Hematogones: Fiction Or Reality

Total Page:16

File Type:pdf, Size:1020Kb

Hematogones: Fiction Or Reality HEMATOGONES: FICTION OR REALITY Alberto Orfao Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), University of Salamanca, Salamanca, Spain The term hematogones has been long used acquisition of the most specific pan-B cell marker: to describe benign lymphoid precursors which CD19 at the stage of a pre-pre-B cell (pre-B I cell). typically appear at increased numbers in the bone When maturing these cells decrease their light marrow of children after they received chemother- scatter properties -low forward (FSC) and sideward apy, although they can be also observed in other light scatter (SSC)- and show high expression of reactive conditions. From both a morphological both CD10 and CD38 (pre-pre-B cell). Then, these and immunophenotypical point of view hemato- early pre-B cell precursors progressively increase gones are rather similar to acute lymphoblastic expression of CD45, they become CD20+ and leukemia (ALL) blast cells. Because of their great down-regulate (from strong to dim) CD10 expres- morphological, and also immunophenotypic simi- sion leading to a CyIgm+ pre-B cell (pre-B II cell). larities with ALL blasts, hematogones may cause As soon as the pre-B cell becomes CD10low/ diagnostic problems. From the biological point CD20+, expression of SmIgM with either SmIgk of view, the expansion of hematogones typically or SmIgl light chains becomes detectable to reach reflects an increased production of B-cells which very high levels in the transition from a pre-B cell more commonly occurs in children bone marrow, to an immature B-lymphocyte. Immature (also several months (e.g. 2 to 5) after initiation of che- termed transitional) B-lymphocytes undergo up- motherapy. Although the precise clinical signifi- regulation of CD5 and CD23, and down regula- cance of expanded hematogones still remains to be tion of both CD10 and CD38 as soon as they fully understood, biologic characterization of these undergo maturation to a mature naïve smIgM+, cells still remains incomplete. Despite this, current SmIgD+ B-lymphocyte; both immature and naïve knowledge about the unique immunophenotypic B-lymphocytes can already be detected in steady- and molecular features of hematogones versus state peripheral blood, while more immature B-cell blast cells allows their discrimination in human precursors are normally undetectable in peripheral bone marrow. blood and can only be seen in stressed conditions (e.g. after chemotherapy or Rituximab ttreatment). From the phenotypic point of view, hemato- gones usually correspond to B-cell precursors Such detailed knowledge about the immu- at relatively early stages of maturation. Commit- nophenotypic sequence of expression of mul- ment of hematopoietic precursors into the B-cell tiple B-cell precursor associated proteins, facili- lineage is first identified by coexpression on a tates the identification of the presence of aber- CD34+ hematopoietic precursor of the terminal rant phenotypes involving B-cell precursor ALL deoxynucleotidyl transferase (Tdt) enzyme involved blasts. Accordingly, blasts and hematogones can in immunoglobulin (Ig) gene rearrangements and be currently distinguished because of the aber- the CD79a B-cell receptor molecule, in the cell rant expression of markers typical of other (e.g. nuclei (n) and cytoplasm (Cy), respectively. Almost T or myeloid) cell lineages –cross-lineage antigen in parallel this early B-cell precursor (pro-B cell) expression-, over- or underexpression of individual also shows expression of CD22, CD10 and CD81 cell surface proteins, and asynchronous expression on the cell surface membrane (Sm), just prior to of maturation-associated proteins –asynchronous 68 XXXVII. Ulusal Hematoloji Kongresi antigen expression-. Examples of such aberrant multiparametric flow cytometry approaches, it can phenotypes include: i) coexpression of CD13, also be clearly demonstrated that regenerating CD33, CD66 and/or CD15 and CD65, ii) overex- hematogones are immunophenotypically similar to pression of CD10 and CD58 and underexpression normal B-cell precursors at early stages of matura- of CD45 and/or Cy/SmIg, and, iii) asynchronous tion, although they are increased in regenerating expression of CD38low, CD20high on CD34+, childhood bone marrow samples typically between CD19+ cells. In recent years, such aberrant phe- one and five months after induction chemotherapy. notypes have been shown to allow the detection This will have relevant implications in the manage- of aberrant phenotypes and distinction between ment of ALL patients, through improved and more normal and leukemic B-cell precursors in virtually efficient flow cytometry-based assessment of mini- every all patients with B-cell precursor ALL (BCP- mal residual disease (MRD) levels in childhood and ALL), studied at diagnosis. Despite this, usage of adult bone marrow, after therapy. conventional approaches based on 4-color stain- ings, is frequently associated with a limited sen- In summary, it can be concluded that despite sitivity of detection of blast cells when assessed in the great similarities between hematogones and bone marrow samples which contain high numbers leukemic ALL blasts, current multicolour, multipa- of hematogones. Usage of >8-color stainings in rametric flow cytometry data analysis approaches, combination with new multivariate data analysis provide a reliable and reproducible tool for effi- approaches appears to overcome such limited sen- cient discrimination between both types of cells in sitivity and limitations. Based on these multicolour, human (childhood and adult) bone marrow. 19-22 Ekim 2011, Ankara 69.
Recommended publications
  • PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than Cd79a and Selective Association with T(8;21)-Acute Myelogenous Leukemia
    [CANCER RESEARCH 64, 7399–7404, October 15, 2004] PAX5 Expression in Acute Leukemias: Higher B-Lineage Specificity Than CD79a and Selective Association with t(8;21)-Acute Myelogenous Leukemia Enrico Tiacci,1 Stefano Pileri,2 Annette Orleth,1 Roberta Pacini,1 Alessia Tabarrini,1 Federica Frenguelli,1 Arcangelo Liso,3 Daniela Diverio,4 Francesco Lo-Coco,5 and Brunangelo Falini1 1Institutes of Hematology and Internal Medicine, University of Perugia, Perugia, Italy; 2Unit of Hematopathology, University of Bologne, Bologne, Italy; 3Section of Hematology, University of Foggia, Foggia, Italy; 4Department of Cellular Biotechnologies and Hematology, University La Sapienza of Rome, Rome, Italy; and 5Department of Biopathology, University Tor Vergata of Rome, Rome, Italy ABSTRACT (13, 16). PAX5 expression also occurs in the adult testis and in the mesencephalon and spinal cord during embryogenesis (17), suggesting an The transcription factor PAX5 plays a key role in the commitment of important role in the development of these tissues. hematopoietic precursors to the B-cell lineage, but its expression in acute Rearrangement of the PAX5 gene through reciprocal chromosomal leukemias has not been thoroughly investigated. Hereby, we analyzed routine biopsies from 360 acute leukemias of lymphoid (ALLs) and mye- translocations has been described in different types of B-cell malig- loid (AMLs) origin with a specific anti-PAX5 monoclonal antibody. Blasts nancies (18–23), and, more recently, PAX5 has also been shown to be from 150 B-cell ALLs showed strong PAX5 nuclear expression, paralleling targeted by aberrant hypermutation in Ͼ50% of diffuse large B-cell that of CD79a in the cytoplasm. Conversely, PAX5 was not detected in 50 lymphomas (24).
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • CD Markers Are Routinely Used for the Immunophenotyping of Cells
    ptglab.com 1 CD MARKER ANTIBODIES www.ptglab.com Introduction The cluster of differentiation (abbreviated as CD) is a protocol used for the identification and investigation of cell surface molecules. So-called CD markers are routinely used for the immunophenotyping of cells. Despite this use, they are not limited to roles in the immune system and perform a variety of roles in cell differentiation, adhesion, migration, blood clotting, gamete fertilization, amino acid transport and apoptosis, among many others. As such, Proteintech’s mini catalog featuring its antibodies targeting CD markers is applicable to a wide range of research disciplines. PRODUCT FOCUS PECAM1 Platelet endothelial cell adhesion of blood vessels – making up a large portion molecule-1 (PECAM1), also known as cluster of its intracellular junctions. PECAM-1 is also CD Number of differentiation 31 (CD31), is a member of present on the surface of hematopoietic the immunoglobulin gene superfamily of cell cells and immune cells including platelets, CD31 adhesion molecules. It is highly expressed monocytes, neutrophils, natural killer cells, on the surface of the endothelium – the thin megakaryocytes and some types of T-cell. Catalog Number layer of endothelial cells lining the interior 11256-1-AP Type Rabbit Polyclonal Applications ELISA, FC, IF, IHC, IP, WB 16 Publications Immunohistochemical of paraffin-embedded Figure 1: Immunofluorescence staining human hepatocirrhosis using PECAM1, CD31 of PECAM1 (11256-1-AP), Alexa 488 goat antibody (11265-1-AP) at a dilution of 1:50 anti-rabbit (green), and smooth muscle KD/KO Validated (40x objective). alpha-actin (red), courtesy of Nicola Smart. PECAM1: Customer Testimonial Nicola Smart, a cardiovascular researcher “As you can see [the immunostaining] is and a group leader at the University of extremely clean and specific [and] displays Oxford, has said of the PECAM1 antibody strong intercellular junction expression, (11265-1-AP) that it “worked beautifully as expected for a cell adhesion molecule.” on every occasion I’ve tried it.” Proteintech thanks Dr.
    [Show full text]
  • Recent Advances in Diagnosis, Prognosis and Biology of Small B Cell Lymphomas
    Turk J Hematol 2006; 23:173-181 REVIEW ARTICLE © Turkish Society of Hematology Recent advances in diagnosis, prognosis and biology of small B cell lymphomas Gülşah Kaygusuz, Işınsu Kuzu Department of Pathology, Ankara University, Faculty of Medicine, Ankara, Turkey [email protected] INTRODUCTION eral blood, bone marrow, and/or lymph nodes. Small B cell lymphomas are mature B cell lym- The term SLL is used for non-leukemic cases phoid neoplasms arising from the various differ- having the morphology and immunophenotype entiation stages of B cell development. Although of CLL. Many cases of CLL/SLL are thought to in the World Health Organization (WHO) classi- correspond to the recirculating naïve B cells. fication of lymphomas, they are described based Cases that show Ig gene variable region muta- on their morphology, phenotype and genetics, the tions may correspond to a subset of memory B differential diagnosis can be difficult because of cells [1]. some overlapping characteristics. Differences ob- served in the clinical outcome of cases represent- The nodal presentation of CLL/SLL is char- ing the same entity have also made it difficult to acterized by the diffuse infiltration of small lym- understand fully the biology of the small B cell phocytes admixed with prolymphocytes and lymphomas, but interpretation of the results of para-immunoblasts, giving rise to proliferation molecular profiling studies has helped patholo- centers or pseudofollicles. CLL/SLL cells are gists and clinicians in this regard. Some specific small lymphocytes with round nucleus, clumped genetic changes defined on the neoplastic B cells chromatin and scant cytoplasm. Nucleoli are have revealed the route of lymphomagenesis.
    [Show full text]
  • Atpase, Na+/K+ Transporting, Alpha 3 Polypeptide Homologous to 3'UTR
    HUGO ID Name Nalm-6 TOM-1 Reh Karpas-422 DoHH -2 SU-DHL-5 Namalwa DG-75 Ramos Raji BEL EHEB BONNA-12 L-428 DEL BCP-1 BC-3 BCBL-1 JSC-1 PEL-SY HBL-6 DS-1 RPMI-8226 NCI-H929 L-363 SK-MM-2 ATP1A3 ATPase, Na+/K+ transporting, alpha 3 polypeptide CD24 homologous to 3'UTR of human CD24 gene ABCC5 multidrug resistance-associated protein (MRP5) CD72 CD72 antigen TCL1A Tcell leukemia/lymphoma 1 ITGB2 Integrin, beta 2 (antigen CD18 (p95)) ? nuclear ribonucleoprotein particle (hnRNP) SGT1 suppressor of G2 allele of skp1 homolog DNMT 1 DNA (cytosine-5-)-methyltransferase 1 GALE UDP-Galactose 4 epimerase (GALE) HADHSC L-3-hydroxyacyl-CoA dehydrogenase LIG4 DNA ligase IV LIG1 Ligase I, DNA, ATP-dependent CEBPG CCAA T/enhancer binding protein (C/EBP), gamma DCK Deoxycytidine kinase TCEA1 TRANSCRIPTION ELONGATION FACTOR S-II TCN 1 TRANSCOBALAMIN I PRECURSOR POLA2 DNA polymerase alpha subunit CCNG2 cyclin G2 RNPC1 Finkel-Biskis-Reilly murine sarcoma virus; Human seb4D RNPC1 Finkel-Biskis-Reilly murine sarcoma virus; Human seb4D DGKD Diacylglycerol kinase delta KIAA0220 Polycystic kidney disease protein 1 KIAA0220 calcium-dependent group X phospholipase A2 KIAA0220 calcium-dependent group X phospholipase A2 ALDH5A1 NAD+-dependent succinate-semialdehyde dehydrogenase CCNG2 Polycystic kidney disease 1 (autosomal dominant) PDCD4 nuclear antigen H731-like protein SSH3BP1 eps8 binding protein e3B1 MAP4K2 B lymphocyte serine/threonine protein kinase (GC kinase) MAPRE2 novel T-cell activation protein ZNFN1A Ikaros/LyF-1 homolog (hIk-1) FLJ22624 clone 23799 KIAA0355
    [Show full text]
  • CD79A Polyclonal ANTIBODY
    For Research Use Only CD79A Polyclonal ANTIBODY www.ptglab.com Catalog Number:22349-1-AP Basic Information Catalog Number: GenBank Accession Number: Recommended Dilutions: 22349-1-AP BC113733 WB 1:500-1:2000 Size: GeneID (NCBI): IHC 1:20-1:200 45 μg/150 μl 973 Source: Full Name: Rabbit CD79a molecule, immunoglobulin-associated Isotype: alpha IgG Calculated MW: Purification Method: 226aa,25 kDa Antigen affinity purification Observed MW: Immunogen Catalog Number: 38-42 kDa AG17924 Applications Tested Applications: Positive Controls: IHC, WB, ELISA WB : Daudi cells; Raji cells, Ramos cells Species Specificity: IHC : human tonsillitis tissue; human Note: suggested angen retrieval with TE buffer pH 9.0; (*) Alternavely, angen retrieval may be performed with citrate buffer pH 6.0 CD79A, also named as B-cell antigen receptor complex-associated protein alpha chain or MB-1 membrane glycoprotein, is a 226 amino acid protein, which Background Information contains one ITAM domain and one Ig-like C2-type (immunoglobulin-like) domain. CD79A is expressed in B cell and localizes in the cell membrane. CD79A is required in cooperation with CD79B for initiation of the signal transduction cascade activated by binding of antigen to the B-cell antigen receptor complex (BCR) which leads to internalization of the complex, trafficking to late endosomes and antigen presentation. CD79A is also required for BCR surface expression and for efficient differentiation of pro- and pre-B-cells. Notable Publications Author Pubmed ID Journal Application Storage: Storage Store at -20ºC. Stable for one year after shipment. Storage Buffer: PBS with 0.02% sodium azide and 50% glycerol pH 7.3.
    [Show full text]
  • Genetic Defects in B-Cell Development and Their Clinical Consequences H Abolhassani,1,2 N Parvaneh,1 N Rezaei,1 L Hammarström,2 a Aghamohammadi1
    REVIEWS Genetic Defects in B-Cell Development and Their Clinical Consequences H Abolhassani,1,2 N Parvaneh,1 N Rezaei,1 L Hammarström,2 A Aghamohammadi1 1Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran 2Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden n Abstract Expression of selected genes in hematopoietic stem cells has been identified as a regulator of differentiation of B cells in the liver and bone marrow. Moreover, naïve B cells expressing surface immunoglobulin need other types of genes for antigen-dependent development in secondary lymphoid organs. Many advanced molecular mechanisms underlying primary antibody deficiencies in humans have been described. We provide an overview of the mutations in genes known to be involved in B-cell development and their clinical consequences. Key words: Genetic disorder. B-cell development. Primary antibody deficiencies. Clinical phenotypes. n Resumen Se ha identificado la expresión de genes seleccionados en las células pluripotenciales de médula ósea como reguladores de la diferenciación de las células B en el hígado y en médula ósea. Sin embargo, las células B naïve que expresan inmunoglubulinas de superficie, necesitan otros tipos de genes para su desarrollo en los órganos linfoides secundarios dependienteS de antígeno. Se han descrito muchos mecanismos moleculares avanzados que subrayan las inmunodeficiencias en humanos y esta revisión constituye una visión general de la mutación en todos los genes conocidos involucrados en el desarrollo de las células B y sus consecuencias clínicas. Palabras clave: Alteraciones genéticas. Desarrollo de las células B.
    [Show full text]
  • Interleukin-7 and Immunosenescence
    Hindawi Journal of Immunology Research Volume 2017, Article ID 4807853, 17 pages https://doi.org/10.1155/2017/4807853 Review Article Interleukin-7 and Immunosenescence Vanloan Nguyen, Andrew Mendelsohn, and James W. Larrick Panorama Research Institute, 1230 Bordeaux Drive, Sunnyvale, CA 94089, USA Correspondence should be addressed to Vanloan Nguyen; [email protected] Received 6 December 2016; Revised 1 February 2017; Accepted 19 February 2017; Published 6 April 2017 Academic Editor: Alessandra Santos Copyright © 2017 Vanloan Nguyen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The age of an individual is an important, independent risk factor for many of the most common diseases afflicting modern societies. Interleukin-7 (IL-7) plays a central, critical role in the homeostasis of the immune system. Recent studies support a critical role for IL-7 in the maintenance of a vigorous healthspan. We describe the role of IL-7 and its receptor in immunosenescence, the aging of the immune system. An understanding of the role that IL-7 plays in aging may permit parsimonious preventative or therapeutic solutions for diverse conditions. Perhaps IL-7 might be used to “tune” the immune system to optimize human healthspan and longevity. 1. Introduction To understand the IL-7 network, we begin with a descrip- tion of IL-7, the IL-7 receptor, and downstream signal trans- One’s chronological age is an important, independent risk duction. We document how aging affects various parts of factor for many of the most common diseases afflicting the the immune system, B cells, T cells, and so forth, in an effort aging population of the world.
    [Show full text]
  • Gene Expression Profiling of Lymph Node Sub-Capsular Sinus Macrophages in Cancer
    ORIGINAL RESEARCH published: 08 June 2021 doi: 10.3389/fimmu.2021.672123 Gene Expression Profiling of Lymph Node Sub-Capsular Sinus Macrophages in Cancer † † Danilo Pellin 1 , Natalie Claudio 2,3 , Zihan Guo 2,4, Tahereh Ziglari 2 and Ferdinando Pucci 2,3* 1 Gene Therapy Program, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States, 2 Department of Otolaryngology – Head and Neck Surgery, Oregon Health and Science University, Portland, OR, United States, 3 Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, OR, United States, 4 Program in Cancer Biology, Oregon Health and Science University, Portland, OR, United States Lymph nodes are key lymphoid organs collecting lymph fluid and migratory cells from the tissue area they survey. When cancerous cells arise within a tissue, the sentinel lymph node is the first immunological organ to mount an immune response. Sub-capsular sinus Edited by: Karine Rachel Prudent Breckpot, macrophages (SSMs) are specialized macrophages residing in the lymph nodes that play Vrije University Brussel, Belgium important roles as gatekeepers against particulate antigenic material. In the context of Reviewed by: cancer, SSMs capture tumor-derived extracellular vesicles (tEVs), a form of particulate Ioannis S. Pateras, National and Kapodistrian University of antigen released in high amounts by tumor cells. We and others have recently Athens, Greece demonstrated that SSMs possess anti-tumor activity because in their absence tumors Antonio Giovanni Solimando, progress faster. A comprehensive profiling of SSMs represents an important first step to University of Bari Aldo Moro, Italy Rohit Singh, identify the cellular and molecular mechanisms responsible for SSM anti-tumor activity.
    [Show full text]
  • Burkitt Lymphoma
    Board Review- Part 2B: Malignant HemePath 4/25/2018 Small Lymphocytic Lymphoma SLL: epidemiology SLL: 6.7% of non-Hodgkin lymphoma. Majority of patients >50 y/o (median 65). M:F ratio 2:1. Morphology • Lymph nodes – Effacement of architecture, pseudofollicular pattern of pale areas of large cells in a dark background of small cells. Occasionally is interfollicular. – The predominant cell is a small lymphocyte with clumped chromatin, round nucleus, ocassionally a nucleolus. – Mitotic activity usually very low. Morphology - Pseudofollicles or proliferation centers contain small, medium and large cells. - Prolymphocytes are medium-sized with dispersed chromatin and small nucleoli. - Paraimmunoblasts are medium to large cells with round to oval nuclei, dispersed chromatin, central eosinophilic nucleoli and slightly basophilic cytoplasm. Small Lymphocytic Lymphoma Pseudo-follicle Small Lymphocytic Lymphoma Prolymphocyte Paraimmunoblast Immunophenotype Express weak or dim surface IgM or IgM and IgD, CD5, CD19, CD20 (weak), CD22 (weak), CD79a, CD23, CD43, CD11c (weak). CD10-, cyclin D1-. FMC7 and CD79b negative or weak. Immunophenotype Cases with unmutated Ig variable region genes are reported to be CD38+ and ZAP70+. Immunophenotype Cytoplasmic Ig is detectable in about 5% of the cases. CD5 and CD23 are useful in distinguishing from MCL. Rarely CLL is CD23-. Rarely MCL is CD23+. Perform Cyclin D1 in CD5+/CD23- cases. Some cases with typical CLL morphology may have a different profile (CD5- or CD23-, FMC7+ or CD11c+, or strong sIg, or CD79b+). Genetics Antigen receptor genes: Ig heavy and light chain genes are rearranged. Suggestion of 2 distinct types of SLL defined by the mutational status of the IgVH genes: 40-50% show no somatic mutations of their variable region genes (naïve cells, unmutated).
    [Show full text]
  • LECTURE 12 B Lymphocytes Surface Receptors and Activation
    LECTURE: 12 Title: B-LYMPHOCYTES SURFACE RECEPTORS AND THEIR ACTIVATION LEARNING OBJECTIVES: The student should be able to: • Identify the percentage of B-lymphocytes in comparison to other circulating lymphoid cells. • Distinguish B-lymphocytes in regarding to their cell surface receptors. • Identify the definitive B-cell surface markers. • Determine to which type of immune receptor families this B-cell definitive marker belongs? • Identify the surface immunoglobulin isotypes (antigen-receptors). • Describe the B-cell receptor complex (BCR). • Enumerate some B-cell markers, and indicate their importance in immunity. • Explain the reason that, CD5+ B-lymphocytes are considered as a distinctive Cell subset. • Indicate which B-cell marker (s), enhance B-cell phagocytosis. • Enumerate some of the B-cell receptors which are important in B-cell- cooperations. • Explain the serological technique used to visualize the immunoglobulins in the cytoplasm of the plasma cell. • Describe the mechanism of signal transduction is performed by BCRs. LECTURE REFRENCE: 1. TEXTBOOK: ROITT, BROSTOFF, MALE IMMUNOLOGY. 6th edition. Chapter 2. pp. 29-30 2. TEXTBOOK: ABUL K. ABBAS. ANDREW H. LICHTMAN. CELLULAR AND MOLECULAR IMMUNOLOGY. 5TH EDITION. Chapter. 7 .pg 129-151. 3. TEXTBOOK: MALE, COOKE. OWEN, TROWSDALE, CHAMPION ADVANCE IMMUNOLOGY. Chapter 3. pp. 3.7. Chapter 6. pp 6.7. 1 B-LYMPHOCYTE SURFACE RECEPTORS AND B CELL ACTIVATRION INTRODUCTION B cells are characterized by their surface immunoglobulins. They represent about 5-15 % of the circulating lymphoid pool, and are classically defined by the presence of surface immunoglobulins. These immunoglobulin markers are made by the B cells themselves, and are inserted into the surface membrane where they act as specific antigen receptors.
    [Show full text]
  • Human CD Marker Chart Reviewed by HLDA1 Bdbiosciences.Com/Cdmarkers
    BD Biosciences Human CD Marker Chart Reviewed by HLDA1 bdbiosciences.com/cdmarkers 23-12399-01 CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD Alternative Name Ligands & Associated Molecules T Cell B Cell Dendritic Cell NK Cell Stem Cell/Precursor Macrophage/Monocyte Granulocyte Platelet Erythrocyte Endothelial Cell Epithelial Cell CD1a R4, T6, Leu6, HTA1 b-2-Microglobulin, CD74 + + + – + – – – CD93 C1QR1,C1qRP, MXRA4, C1qR(P), Dj737e23.1, GR11 – – – – – + + – – + – CD220 Insulin receptor (INSR), IR Insulin, IGF-2 + + + + + + + + + Insulin-like growth factor 1 receptor (IGF1R), IGF-1R, type I IGF receptor (IGF-IR), CD1b R1, T6m Leu6 b-2-Microglobulin + + + – + – – – CD94 KLRD1, Kp43 HLA class I, NKG2-A, p39 + – + – – – – – – CD221 Insulin-like growth factor 1 (IGF-I), IGF-II, Insulin JTK13 + + + + + + + + + CD1c M241, R7, T6, Leu6, BDCA1 b-2-Microglobulin + + + – + – – – CD178, FASLG, APO-1, FAS, TNFRSF6, CD95L, APT1LG1, APT1, FAS1, FASTM, CD95 CD178 (Fas ligand) + + + + + – – IGF-II, TGF-b latency-associated peptide (LAP), Proliferin, Prorenin, Plasminogen, ALPS1A, TNFSF6, FASL Cation-independent mannose-6-phosphate receptor (M6P-R, CIM6PR, CIMPR, CI- CD1d R3G1, R3 b-2-Microglobulin, MHC II CD222 Leukemia
    [Show full text]