Aus Dem Institut Für Allgemeine Pathologie Der Medizinischen Fakultät Charité – Universitätsmedizin Berlin

Total Page:16

File Type:pdf, Size:1020Kb

Aus Dem Institut Für Allgemeine Pathologie Der Medizinischen Fakultät Charité – Universitätsmedizin Berlin Aus dem Institut für allgemeine Pathologie Der Medizinischen Fakultät Charité – Universitätsmedizin Berlin DISSERTATION TP53-abhängige DNA-Reparatur- und Regulationsmechanismen im klassischen Hodgkin-Lymphom und B-Zell-Non-Hodgkin-Lymphomen zur Erlangung des akademischen Grades Doctor medicinae (Dr. med.) vorgelegt der Medizinischen Fakultät Charité – Universitätsmedizin Berlin von Claudia Petereit aus Staßfurt Gutachter/in: 1. Prof. Dr. Michael Hummel 2. PD Dr. Wolfram Klapper 3. Prof. Dr. Matthias Dobbelstein Datum der Promotion: 18.11.2011 ______________________________________________________________________________I 1 Einleitung ..................................................................................................................... 1 1.1 Maligne Lymphome ........................................................................................................ 1 1.1.1 Non-Hodgkin-Lymphome (NHL) ............................................................................... 1 1.1.2 Hodgkin-Lymphom (HL) ............................................................................................ 2 1.1.2.1 Hodgkin- und Reed-Sternberg-Zellen (HRS-Zellen) .............................................. 3 1.1.2.2 Immunphänotyp und Ursprung der HRS-Zellen ..................................................... 4 1.1.2.3 Genetische Aberrationen in HRS-Zellen ................................................................ 5 1.2 Regulation von Zellzyklus, DNA-Reparatur und Apoptose ........................................... 5 1.2.1 Zellzyklus .................................................................................................................... 5 1.2.2 DNA-Reparatur ........................................................................................................... 7 1.2.3 Apoptose ...................................................................................................................... 8 1.3 Tumorsuppressorgen TP53 ............................................................................................. 9 1.3.1 TP53-Struktur .............................................................................................................. 9 1.3.2 Aktivierung und Funktion von TP53 ......................................................................... 10 1.3.3 Regulation von TP53 ................................................................................................. 12 1.3.4 Auswirkungen von Defekten des TP53-Gens und Störungen des P53-Signalwegs in Lymphomen ............................................................................................................... 13 1.4 Aufgabenstellung der Arbeit ......................................................................................... 14 2 Material und Methoden .............................................................................................. 16 2.1 Material ......................................................................................................................... 16 2.1.1 Zelllinien ................................................................................................................... 16 2.1.2 Primer ........................................................................................................................ 17 2.1.3 Reagenzien ................................................................................................................ 17 2.1.3.1 Geräte und Reagenzien für die Behandlung der Zelllinien ................................... 17 2.1.3.2 Reagenzien und Materialien für den Westernblot................................................. 17 2.1.3.3 Puffer ..................................................................................................................... 18 2.1.3.4 Gele ....................................................................................................................... 19 2.1.3.5 Reagenzien und Materialien für die Klonierung ................................................... 19 2.1.3.6 RNA-Isolierung ..................................................................................................... 19 2.1.3.7 Reverse-Transkriptase-Polymerasekettenreaktion (RT-PCR) .............................. 20 2.1.3.8 Reagenzien und Materialien für die Genexpressionsanalyse ................................ 20 2.1.3.8.1 cDNA-Synthese ........................................................................................... 20 2.1.3.8.2 In-vitro-Transkription .................................................................................. 20 2.1.3.8.3 cDNA-, cRNA-Aufreinigung und Fragmentierung ..................................... 20 ______________________________________________________________________________II 2.1.3.8.4 Hybridisierung ............................................................................................. 20 2.1.3.8.5 Färbereagenzien ........................................................................................... 20 2.1.3.8.6 Puffer ........................................................................................................... 21 2.1.3.8.7 Microarrays .................................................................................................. 21 2.1.3.8.8 Software ....................................................................................................... 21 2.1.3.8.9 Affymetrix-Gerätekomponenten ................................................................. 21 2.2 Methoden ....................................................................................................................... 22 2.2.1 Kultur von humanen Zelllinien ................................................................................. 22 2.2.2 Zellbestrahlung .......................................................................................................... 22 2.2.3 Zelllyse und Bestimmung der Zellzahl...................................................................... 23 2.2.4 Bradford-Assay ......................................................................................................... 23 2.2.5 Westernblot ............................................................................................................... 24 2.2.5.1 Gelelektrophorese zur Auftrennung von Proteinen .............................................. 24 2.2.5.2 Immunoblot ........................................................................................................... 25 2.2.5.3 Blocken ................................................................................................................. 25 2.2.5.4 Immunodetektion .................................................................................................. 26 2.2.5.5 Detektion ............................................................................................................... 26 2.2.5.6 Aktin-Kontrolle ..................................................................................................... 26 2.2.6 Isolierung von Gesamt-RNA ..................................................................................... 27 2.2.7 Quantifizierung von Nukleinsäuren (Nanodrop) ....................................................... 27 2.2.8 Reverse-Transkriptase-Polymerasekettenreaktion (RT-PCR) zum Nachweis von TP53 .......................................................................................................................... 28 2.2.9 Agarosegelektrophorese ............................................................................................ 29 2.2.10 Ethidiumbromidfärbung ............................................................................................ 30 2.2.11 Isolierung und Aufreinigung von DNA-Fragmenten ................................................ 30 2.2.12 Klonierung ................................................................................................................. 30 2.2.12.1 Ligation ............................................................................................................ 30 2.2.12.2 3`-A-Überhang ................................................................................................. 31 2.2.12.3 Transformation ................................................................................................. 31 2.2.12.4 Kolonie-PCR .................................................................................................... 32 2.2.13 Sequenzierung ........................................................................................................... 33 2.2.14 Sequenzauswertung ................................................................................................... 33 2.2.15 Qualitätsanalyse der Gesamt-RNA im Bioanalyzer .................................................. 34 2.2.16 Genexpressionsanalyse (GeneChip Array)................................................................ 34 ______________________________________________________________________________III 2.2.16.1 GeneChip® Human Genome U133A 2.0 Array .............................................. 36 2.2.16.2 Herstellung Biotin-markierter Proben für die Affymetrix-Chip-Hybridisierung 36 2.2.16.2.1 Erststrangsynthese der cDNA .................................................................... 36 2.2.16.2.2 Zweitstrangsynthese .................................................................................. 37 2.2.16.2.3 Aufreinigung der Doppelstrang-cDNA ..................................................... 37 2.2.16.2.4 In-vitro-Transkription (IVT).....................................................................
Recommended publications
  • Identification of Key Candidate Genes for Colorectal Cancer by Bioinformatics Analysis
    ONCOLOGY LETTERS 18: 6583-6593, 2019 Identification of key candidate genes for colorectal cancer by bioinformatics analysis ZHIHUA CHEN1*, YILIN LIN1*, JI GAO2*, SUYONG LIN1, YAN ZHENG1, YISU LIU1 and SHAO QIN CHEN1 1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University; 2School of Nursing, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China Received December 27, 2018; Accepted August 16, 2019 DOI: 10.3892/ol.2019.10996 Abstract. Colorectal cancer (CRC) is one of the most Introduction common cancers of the digestive tract. Although numerous studies have been conducted to elucidate the cause of CRC, Colorectal cancer (CRC) ranks third (13.5%) and second the exact mechanism of CRC development remains to be (9.5%) among the incidence of malignancies worldwide determined. To identify candidate genes that may be involved in male and female patients, respectively, and is a serious in CRC development and progression, the microarray datasets hazard to human health (1). Previous studies have demon- GSE41657, GSE77953 and GSE113513 were downloaded from strated that the molecular pathogenesis of CRC is mostly the Gene Expression Omnibus database. Gene Ontology and caused by genetic mutations (2,3). Numerous studies over Kyoto Encyclopedia of Genes and Genomes were used for the past two decades have reported that genetic mutations functional enrichment analysis of differentially expressed are associated with the prognosis and treatment of CRC, and genes (DEGs). A protein-protein interaction network was targeted therapies have been developed (4-7). The progres- constructed, and the hub genes were subjected to module sion of CRC is usually accompanied by the activation of the analysis and identification using Search Tool for the Retrieval KRAS and BRAF genes and the inhibition of the p53 tumour of Interacting Genes/Proteins and Cytoscape.
    [Show full text]
  • Anglemetry of Neural Axis Cell Differentiation Genes by Structural Pressurotopy of DNA Loop Strand Segment Tropy in Reference to Tissue Macro-Compliance Hemant Sarin
    Sarin Translational Medicine Communications (2019) 4:13 Translational Medicine https://doi.org/10.1186/s41231-019-0045-4 Communications RESEARCH Open Access Anglemetry of neural axis cell differentiation genes by structural pressurotopy of DNA loop strand segment tropy in reference to tissue macro-compliance Hemant Sarin Abstract Background: Even as the eukaryotic stranded DNA is known to heterochromatinize at the nuclear envelope in response to mechanical strain, the precise mechanistic basis for alterations in chromatin gene transcription in differentiating cell lineages has been difficult to determine due to limited spatial resolution for detection of shifts in reference to a specific gene in vitro. In this study, heterochromatin shift during euchromatin gene transcription has been studied by parallel determinations of DNA strand loop segmentation tropy nano-compliance (esebssiwaagoTQ units, linear nl), gene positioning angulation in linear normal two- 0 dimensional (2-D) z, y-vertical plane (anglemetry, ), horizontal alignment to the z, x-plane (vectormetry; mA, mM,a.u.),andby pressuromodulation mapping of differentiated neuron cell sub-class operating range for neuroaxis gene expression in reference to tissue macro-compliance (Peff). Methods: The esebssiwaagoTQ effectivepressureunit(Peff) maxima and minima for horizontal gene intergene base segment tropy loop alignment were determined (n = 224); the Peff esebssiwaagoTQ quotient were determined (n =28)foranalysisof gene intergene base loop segment tropy structure nano-compliance (n = 28; n = 188); and gene positioning anglemetry and vectormetry was performed (n = 42). The sebs intercept-to-sebssiwa intercept quotient for linear normalization was determined (bsebs/bsebssiwa) by exponential plotting of sub-episode block sum (sebs) (x1, y1; x2, y2) and sub-episode block sum split integrated weighted average (sebssiwa) functions was performed, and the sebs – sebssiwa function residuals were determined.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Open Data for Differential Network Analysis in Glioma
    International Journal of Molecular Sciences Article Open Data for Differential Network Analysis in Glioma , Claire Jean-Quartier * y , Fleur Jeanquartier y and Andreas Holzinger Holzinger Group HCI-KDD, Institute for Medical Informatics, Statistics and Documentation, Medical University Graz, Auenbruggerplatz 2/V, 8036 Graz, Austria; [email protected] (F.J.); [email protected] (A.H.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 27 October 2019; Accepted: 3 January 2020; Published: 15 January 2020 Abstract: The complexity of cancer diseases demands bioinformatic techniques and translational research based on big data and personalized medicine. Open data enables researchers to accelerate cancer studies, save resources and foster collaboration. Several tools and programming approaches are available for analyzing data, including annotation, clustering, comparison and extrapolation, merging, enrichment, functional association and statistics. We exploit openly available data via cancer gene expression analysis, we apply refinement as well as enrichment analysis via gene ontology and conclude with graph-based visualization of involved protein interaction networks as a basis for signaling. The different databases allowed for the construction of huge networks or specified ones consisting of high-confidence interactions only. Several genes associated to glioma were isolated via a network analysis from top hub nodes as well as from an outlier analysis. The latter approach highlights a mitogen-activated protein kinase next to a member of histondeacetylases and a protein phosphatase as genes uncommonly associated with glioma. Cluster analysis from top hub nodes lists several identified glioma-associated gene products to function within protein complexes, including epidermal growth factors as well as cell cycle proteins or RAS proto-oncogenes.
    [Show full text]
  • A Genome-Wide Resource and Visualization Tool to Design CRISPR/Cas9 Screens for Editing Protein-RNA Interaction Sites in the Human Genome
    bioRxiv preprint doi: https://doi.org/10.1101/654640; this version posted September 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome Sasank Vemuri1Ψ, Rajneesh Srivastava1Ψ, Quoseena Mir1, Seyedsasan Hashemikhabir1, X. Charlie Dong2, 1, 3, 4* Sarath Chandra Janga 1Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University, 719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, Indiana 46202 2Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 635 Barnhill Drive, Indianapolis, Indiana, 46202 3Department of Medical and Molecular Genetics, Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, Indiana, 46202 4Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences (HITS), 410 West 10th Street, Indianapolis, Indiana, 46202 ΨBoth the authors contributed equally to this study and should be considered as joint first authors Keywords: RNA binding proteins, In silico library, CRISPR/Cas9, Guide RNA, Pooled CRISPR screens, Protein-RNA interactions, Post-transcriptional control *Correspondence should be addressed to: Sarath Chandra Janga ([email protected]) 719 Indiana Avenue Ste 319, Walker Plaza Building Indianapolis, Indiana – 46202 Tel: +1-317-278-4147, Fax: +1-317-278-9201 bioRxiv preprint doi: https://doi.org/10.1101/654640; this version posted September 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Pharmacological Mechanisms Underlying the Therapeutic Effects of Danhong Injection on Cerebral Ischemia
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 5584809, 10 pages https://doi.org/10.1155/2021/5584809 Research Article Pharmacological Mechanisms Underlying the Therapeutic Effects of Danhong Injection on Cerebral Ischemia Yifei Qi ,1,2 Yihuai Zou ,1 Lin Chen ,2 Jun Liu ,2 Yingying Zhang ,1 and Zhong Wang 2 1Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China 2Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China Correspondence should be addressed to Zhong Wang; [email protected] Received 1 February 2021; Revised 16 April 2021; Accepted 10 May 2021; Published 21 May 2021 Academic Editor: Baotong Zhang Copyright © 2021 Yifei Qi et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Although Danhong injection (DHI) has been proved to be curative, the mechanism of its action against ischemia stroke (IS) is not clear. Here, we explored the therapeutic basis of DHI by network pharmacology. Methods. Putative targets and activity scores for each compound in DHI were obtained from the Traditional Chinese Medicine System Pharmacology Database, Encyclopedia of Traditional Chinese Medicine, and Quantitative Structure Activity Relationships. Next, target proteins of IS were identified on GeneCards and CTD. Overlapping targets of DHI associated with IS were acquired via Venn diagram. GO and KEGG pathway analyses were done using WebGestalt. Cytoscape software was used for PPI network construction and hub nodes screening. Several validation studies were carried out by using AutoDock-Vina, label-free mass spectrometry, and transcriptome RNA-sequencing.
    [Show full text]
  • Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity
    Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity Aylwin C. Y. Nga,b,1, Jason M. Eisenberga,b,1, Robert J. W. Heatha, Alan Huetta, Cory M. Robinsonc, Gerard J. Nauc, and Ramnik J. Xaviera,b,2 aCenter for Computational and Integrative Biology, and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; bThe Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; and cMicrobiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved June 11, 2010 (received for review February 17, 2010) In innate immune sensing, the detection of pathogen-associated proteins have been implicated in human diseases to date, notably molecular patterns by recognition receptors typically involve polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in leucine-rich repeats (LRRs). We provide a categorization of 375 rheumatoid arthritis and multiple sclerosis (10), and TLR5 in human LRR-containing proteins, almost half of which lack other Legionnaire disease (11). identifiable functional domains. We clustered human LRR proteins Most LRR domains consist of a chain of between 2 and 45 by first assigning LRRs to LRR classes and then grouping the proteins LRRs (12). Each repeat in turn is typically 20 to 30 residues long based on these class assignments, revealing several of the resulting and can be divided into a highly conserved segment (HCS) fol- protein groups containing a large number of proteins with certain lowed by a variable segment (VS).
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review AKT1 (v-akt murine thymoma viral oncogene homolog 1) Daniela Etro, Silvia Missiroli, Francesca Buontempo, Luca Maria Neri, Silvano Capitani Department of Morphology and Embryology, Human Anatomy Section, Ferrara University, 44100 Ferrara, Italy (DE, SM, FB, LMN, SC) Published in Atlas Database: May 2009 Online updated version: http://AtlasGeneticsOncology.org/Genes/AKT1ID355ch14q32.html DOI: 10.4267/2042/44725 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2010 Atlas of Genetics and Cytogenetics in Oncology and Haematology Identity Transcription The human AKT1 coding sequence consists of 1443 bp Other names: AKT; C-AKT; EC 2.7.11.1; from the start codon to the stop codon. Multiple MGC99656; PKB; PKB-ALPHA; PRKBA; RAC; alternatively spliced transcript variants have been found RAC-ALPHA; RAC-PK-alpha for this gene (Entrez Gene). HGNC (Hugo): AKT1 Pseudogene Location: 14q32.33 No pseudogene of AKT1 known. Note Location in the mouse: chromosome 12, 57.0 cM, Protein 113892032 to 113912401 bp, complement strand. For a comparison of the gene location among Homo Note sapiens, mouse and rat see: NCBI Map Viewer. Although the AKT isoforms are activated in a similar manner and share the same downstream substrates, DNA/RNA indicating functional redundancy of the AKT isoforms, their biological function is likely to be different in Description AKT-knockout mouse models. AKT1 mutant mice display developmental defects, showing decreased size The human AKT1 gene is composed of 14 exons in all organs and impaired placental development spanning a genomic region of about 26.4 Kb.
    [Show full text]
  • Genes Involved and Proteins
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Scope The Atlas of Genetics and Cytogenetics in Oncology and Haematology is a peer reviewed on-line journal in open access, devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. It presents structured review articles ("cards") on genes, leukaemias, solid tumours, cancer-prone diseases, more traditional review articles on these and also on surrounding topics ("deep insights"), case reports in hematology, and educational items in the various related topics for students in Medicine and in Sciences. Editorial correspondance Jean-Loup Huret Genetics, Department of Medical Information, University Hospital F-86021 Poitiers, France tel +33 5 49 44 45 46 or +33 5 49 45 47 67 [email protected] or [email protected] Staff Mohammad Ahmad, Mélanie Arsaban, Houa Delabrousse, Marie-Christine Jacquemot-Perbal, Maureen Labarussias, Vanessa Le Berre, Anne Malo, Catherine Morel-Pair, Laurent Rassinoux, Sylvie Yau Chun Wan - Senon, Alain Zasadzinski. Philippe Dessen is the Database Director, and Alain Bernheim the Chairman of the on-line version (Gustave Roussy Institute – Villejuif – France). The Atlas of Genetics and Cytogenetics in Oncology and Haematology (ISSN 1768-3262) is published 12 times a year by ARMGHM, a non profit organisation, and by the INstitute for Scientific and Technical Information of the French National Center for Scientific Research (INIST-CNRS) since 2008. The Atlas is hosted by INIST-CNRS (http://www.inist.fr) http://AtlasGeneticsOncology.org © ATLAS - ISSN 1768-3262 The PDF version of the Atlas of Genetics and Cytogenetics in Oncology and Haematology is a reissue of the original articles published in collaboration with the Institute for Scientific and Technical Information (INstitut de l’Information Scientifique et Technique - INIST) of the French National Center for Scientific Research (CNRS) on its electronic publishing platform I-Revues.
    [Show full text]
  • A Network Inference Approach to Understanding Musculoskeletal
    A NETWORK INFERENCE APPROACH TO UNDERSTANDING MUSCULOSKELETAL DISORDERS by NIL TURAN A thesis submitted to The University of Birmingham for the degree of Doctor of Philosophy College of Life and Environmental Sciences School of Biosciences The University of Birmingham June 2013 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Musculoskeletal disorders are among the most important health problem affecting the quality of life and contributing to a high burden on healthcare systems worldwide. Understanding the molecular mechanisms underlying these disorders is crucial for the development of efficient treatments. In this thesis, musculoskeletal disorders including muscle wasting, bone loss and cartilage deformation have been studied using systems biology approaches. Muscle wasting occurring as a systemic effect in COPD patients has been investigated with an integrative network inference approach. This work has lead to a model describing the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. This model has shown for the first time that oxygen dependent changes in the expression of epigenetic modifiers and not chronic inflammation may be causally linked to muscle dysfunction.
    [Show full text]
  • Identification of Blood Biomarkers for Psychosis Using Convergent
    Molecular Psychiatry (2011) 16, 37–58 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp ORIGINAL ARTICLE Identification of blood biomarkers for psychosis using convergent functional genomics SM Kurian1,6, H Le-Niculescu2,6, SD Patel2,6, D Bertram2,3, J Davis2,3, C Dike2,3, N Yehyawi2,3, P Lysaker3, J Dustin2, M Caligiuri4, J Lohr4, DK Lahiri2, JI Nurnberger Jr2, SV Faraone5, MA Geyer4, MT Tsuang4, NJ Schork1, DR Salomon1 and AB Niculescu2,3 1Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; 2Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; 3Indianapolis VA Medical Center, Indianapolis, IN, USA and 4Department of Psychiatry, UC San Diego, La Jolla, CA, USA; 5Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA There are to date no objective clinical laboratory blood tests for psychotic disease states. We provide proof of principle for a convergent functional genomics (CFG) approach to help identify and prioritize blood biomarkers for two key psychotic symptoms, one sensory (hallucinations) and one cognitive (delusions). We used gene expression profiling in whole blood samples from patients with schizophrenia and related disorders, with phenotypic information collected at the time of blood draw, then cross-matched the data with other human and animal model lines of evidence. Topping our list of candidate blood biomarkers for hallucinations, we have four genes decreased in expression in high hallucinations states (Fn1, Rhobtb3, Aldh1l1, Mpp3), and three genes increased in high hallucinations states (Arhgef9, Phlda1, S100a6). All of these genes have prior evidence of differential expression in schizophrenia patients.
    [Show full text]
  • Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity
    Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity Aylwin C. Y. Nga,b,1, Jason M. Eisenberga,b,1, Robert J. W. Heatha, Alan Huetta, Cory M. Robinsonc, Gerard J. Nauc, and Ramnik J. Xaviera,b,2 aCenter for Computational and Integrative Biology, and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; bThe Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; and cMicrobiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved June 11, 2010 (received for review February 17, 2010) In innate immune sensing, the detection of pathogen-associated proteins have been implicated in human diseases to date, notably molecular patterns by recognition receptors typically involve polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in leucine-rich repeats (LRRs). We provide a categorization of 375 rheumatoid arthritis and multiple sclerosis (10), and TLR5 in human LRR-containing proteins, almost half of which lack other Legionnaire disease (11). identifiable functional domains. We clustered human LRR proteins Most LRR domains consist of a chain of between 2 and 45 by first assigning LRRs to LRR classes and then grouping the proteins LRRs (12). Each repeat in turn is typically 20 to 30 residues long based on these class assignments, revealing several of the resulting and can be divided into a highly conserved segment (HCS) fol- protein groups containing a large number of proteins with certain lowed by a variable segment (VS).
    [Show full text]