Cynodon Dactylon (L.) Pers

Total Page:16

File Type:pdf, Size:1020Kb

Cynodon Dactylon (L.) Pers Cynodon dactylon (L.) Pers. Origin and diffusion Origin: Africa Distribution: tropical and subtropical regions Invasive potential: high Source: msuturfweeds.net Source: aphotoflora.com Source: montshire- dev.newenglandwild.org Introduction It is a clonal, perennial grass from tropical and warm-temperate areas, where it usually inhabits open locations which are subject to frequent disturbances such as grazing, fire, flooding and drought. The genetic of this species is enormously variable and C. Dactylon populations can evolve tolerance to several extreme environmental condition as salinity or high concentrations of heavy metals in soil, leading to highly adapted ecotypes. Commonly used as a lawn grass, it is a potential agricultural weed because it spreads by rhizomes and is difficult to control. Common names: Bermuda grass, devil's grass (English), gramigna comune (Italian) Description Life-form and periodicity: perennial grass Height: it can grow 5 to 45 cm (rarely to 90 or even 130 cm). Roots habit: Fibrous root system. It forms above-ground stolons and below-ground rhizomes simultaneously; the grass creeps along the ground and roots wherever a node touches the ground, forming a dense mat. In drought situations with penetrable soil, roots can grow to over 2 m deep, though most of the root mass is less than 60 cm under the surface. Culm/Stem/Trunk: prostate or ascending stems, slightly flattened, often tinged purple in colour. Fam. Poaceae Description Leaf: short, flat, narrow leaf blades occur on upright stem branches that arise from nodes of stolons and rhizomes. The margin is rough. Rate of transpiration: 4,5 – 14,1 mm/day Reproductive structure: The inflorescence is composed of 3-7, sometimes purplish, spikes in a fingerlike arrangement (digitately), 3 to 10 cm long. The spikelets are 2 to 3 mm long, in two rows. Propagative structure: The fruit is a caryopsis enclosed within glumes. The seed (grain) is very small, 1,5 mm long, oval, straw-colored to orange-red. Development Sexual propagation: by seed. Warm moist conditions promote the production of up to 230 seeds per panicle. Seeds germinate at temperatures above 20°C and germination takes place within the next two weeks. The complete cycle from germination to seed production takes around four months. Asexual propagation: vegetative propagation by stolons and rhizomes fragmentation. Rapid vegetative spread rate. Growth rate: rapid Habitat characteristics Light and water requirement: the plant has high light requirement and prefers an adequate supply of moisture. Soil requirements: there are varieties adapted for a wide range of soils. It prefers well- drained, fertile soils, especially heavier clay and silt soils not subject to flooding, well supplied with lime and high-nitrogen mixed fertilizers. Tolerance/sensitivity: it is extremely drought tolerant and it well adapts to anaerobic conditions (flooding), fire and salt. Shade intolerant. Phytotechnologies applications Bermudagrass, being an highly adaptable species, can evolve heavy metal tolerance; tolerant populations would serve as potential candidates for re-vegetation of wastelands contaminated with Cr, Pb, Zn and Cu (Shahandeh et al., 2000; Shu et al., 2002). Due to its fibrous and extended root system, it significantly enhances the microbial numbers and activity in the rhizosphere, that most likely results in increased biodegradation of the more recalcitrant organic compounds in the oil-contaminated soil and petroleum sludges (Hutchinson et al., 2001; White et al, 2006). Experimental studies -Experiment 1- L. J. Krutz, C. A. Beyrouty, T. J. Gentry, D. C.Wolf, Reference C. M. Reynolds, 2005. Selective enrichment of a pyrene degrader population and enhanced pyrene degradation in Bermuda grass rhizosphere. Biol Fertil Soils 41: 359–364 Contaminants of concern Pyrene Mechanism involved in phytoremediation: Rhizodegradation Phytostabilisation/rhizodegradation/phyt oaccumulation/phytodegradation/phytov olatilization/ hydraulic control/ tolerant Types of microorganisms Pyrene degraders associated with the plant Requirements for No requirements phytoremediation (specific nutrients, addition of oxygen) Fine sandy loam (coarsesilty, mixed, nonacid, thermic Typic Udifluvents), with no known prior exposure to PAHs. Substrate characteristics Particle size: 51% sand, 46% silt, and 3% clay. Nutrient concentrations: P 54 mg kg−1, K 86 mg kg−1, Ca 508 mg/kg and Mg 124 mg/kg. Soil pH (1:1) was 6.1 , and organic matter was 0.5%. Laboratory/field experiment Laboratory experiment (growth chamber) Age of plant at 1st exposure Seed (seed, post-germination, mature) 63 days after planting. Samples were collected 14 Length of experiment through 63 days after planting on a 7-day interval. Phytotechnologies applications Initial contaminant concentration Soils were amended with pyrene at 0 and 500 mg of the substrate /Kg Pyrene reduced root length at ≥28 days, root dry weight at ≥42 days, and shoot dry weight at 63 days Post-experiment plant condition Root growth was more sensitive to pyrene contamination than shoot growth since pyrene translocation is minimal. Contaminant storage sites in the plant and contaminant Not reported in the publication concentrations in tissues (root, shoot, leaves, no storage) -Experiment 2- White Jr, P. M., Wolf, D. C., Thoma, G. J., & Reference Reynolds, C. M. (2006). Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, air, and soil pollution, 169(1-4), 207-220. Polycyclic aromatic hydrocarbons (PAH): naphthalene, phenanthrene, anthracene, Contaminants of concern dibenzothiophene, fluoranthene, pyrene, and chrysenes. Mechanism involved in phytoremediation: Phytostabilisation/rhizodegradation/phyt Rhizodegradation oaccumulation/phytodegradation/phytov olatilization/ hydraulic control/ tolerant Types of microorganisms PAH degraders associated with the plant Inorganic fertilizer (13-13-13) and dolomitic lime at Requirements for rates of 1,600 and 1,450 kg/ha, respectively, were applied to the vegetated fertilized treatments at the phytoremediation beginning of the experiment. Vegetated fertilized (specific nutrients, addition of oxygen) plots received additional applications of 320 kg 33- 0-0/ha after each sampling at 6, 17, and 21 mo. Phytotechnologies application The field study was located in an oil storage/separation facility, where a crude oil-spill contaminated the surrounding soil. The soil was a Sacul fine sandy loam. Initial soil nutrient levels Substrate characteristics were not adequate for optimum plant growth with Mehlich 3 extractable P, K, Ca, and Mg levels of 5, 44, 351, and 44 mg/kg, respectively. The pH and %N were 5.5 and 0.05%, respectively. Laboratory/field experiment Field experiment Age of plant at 1st exposure Mature sprig (seed, post-germination, mature) 21 months; soil samples were collected at the Length of experiment beginning of the study and after 6, 17, and 21 months. The main initial concentrations of naphthalene, Initial contaminant concentration phenanthrene, anthracene, dibenzothiophene, fluoranthene, pyrene, and chrysenes were 7, 0, 0, of the substrate 7, 0, 9, 35 µg/kg, respectively. While there was not a significant treatment effect for the alkylated two-ringed naphthalenes (C1-phenanthrene- anthracenes or C1-dibenzothiophenes) there was enhanced Post-experiment contaminant degradation of the more complex alkylated phenanthrenes- anthracenes and dibenzothiophenes attributable to concentration of the substrate phytoremediation. The degradation pattern was 2-ring > 3-ring > 4-ring and decreased with increased alkylation of larger ringed structures. While initial vegetation establishment at the field site was successful, early plant growth was reduced due to drought conditions. Post-experiment plant condition Root length was negatively correlated to the concentration of C2-, C3-, and C4-phenanthrene/anthracene compounds and C2- and C3-dibenzothiophenes. Contaminant storage sites in the plant and contaminant No storage concentrations in tissues (root, shoot, leaves, no storage) .
Recommended publications
  • Density, Distribution and Habitat Requirements for the Ozark Pocket Gopher (Geomys Bursarius Ozarkensis)
    DENSITY, DISTRIBUTION AND HABITAT REQUIREMENTS FOR THE OZARK POCKET GOPHER (Geomys bursarius ozarkensis) Audrey Allbach Kershen, B. S. Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2004 APPROVED: Kenneth L. Dickson, Co-Major Professor Douglas A. Elrod, Co-Major Professor Thomas L. Beitinger, Committee Member Sandra L. Terrell, Interim Dean of the Robert B. Toulouse School of Graduate Studies Kershen, Audrey Allbach, Density, distribution and habitat requirements for the Ozark pocket gopher (Geomys bursarius ozarkensis). Master of Science (Environmental Science), May 2004, 67 pp., 6 tables, 6 figures, 69 references. A new subspecies of the plains pocket gopher (Geomys bursarius ozarkensis), located in the Ozark Mountains of north central Arkansas, was recently described by Elrod et al. (2000). Current range for G. b. ozarkensis was established, habitat preference was assessed by analyzing soil samples, vegetation and distance to stream and potential pocket gopher habitat within the current range was identified. A census technique was used to estimate a total density of 3, 564 pocket gophers. Through automobile and aerial survey 51 known fields of inhabitance were located extending the range slightly. Soil analyses indicated loamy sand as the most common texture with a slightly acidic pH and a broad range of values for other measured soil parameters and 21 families of vegetation were identified. All inhabited fields were located within an average of 107.2m from waterways and over 1,600 hectares of possible suitable habitat was identified. ACKNOWLEDGMENTS Appreciation is extended to the members of my committee, Dr. Kenneth Dickson, Dr. Douglas Elrod and Dr.
    [Show full text]
  • The Degradation of the Asphalt Alleys by Rhizomes of Herbaceous Plant Species of Couch Grass
    Recent Advances in Energy, Environment and Geology The Degradation of the Asphalt Alleys by Rhizomes of Herbaceous Plant Species of Couch Grass FILIPOV Feodor*1, ROBU Teodor**2 1* Soil sciences Department, Faculty of Agriculture 3, Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine of Iasi, Mihail Sadoveanu Alley, 700490, Iasi, Romania, +40232407450, [email protected] **2Crop science department, Ion Ionescu de la Brad" University of Agricultural Sciences and Veterinary Medicine of Iasi, Mihail Sadoveanu Alley, 700490, Iasi, Romania, +40232407450, teorobu@uaiasi Abstract: - The soil cover of urban areas consists of several soil taxonomic units with significantly altered properties and functions. Soils covered by asphalt or another compact materials (such as concrete materials), also known under the name of or ekranic Technosols [1, 2], have strongly modified properties and perform only part of the specific functions that allow only low biological activity and root growth of some plants species. Soil under asphalted alleys have water retention capacity and allows expansion of the roots of woody plants and grasses. The soil horizons under asphalt pavers can be developed only a small number of plant species that are tolerant of deficient aeration. It is well known that the concentration of oxygen decrease considerable and the concentration of carbon dioxide increase significantly (>10% or even 20%) in the compacted soil layers or in the soil layers under asphalt [3, 4]. Some physical soil properties of such as bulk density, compaction degree, air porosity, total soil porosity are substantially modified. Frequentlly, the values of physical properties of soils covered with asphalt indicate that soils are a strong compacted.
    [Show full text]
  • Alien Plants in Central European River Ports
    A peer-reviewed open-access journal NeoBiota 45: 93–115 (2019) Alien plants in Central European river ports 93 doi: 10.3897/neobiota.45.33866 RESEARCH ARTICLE NeoBiota http://neobiota.pensoft.net Advancing research on alien species and biological invasions Alien plants in Central European river ports Vladimír Jehlík1, Jiří Dostálek2, Tomáš Frantík3 1 V Lesíčku 1, 150 00 Praha 5 – Smíchov, Czech Republic 2 Silva Tarouca Research Institute for Landscape and Ornamental Gardening, CZ-252 43 Průhonice, Czech Republic 3 Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Průhonice, Czech Republic Corresponding author: Jiří Dostálek ([email protected]) Academic editor: Ingo Kowarik | Received 14 February 2019 | Accepted 27 March 2019 | Published 7 May 2019 Citation: Jehlík V, Dostálek J, Frantík T (2019) Alien plants in Central European river ports. NeoBiota 45: 93–115. https://doi.org/10.3897/neobiota.45.33866 Abstract River ports represent a special type of urbanized area. They are considered to be an important driver of biological invasion and biotic homogenization on a global scale, but it remains unclear how and to what degree they serve as a pool of alien species. Data for 54 river ports (16 German, 20 Czech, 7 Hungarian, 3 Slovak, and 8 Austrian ports) on two important Central European waterways (the Elbe-Vltava and Dan- ube waterways) were collected over 40 years. In total, 1056 plant species were found. Of these, 433 were alien, representing 41% of the total number of species found in all the studied Elbe, Vltava, and Danube ports. During comparison of floristic data from literary sources significant differences in the percentage of alien species in ports (50%) and cities (38%) were found.
    [Show full text]
  • Cynodon Dactylon (L.) Pers
    A WEED REPORT from the book Weed Control in Natural Areas in the Western United States This WEED REPORT does not constitute a formal recommendation. When using herbicides always read the label, and when in doubt consult your farm advisor or county agent. This WEED REPORT is an excerpt from the book Weed Control in Natural Areas in the Western United States and is available wholesale through the UC Weed Research & Information Center (wric.ucdavis.edu) or retail through the Western Society of Weed Science (wsweedscience.org) or the California Invasive Species Council (cal-ipc.org). Cynodon dactylon (L.) Pers. Bermudagrass Family: Poaceae Range: Most western states, except Wyoming, North and South Dakota. Habitat: Disturbed sites, gardens, agronomic crops, orchards, turf, landscaped and forestry areas, on most soil types. Typically in areas that are irrigated or receive some warm-season moisture. Tolerates acidic, alkaline, or saline conditions or limited flooding. Aboveground growth does not tolerate freezing temperatures (below -1°C). Optimum growth occurs when daytime temperatures are 35 to 38°C. Grows poorly in shaded conditions. Origin: Native to Africa. Impact: Because of its vigorous creeping habit bermudagrass is a noxious weed in many areas where some moisture is available in the warm season. In wildland areas, it is particularly a problem in riparian sites. Western states listed as Noxious Weed: California, Utah California Invasive Plant Council (Cal-IPC) Inventory: Moderate Invasiveness Bermudagrass is a warm-climate perennial with an extensive system of creeping rhizomes and stolons. Although it typically grows prostrate to the soil, it can grow to 1.5 ft tall, particularly under somewhat shady conditions.
    [Show full text]
  • Habitat Characteristics That Influence Maritime Pocket Gopher Densities
    The Texas Journal of Agriculture and Natural Resources 26:14-24 (2013) 14 © Agricultural Consortium of Texas Habitat Characteristics That Influence Maritime Pocket Gopher Densities Jorge D. Cortez1 Scott E. Henke*,1 Richard Riddle2 1Caesar Kleberg Wildlife Research Institute, MSC 218, Texas A&M University- Kingsville, Kingsville, TX 78363 2United States Navy, 8851 Ocean Drive, Corpus Christi, TX 78419-5226 ABSTRACT The Maritime pocket gopher (Geomys personatus maritimus) is a subspecies of Texas pocket gopher endemic to the Flour Bluff area of coastal southern Texas. Little is known about the habitat and nutritional requirements of this subspecies. The amount and quality of habitat necessary to sustain Maritime pocket gophers has not been studied. Our objectives were to assess the habitat, vegetation, and nutritional parameters available to Maritime pocket gophers at four different levels of gopher mound density. We chose study sites with zero, low (25-50 mounds/ha), intermediate (75-150 mounds/ha), and high (>200 mounds/ha) gopher mound densities. Vegetation and soil samples were collected using 0.25 m2 quadrats; vegetation was divided into above- and below-ground biomass for analysis. Maritime pocket gophers avoided areas of clay soils with high levels of calcium, magnesium, sulfur, and sodium compounds. A direct relationship existed between gopher activity within an area and vegetation biomass. However, nutritional quality of an area did not appear to be a determining factor for the presence of Maritime pocket gophers. KEY WORDS: Population density, Geomys personatus maritimus, habitat selection, Maritime pocket gopher, preference INTRODUCTION The Maritime pocket gopher (MPG, Geomys personatus maritimus) is endemic to the coastal areas of Kleberg and Nueces counties of southern Texas, between Baffin Bay and Flour Bluff (Williams and Genoways 1981).
    [Show full text]
  • Economic Geasses
    Historic, archived document Do not assume content reflects current scientific knowledge, policies, or practices. ^Wri ""' BULLETIN NO. 14. Agros.34. •|U. S. DEPARTMENT OF AGRICULTURE. ';i DIVISION OF AGROSTOLOGY. [Grass and Forage Plant Investigations.] ECONOMIC GEASSES. BY F. LAMSON-SCRIBNER, AGROSTOLOGIST. WASHINGTON: GOVERNMENT PRINTING OFFICE* BULLETIN NO. 14. Agros. 34. U. S. DEPARTMENT OF AGRICULTURE. DIVISION OF AGROSTOLOGY. [Grata and Forage Plant luvcntigatioiiM.] ECONOMIC GKASSES. BY F. LAMSON-SCRIBNER, AGKOSTOLOGIST. WASHINGTON: GOVERNMENT PRINTING OFFICE. 1898. LETTER OF TRANSMITTAL. U. S. DEPARTMENT OF AGRICULTURE, DIVISION OF AGROSTOLOGY, Washington, D. (7., June 29,1898. SIR : I have the honor to present and recommend for publication as Bulletin No. 14 of this Division manuscript containing brief descriptions of the more important economic grasses of this country or those which have been introduced because possessing some merit. This publication it is believed will afford a ready answer to the usual inquiries respecting a large number of our grasses. Much of the matter here presented is taken from Bulletin No. 3 of this Division, but owing to the fact that that bulletin exceeded 100 pages the edition published was limited to 1,000 copies, and consequently was very quickly exhausted. The matter has here been condensed in order that a larger edition may be published to meet the demands of correspondents. Bespectfully, F. LAMSON-SCRIBNER, Agrostologiot. Hon. JAMES WILSON, Secretary of Agriculture, CONTENTS. Page. Descriptions 7 Grasses for special soils or uses 77 Hay grasses 77 Pasture grasses 77 Lawn grasses 77 Grasses for wet lands 77 Grasses for embankments 78 Grasses for holding shifting sands -,, 78 ILLUSTRATIONS.
    [Show full text]
  • FULL ACCOUNT FOR: Arundo Donax Global Invasive Species Database
    FULL ACCOUNT FOR: Arundo donax Arundo donax System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Liliopsida Cyperales Poaceae Common name bamboo reed (English), donax cane (English), kaho (Tongan, Tonga Islands), carrizo (Spanish), canne de Provence (French), fiso palagi (Samoan), grand roseau (French), kaho folalahi (Tongan, Tonga Islands), Spaanse-riet (English), cana-do-brejo (Portuguese, Brazil), caña (Spanish), caña de techar (Spanish), caña de la reina (Spanish), caña de Castilla (Spanish), wild cane (English), canno- do-reino (Portuguese, Brazil), capim-plumoso (Portuguese, Brazil), cana- do-reino (Portuguese, Brazil), Spanish reed (English), ngasau ni vavalangi (Fijian, Fiji Islands), Spanish cane (English), carrizo grande (Spanish), E-grass (English), giant cane (English), la canne de Provence (English, French- New Caledonia), Spanisches Rohr (German), narkhat (Hindi), arundo grass (English), cane (English), cow cane (English), giant reed (English), Pfahlrohr (German), reed grass (English), river cane (English), caña común (Spanish) Synonym Arundo donax , var. versicolor (P. Mill.) Stokes Arundo versicolor , P. Mill. Arundo scriptoria , L. Aira bengalensis , (Retz.) J.F. Gmel. Amphidonax bengalensis , (Retz.) Nees ex Steud. Amphidonax bengalensis , Roxb. ex Nees. Amphidonax bifaria , (Retz.) Nees ex Steud. Arundo aegyptiaca , hort. ex Vilm. Arundo bambusifolia , Hook. f. Arundo bengalensis , Retz. Arundo bifaria , Retz. Arundo coleotricha , (Hack.) Honda. Arundo donax , var. coleotricha Hack. Arundo donax , var. procerior Kunth. Arundo glauca , Bubani. Arundo latifolia , Salisb. Arundo longifolia , Salisb. ex Hook. f. Arundo sativa , Lam. Arundo donax , var. lanceolata Döll. Cynodon donax , (L.) Raspail. Donax arundinaceus , P. Beauv. Donax bengalensis , (Retz.) P. Beauv. Donax bifarius , (Retz.) Trin. ex Spreng. Donax donax , (L.) Asch. and Graebn. Arundo donax , var. angustifolia Döll.
    [Show full text]
  • Giant Reed (Arundo Donax) Invasion, Biological Invasions 5: 167–177
    Invasive plant risk assessment Biosecurity Queensland Agriculture Fisheries and Department of Giant reed Arundo donax Steve Csurhes First published 2009 Updated 2016 © State of Queensland, 2016. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. Note: Some content in this publication may have different licence terms as indicated. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/ deed.en" http://creativecommons.org/licenses/by/3.0/au/deed.en Front cover: Arundo donax in Brisbane Photo: Sheldon Navie Invasive plant risk assessment: Giant reed Arundo donax 2 Contents Summary 3 Introduction 4 Identity and taxonomy 4 Taxonomy 4 Description 5 Reproduction and dispersal 8 Origin and distribution 8 Status in Australia and Queensland 9 Preferred habitats 11 History as a weed elsewhere 12 Uses 13 Pest potential in Queensland 14 Control 15 References 16 Invasive weed risk assessment: Giant reed Arundo donax 2 Summary Arundo donax (giant reed) is a tall perennial grass with an obscure origin in India, tropical Asia or the Mediterranean region. It has been cultivated for thousands of years for a variety of purposes. More recently, it has been promoted as a new source of quick-growing ‘biofuel’ (often referred to as ‘Adx’). A. donax has escaped cultivation and naturalised in numerous countries. It is a serious pest in the United States, Mexico and South Africa.
    [Show full text]
  • On the Flora of Australia
    L'IBRARY'OF THE GRAY HERBARIUM HARVARD UNIVERSITY. BOUGHT. THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEING AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. r^/f'ORElGN&ENGLISH' <^ . 1859. i^\BOOKSELLERS^.- PR 2G 1.912 Gray Herbarium Harvard University ON THE FLORA OF AUSTRALIA ITS ORIGIN, AFFINITIES, AND DISTRIBUTION. I I / ON THE FLORA OF AUSTRALIA, ITS ORIGIN, AFFINITIES, AND DISTRIBUTION; BEIKG AN TO THE FLORA OF TASMANIA. BY JOSEPH DALTON HOOKER, M.D., F.R.S., L.S., & G.S.; LATE BOTANIST TO THE ANTARCTIC EXPEDITION. Reprinted from the JJotany of the Antarctic Expedition, Part III., Flora of Tasmania, Vol. I. LONDON : LOVELL REEVE, HENRIETTA STREET, COVENT GARDEN. 1859. PRINTED BY JOHN EDWARD TAYLOR, LITTLE QUEEN STREET, LINCOLN'S INN FIELDS. CONTENTS OF THE INTRODUCTORY ESSAY. § i. Preliminary Remarks. PAGE Sources of Information, published and unpublished, materials, collections, etc i Object of arranging them to discuss the Origin, Peculiarities, and Distribution of the Vegetation of Australia, and to regard them in relation to the views of Darwin and others, on the Creation of Species .... iii^ § 2. On the General Phenomena of Variation in the Vegetable Kingdom. All plants more or less variable ; rate, extent, and nature of variability ; differences of amount and degree in different natural groups of plants v Parallelism of features of variability in different groups of individuals (varieties, species, genera, etc.), and in wild and cultivated plants vii Variation a centrifugal force ; the tendency in the progeny of varieties being to depart further from their original types, not to revert to them viii Effects of cross-impregnation and hybridization ultimately favourable to permanence of specific character x Darwin's Theory of Natural Selection ; — its effects on variable organisms under varying conditions is to give a temporary stability to races, species, genera, etc xi § 3.
    [Show full text]
  • GRASSES AS INVASIVE SPECIES Clay Antieau, MS, Phc Botanist, Horticulturist, Environmental Educator
    GRASSES AS INVASIVE SPECIES Clay Antieau, MS, PhC Botanist, Horticulturist, Environmental Educator WFCA Eighth Western Native Plant Conference November 2019 THE GRASS FAMILY (Poaceae) • Genera : 700 – 800 • Species: 7,500 – 11,000 (4th largest) • Comparable in size to Aves (Birds); ~ twice as large as Mammalia; half the size of Orchid or Aster families • First appeared in pollen record 55 – 70 mya (Paleocene) • Only angiosperm family found natively on all seven continents (Deschampsia Antarctica) • Includes cereal crops (forage, food, sugar, beer...); many ecological dominants • All major civilizations developed around cultivated grasses (Asia to Middle East to New World) Among the World’s Worst Invasives: Grasses • Imperata cylindrica (cogon grass) • Phragmites australis (common reed) • Phalaris arundinacea (reed canarygrass) • Sorghum halepense (Johnson grass) • Spartina species and hybrids (cordgrasses) • Cortaderia species and hybrids (pampas grass) • Arundo donax (giant reed) • Microstegium vimineum (Japanese stilt grass) • Bromus tectorum (cheat) • Taeniatherum caput-medusae (medusahead) • Cynodon dactylon (Bermuda grass) • Neyraudia reynaudiana (silk reed) Important North American Invasive Grasses (adapted from www.fs.fed.us/database/feis) Aegilops cylindricus (goat grass) Eragrostis curvula (weeping lovegrass) Aegilops triuncialis (barbed goat grass) Eragrostis lehmanniana (Lehmann love Agropyron desertorum (desert wheat grass) grass) Elytrigia repens (quack grass) Agropyron cristatum (crested wheat Festuca arundinacea (tall fescue)
    [Show full text]
  • Screening of Salt-Tolerance Potential of Some Native Forage Grasses From
    Tropical Grasslands-Forrajes Tropicales (2017) Vol. 5(3):129–142 129 DOI: 10.17138/TGFT(5)129-142 Research Paper Screening of salt-tolerance potential of some native forage grasses from the eastern part of Terai-Duar grasslands in India Evaluación de la tolerancia a la sal de algunas gramíneas forrajeras nativas de la parte oriental de los Terai-Duar Grasslands en la India SWARNENDU ROY1,2 AND USHA CHAKRABORTY1 1Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Siliguri, Darjeeling, West Bengal, India. www.nbu.ac.in 2Department of Botany, Kurseong College, Dow Hill Road, Kurseong, Darjeeling, West Bengal, India. www.kurseongcollege.net Presently: Molecular & Analytical Biochemistry Laboratory, Department of Botany, University of Gour Banga, Malda, West Bengal, India. www.ugb.ac.in Abstract The salt tolerance of 12 native forage grasses from the eastern part of Terai-Duar grasslands was assessed using a rapid method of leaf disc senescence bioassay. Samples of these grasses were grown in untreated water as well as 100 and 200 mM NaCl solutions for periods of 3, 6 and 9 days. Discs of fresh leaf were then placed in untreated water as well as in 100 and 200 mM NaCl solutions for 96 hours. Quantitative effects were measured as the effects on chlorophyll concentration in leaves in response to exposure to the varying solutions. From these results, the salt sensitivity index (SSI) of the individual grasses was determined. The SSI values indicated that Imperata cylindrica, Digitaria ciliaris and Cynodon dactylon were most salt-tolerant of all grasses tested. Further characterization of the grasses was done by observing the changes in 6 biomarkers for salinity tolerance: relative water content, total sugar concentration, proline concentration, electrolyte leakage, membrane lipid peroxidation and H2O2 concentration following exposure to 100 and 200 mM NaCl concentrations for 3, 6 and 9 days.
    [Show full text]
  • ISTA Accreditation Scope: Revision of the Crop Groups
    INTERNATIONAL SEED TESTING ASSOCIATION (ISTA) Secretariat, Zürichstrasse 50, 8303 Bassersdorf, CH-Switzerland Phone: +41-44-838 60 00, Fax: +41-44-838 60 01, Email: [email protected], http://www.seedtest.org ACCREDITATION ISTA Accreditation Scope: Revision of the Crop Groups Rita Zecchinelli, Florina Palada THE EXECUTIVE COMMITTEE (ECOM) ACCREDITATION WORKING GROUP (AWG) formed by Steve Jones (ISTA President), Rita Zecchinelli (Chair), Berta Killermann, Valerie Cockerell, Sylvie Ducournau, Andreas Wais and Florina Palada, has worked to revise and improve the table of crop groups that serves as a reference in the framework of ISTA accreditation. The crop groups represent an important criterion for defining the scope of accreditation for laboratories. The revision required the following activities: - Table 2C Parts 1, 2 and 3 of the ISTA Rules were carefully checked versus the crop groups table. - A few missing species were added in the crop groups table (the Bulking and Sampling, Purity, Germination and the Forest Tree and Shrub Seed TCOM chairs were consulted). - The scientific names of the genera were aligned to the revised ISTA List of Stabilised Plant Names, 7th edition. - All genera were listed in groups 7 (forest species) and 8 (flower species). (In the previous version of the table there was just a reference to the ISTA Rules Table 2C, Part 2 or 3.) - In some cases, a genus was added in more than one crop group (e.g. genera with species that can be cultivated for different purposes). - The subgroups within the groups were removed, as the ISTA accreditation is granted for each crop group and not for subgroups.
    [Show full text]