys" read "Elymus canadensis var. brachystachys." Page 28: For "Cynodon Dactylon ... etc." read "Cynodon dactylon (I,.) Pers. (Capriola dactylon Kuntz.) Bermuda G1·ass." Page 41, No. 13: For "Aristida divaricata Humb. and Bonnl." read "Aristida divaricata Humb. and Bonpl." Page 65, No. 3: For "Triodia clongata" read "Triodia elongata." Page 67. No. 11 (thud linel: For "ekels" read "keels." Page 71, No. 9 and Fig 81: For "Eragrostis sessilispicata" read "EragTostis sessilispica." Page 84, first line at top of page: For Melica nitens (Nutt.)'' re~d '?tE:cH~·a nH:ens CSc-;:itn.) !-Iutt." Page 106, No. 12, third line of description: For "within white margins" read "with white margins." Page 117. No. 2: l',or "Erianthus ... etc." read "Erianthus alopecuroides (L.) Ell. (E. divaricatus (L.) Hitchc.) Silver Plume-grass." Fage 123, No. 8: For "(A. torreanus Steud.)" read "A. tor­ rey:Jnus Steuc1.)" PREFACE The grass family needs no introduction.
    [Show full text]
  • Molecular Phylogenetic Analysis Resolves Trisetum
    Journal of Systematics JSE and Evolution doi: 10.1111/jse.12523 Research Article Molecular phylogenetic analysis resolves Trisetum (Poaceae: Pooideae: Koeleriinae) polyphyletic: Evidence for a new genus, Sibirotrisetum and resurrection of Acrospelion Patricia Barberá1,3*,RobertJ.Soreng2 , Paul M. Peterson2* , Konstantin Romaschenko2 , Alejandro Quintanar1, and Carlos Aedo1 1Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid 28014, Spain 2Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington DC 20013‐7012, USA 3Department of Africa and Madagascar, Missouri Botanical Garden, St. Louis, MO 63110, USA *Authors for correspondence. Patricia Barberá. E‐mail: [email protected]; Paul M. Peterson. E‐mail: [email protected] Received 4 March 2019; Accepted 5 May 2019; Article first published online 22 June 2019 Abstract To investigate the evolutionary relationships among the species of Trisetum and other members of subtribe Koeleriinae, a phylogeny based on DNA sequences from four gene regions (ITS, rpl32‐trnL spacer, rps16‐trnK spacer, and rps16 intron) is presented. The analyses, including type species of all genera in Koeleriinae (Acrospelion, Avellinia, Cinnagrostis, Gaudinia, Koeleria, Leptophyllochloa, Limnodea, Peyritschia, Rostraria, Sphenopholis, Trisetaria, Trisetopsis, Trisetum), along with three outgroups, confirm previous indications of extensive polyphyly of Trisetum. We focus on the monophyletic Trisetum sect. Sibirica cladethatweinterprethereasadistinctgenus,Sibirotrisetum gen. nov. We include adescriptionofSibirotrisetum with the following seven new combinations: Sibirotrisetum aeneum, S. bifidum, S. henryi, S. scitulum, S. sibiricum, S. sibiricum subsp. litorale,andS. turcicum; and a single new combination in Acrospelion: A. distichophyllum. Trisetum s.s. is limited to one, two or three species, pending further study. Key words: Acrospelion, Aveneae, grasses, molecular systematics, Poeae, Sibirotrisetum, taxonomy, Trisetum.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • Physiological and Transcriptomic Analyses Reveal the Mechanisms
    Wang et al. BMC Plant Biology (2020) 20:114 https://doi.org/10.1186/s12870-020-02330-6 RESEARCH ARTICLE Open Access Physiological and transcriptomic analyses reveal the mechanisms underlying the salt tolerance of Zoysia japonica Steud Jingjing Wang, Cong An, Hailin Guo*, Xiangyang Yang, Jingbo Chen, Junqin Zong, Jianjian Li and Jianxiu Liu Abstract Background: Areas with saline soils are sparsely populated and have fragile ecosystems, which severely restricts the sustainable development of local economies. Zoysia grasses are recognized as excellent warm-season turfgrasses worldwide, with high salt tolerance and superior growth in saline-alkali soils. However, the mechanism underlying the salt tolerance of Zoysia species remains unknown. Results: The phenotypic and physiological responses of two contrasting materials, Zoysia japonica Steud. Z004 (salt sensitive) and Z011 (salt tolerant) in response to salt stress were studied. The results show that Z011 was more salt tolerant than was Z004, with the former presenting greater K+/Na+ ratios in both its leaves and roots. To study the molecular mechanisms underlying salt tolerance further, we compared the transcriptomes of the two materials at different time points (0 h, 1 h, 24 h, and 72 h) and from different tissues (leaves and roots) under salt treatment. The 24-h time point and the roots might make significant contributions to the salt tolerance. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in the salt-stress response belonged to the hormone pathway, various TF families and the DUF family. Conclusions: Zoysia salt treatment transcriptome shows the 24-h and roots may make significant contributions to the salt tolerance.
    [Show full text]
  • Cynodonteae Tribe
    POACEAE [GRAMINEAE] – GRASS FAMILY Plant: annuals or perennials Stem: jointed stem is termed a culm – internodial stem most often hollow but always solid at node, mostly round, some with stolons (creeping stem) or rhizomes (underground stem) Root: usually fibrous, often very abundant and dense Leaves: mostly linear, sessile, parallel veins, in 2 ranks (vertical rows), leaf sheath usually open or split and often overlapping, but may be closed Flowers: small in 2 rows forming a spikelet (1 to several flowers), may be 1 to many spikelets with pedicels or sessile to stem; each flower within a spikelet is between an outer limna (bract, with a midrib) and an inner palea (bract, 2-nerved or keeled usually) – these 3 parts together make the floret – the 2 bottom bracts of the spikelet do not have flowers and are termed glumes (may be reduced or absent), the rachilla is the axis that hold the florets; sepals and petals absent; 1-6 but often 3 stamens; 1 pistil, 1-3 but usually 2 styles, ovary superior, 1 ovule – there are exceptions to most everything!! Fruit: seed-like grain (seed usually fused to the pericarp (ovary wall) or not) Other: very large and important family; Monocotyledons Group Genera: 600+ genera; locally many genera 2 slides per species WARNING – family descriptions are only a layman’s guide and should not be used as definitive POACEAE [GRAMINEAE] – CYNODONTEAE TRIBE Sideoats Grama; Bouteloua curtipendula (Michx.) Torr. var. curtipendula - Cynodonteae (Tribe) Bermuda Grass; Cynodon dactylon (L.) Pers. (Introduced) - Cynodonteae (Tribe) Egyptian Grass [Durban Crowfoot]; Dactyloctenium aegyptium (L.) Willd (Introduced) [Indian] Goose Grass; Eleusine indica (L.) Gaertn.
    [Show full text]
  • 22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
    POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia].
    [Show full text]
  • Zoysiagrass (Zoysia Spp.) History, Utilization, and Improvement in the United States: a Review
    Published August 16, 2017 RESEARCH Zoysiagrass (Zoysia spp.) History, Utilization, and Improvement in the United States: A Review Aaron J. Patton,* Brian M. Schwartz, and Kevin E. Kenworthy A.J. Patton, Dep. of Horticulture and Landscape Architecture, Purdue ABSTRACT Univ., 625 Agriculture Mall Dr., West Lafayette, IN 47907; B.M. Since its introduction into the United States in Schwartz, Dep. of Crop & Soil Sciences, Univ. of Georgia, 2360 1892, zoysiagrass (Zoysia spp. Willd.) has made Rainwater Rd., Tifton, GA 31793; K.E. Kenworthy, Dep. of Agronomy, a tremendous impact on the US turfgrass indus- Univ. of Florida, PO Box 110500, Gainesville, FL 32611. Received 3 try. Three species of zoysiagrass [Z. japonica Feb. 2017. Accepted 17 May 2017. *Corresponding author (ajpatton@ Steud., Z. matrella (L.) Merr., and Z. pacifica purdue.edu). Assigned to Associate Editor Jack Fry. (Goudswaard) M. Hotta & S. Kuroki] collected Abbreviations: ET, evapotranspiration; FAW, fall armyworm; from East Asia and the Pacific Islands were FAES, Florida Agriculture Experiment Station; GRIN, Germplasm introduced into the United States and are used Resources Information Network; NDF, neutral detergent fiber; directly as turf or by turfgrass breeders in the NIFA, National Institute of Food and Agriculture; SCRI, Specialty development of advanced lines. Golf courses, Crop Research Initiative; TSW, tropical sod webworm; USGA, lawns, grounds, sod farms, athletic fields, road- United States Golf Association. sides, and airports are some of the many loca- tions where zoysiagrass is used. While almost oysiagrass (Zoysia1 spp. Willd.2) is an introduced, perennial, 50 improved cultivars of zoysiagrass have been Zsod-forming species in the United States that is well adapted developed to date, active efforts to improve for use as a turf in the transitional and warm climatic regions and zoysiagrass further and expand its utilization requires minimal maintenance inputs.
    [Show full text]
  • The Journal of the American Bamboo Society Volume 18
    The Journal of the American Bamboo Society Volume 18 BAMBOO SCIENCE & CULTURE The Journal of the American Bamboo Society is published by the American Bamboo Society Copyright 2004 ISSN 0197– 3789 Bamboo Science and Culture: The Journal of the American Bamboo Society is the continuation of The Journal of the American Bamboo Society President of the Society Board of Directors Gerald Morris Michael Bartholomew Kinder Chambers Vice President James Clever Dave Flanagan Ian Connor Dave Flanagan Treasurer Ned Jaquith Sue Turtle David King Lennart Lundstrom Secretary Gerald Morris David King Mary Ann Silverman Steve Stamper Membership Chris Stapleton Michael Bartholomew Mike Turner JoAnne Wyman Membership Information Membership in the American Bamboo Society and one ABS chapter is for the calendar year and includes a subscription to the bimonthly Magazine and annual Journal. See http://www.bamboo.org for current rates or contact Michael Bartholomew, 750 Krumkill Rd. Albany NY 12203-5976. On the Cover: Otatea glauca L. G. Clark & Cortés growing at the Quail Botanical Garden in Encinitas,CA (See: “A New Species of Otatea from Chiapas, Mexico” by L.G. Clark and G. Cortés R in this issue) Photo: L. G. Clark, 1995. Bamboo Science and Culture: The Journal of the American Bamboo Society 18(1): 1-6 © Copyright 2004 by the American Bamboo Society A New Species of Otatea from Chiapas, Mexico Lynn G. Clark Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020 U. S. A and Gilberto Cortés R. Instituto Tecnológico de Chetumal, Apartado 267, Chetumal, Quintana Roo, México Otatea glauca, a narrow endemic from Chiapas, Mexico, is described as new.
    [Show full text]