Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity

Total Page:16

File Type:pdf, Size:1020Kb

Human Leucine-Rich Repeat Proteins: a Genome-Wide Bioinformatic Categorization and Functional Analysis in Innate Immunity Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity Aylwin C. Y. Nga,b,1, Jason M. Eisenberga,b,1, Robert J. W. Heatha, Alan Huetta, Cory M. Robinsonc, Gerard J. Nauc, and Ramnik J. Xaviera,b,2 aCenter for Computational and Integrative Biology, and Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114; bThe Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142; and cMicrobiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Jeffrey I. Gordon, Washington University School of Medicine, St. Louis, MO, and approved June 11, 2010 (received for review February 17, 2010) In innate immune sensing, the detection of pathogen-associated proteins have been implicated in human diseases to date, notably molecular patterns by recognition receptors typically involve polymorphisms in NOD2 in Crohn disease (8, 9), CIITA in leucine-rich repeats (LRRs). We provide a categorization of 375 rheumatoid arthritis and multiple sclerosis (10), and TLR5 in human LRR-containing proteins, almost half of which lack other Legionnaire disease (11). identifiable functional domains. We clustered human LRR proteins Most LRR domains consist of a chain of between 2 and 45 by first assigning LRRs to LRR classes and then grouping the proteins LRRs (12). Each repeat in turn is typically 20 to 30 residues long based on these class assignments, revealing several of the resulting and can be divided into a highly conserved segment (HCS) fol- protein groups containing a large number of proteins with certain lowed by a variable segment (VS). The HCS usually consists of non-LRR functional domains. In particular, a statistically significant- either the 11-residue sequence LxxLxLxxNxL or the 12-residue number of LRR proteins in the typical (T) and bacterial + typical (S+T) sequence LxxLxLxxCxxL, where L is Leu, Ile, Val, or Phe; N is categories have transmembrane domains, whereas most of the LRR Asn, Thr, Ser, or Cys; and C is Cys, Ser, or Asn (13, 14). Al- proteins in the cysteine-containing (CC) category contain an F-box though these substitutions often preserve hydrophobicity or po- domain (which mediates interactions with the E3 ubiquitin ligase larity, it is possible for the first and last leucines to be replaced by complex). Furthermore, by examining the evolutionary profiles of relatively hydrophilic residues (15). The function of many LRR the LRR proteins, we identified a subset of LRR proteins exhibi- domains is to provide a structural framework for protein–protein ting strong conservation in fungi and an enrichment for “nucleic interactions (PPIs) (13). PDB structures for LRR-containing pro- acid-binding” function. Expression analysis of LRR genes identifies teins show the LRR domains in an arc or horseshoe shape. The a subset of pathogen-responsive genes in human primary macro- concave face (corresponding to the HCS of each LRR) consists of phages infected with pathogenic bacteria. Using functional RNAi, parallel β-strands, each usually three residues long, flanked by – we show that MFHAS1 regulates Toll-like receptor (TLR) dependent loops. Conversely, the convex face (corresponding to the VS of signaling. By using protein interaction network analysis followed each LRR) is composed of a variety of secondary structures, which fi by functional RNAi, we identi ed LRSAM1 as a component of the are often helical (13). Ligands can interact with either the convex antibacterial autophagic response. or the concave face, although the latter is more typical (13, 16). The core of the arc is hydrophobic, typically shielded by caps at the N fl pathogen-response | anti-bacterial | in ammation | pathogen sensors | terminus of the first LRR and at the C terminus of the last LRR. In autophagy extracellular proteins or domains, these caps often contain two- or four-residue cysteine clusters (14). nnate immunity is a conserved host response that entails the Beyond innate immunity, extensive functional diversity occurs Isensing of pathogen-associated molecular patterns through among LRR-containing proteins, which are involved in a variety of germline-encoded pattern recognition receptors (1), which initiate cellular processes including apoptosis, autophagy, ubiquitin-related pathway-specific signaling networks, resulting in rapid responses processes, nuclear mRNA transport, and neuronal development. that serve as the host’s first line of defense. A striking feature among Although the presence of well characterized non-LRR domains families of proteins functioning as sensors or effectors of innate can be used to classify LRR proteins along functional lines, such immunity is the inclusion into their structure, various combinations a classification scheme will place LRR proteins lacking any other of the following domains: Leucine-rich repeat (LRR), Toll/IL-1 identifiable functional domains into a single group unrelated to receptor, Ig, nucleotide-binding site, pyrin, RIG-I–like receptor, any specific function. To fully appreciate the signaling functions of caspase-recruitment, coiled-coil, immunoreceptor tyrosine-based activation motif, and C-type lectin (2). The LRR domain is present in a large number of prokaryotic This paper results from the Arthur M. Sackler Colloquium of the National Academy of and eukaryotic proteins and is one of the most commonly oc- Sciences, "Microbes and Health," held November 2–3, 2009, at the Arnold and Mabel curring protein domains in proteins associated with innate im- Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. The complete program and audio files of most presentations are available on the NAS munity. This is especially so in invertebrates (e.g., sea urchin) and Web site at http://www.nasonline.org/SACKLER_Microbes_and_Health. Cephalochordata (e.g., amphioxus) which have vastly expanded Author contributions: A.C.Y.N., J.M.E., and R.J.X. designed research; A.C.Y.N., J.M.E., repertoires of LRR proteins (3) in the absence of adaptive im- R.J.W.H., and A.H. performed research; A.C.Y.N., J.M.E., R.J.W.H., C.M.R., and G.J.N. con- munity. In jawless vertebrates, combinatorial assembly of LRR tributed new reagents/analytic tools; A.C.Y.N., J.M.E., A.H., and R.J.X. analyzed data; and gene segments in variable lymphocyte receptors generates the A.C.Y.N., J.M.E., A.H., and R.J.X. wrote the paper. structural diversity for antigen recognition and forms the basis of The authors declare no conflict of interest. an adaptive immune system (4, 5). Toll-like receptors (TLRs) and This article is a PNAS Direct Submission. NOD-like receptors (NLRs) recognize via the LRR domain, 1A.C.Y.N. and J.M.E. contributed equally to this work. molecular determinants from a structurally diverse collection of 2To whom correspondence should be addressed. E-mail: [email protected]. bacterial, fungal, viral, and parasite-derived components (6, 7). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Mutations or polymorphisms in more than 30 LRR-containing 1073/pnas.1000093107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1000093107 PNAS Early Edition | 1of8 Downloaded by guest on October 1, 2021 LRR proteins, we devised semi-automated methods for grouping It is evident from Dataset S1 that most of the proteins contain them on the basis of LRR classes. We identified the positions of one or more irregular LRR. As shown in Fig. 1D, these LRRs individual LRR sequences within each LRR domain, and classified occur both at the ends of LRR chains (FBXL3) as well as within each repeat based upon consensus sequences and lengths of their them (LRRC16A). By their very nature, irregular LRRs are more VSs. Identified repeats were assigned into classes: bacterial (S), difficult to identify than regular LRRs, particularly at the ends of ribonuclease inhibitor–like (RI), cysteine-containing (CC), SDS22, LRR chains. However, irregular LRRs that occur within LRR plant-specific (PS), typical (T), and Treponema pallidum (Tp) chains can be identified with greater confidence and are likely to (13, 17). By using this approach, we reasoned that functionally re- be valid LRRs as they span the gaps between regular LRRs. lated LRR-only proteins would be placed together by virtue of their similar LRR domains. In addition, these LRR class-based clusters Clustering the LRR Proteins Using LRR Classes. Based on the LRR would contain all of the proteins bearing similar LRR repeat class assignments, we grouped the LRR proteins in two different structures, with further subcategorization via the presence or ab- ways. For the first approach, we clustered the proteins based on sence of non-LRR domains. the sequence similarity of their LRRs; each LRR in a given pro- In this article, we present a comprehensive categorization of tein was allowed to match any LRR of the same class in another human LRR-containing proteins by LRR class composition, protein (the irregular LRRs were placed in their own class). Fig. functional associations, and involvement in host responses to in- 1E and Fig. S3 summarize the clustered results for human LRR fection stimuli. We demonstrate semi-automated methods that proteins as a circular tree. As predicted, we observed functionally use LRR class composition to facilitate functional groupings. By similar proteins clustering together e.g., members of the SLITRK, integrating diverse datasets and using functional RNA interfer- NLR (Fig. S3), and F-box families (Fig. S4). We were also able to ence, we experimentally place uncharacterized LRR proteins in observe LRR-only proteins being distributed among those con- innate immunity and autophagy. taining non-LRR domains, fulfilling one of our goals in this effort: to cluster LRR proteins on the basis of LRR class composition. Results Because the class annotations for the LRRs are not always Annotation of LRRs.
Recommended publications
  • Functional Annotation of Exon Skipping Event in Human Pora Kim1,*,†, Mengyuan Yang1,†,Keyiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,*
    D896–D907 Nucleic Acids Research, 2020, Vol. 48, Database issue Published online 23 October 2019 doi: 10.1093/nar/gkz917 ExonSkipDB: functional annotation of exon skipping event in human Pora Kim1,*,†, Mengyuan Yang1,†,KeYiya2, Weiling Zhao1 and Xiaobo Zhou1,3,4,* 1School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA, 2College of Electronics and Information Engineering, Tongji University, Shanghai, China, 3McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA and 4School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA Received August 13, 2019; Revised September 21, 2019; Editorial Decision October 03, 2019; Accepted October 03, 2019 ABSTRACT been used as therapeutic targets (3–8). For example, MET has lost the binding site of E3 ubiquitin ligase CBL through Exon skipping (ES) is reported to be the most com- exon 14 skipping event (9), resulting in an enhanced expres- mon alternative splicing event due to loss of func- sion level of MET. MET amplification drives the prolifera- tional domains/sites or shifting of the open read- tion of tumor cells. Multiple tyrosine kinase inhibitors, such ing frame (ORF), leading to a variety of human dis- as crizotinib, cabozantinib and capmatinib, have been used eases and considered therapeutic targets. To date, to treat patients with MET exon 14 skipping (10). Another systematic and intensive annotations of ES events example is the dystrophin gene (DMD) in Duchenne mus- based on the skipped exon units in cancer and cular dystrophy (DMD), a progressive neuromuscular dis- normal tissues are not available.
    [Show full text]
  • ANP32A and ANP32B Are Key Factors in the Rev Dependent CRM1 Pathway
    bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 ANP32A and ANP32B are key factors in the Rev dependent CRM1 pathway 2 for nuclear export of HIV-1 unspliced mRNA 3 Yujie Wang1, Haili Zhang1, Lei Na 1, Cheng Du1, Zhenyu Zhang1, Yong-Hui Zheng1,2, Xiaojun Wang1* 4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, the Chinese 5 Academy of Agricultural Sciences, Harbin 150069, China 6 2Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, 7 USA. 8 * Address correspondence to Xiaojun Wang, [email protected]. 9 10 11 12 13 14 15 16 17 18 19 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/559096; this version posted February 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 The nuclear export receptor CRM1 is an important regulator involved in the shuttling of various cellular 24 and viral RNAs between the nucleus and the cytoplasm. HIV-1 Rev interacts with CRM1 in the late phase of 25 HIV-1 replication to promote nuclear export of unspliced and single spliced HIV-1 transcripts. However, the 26 knowledge of cellular factors that are involved in the CRM1-dependent viral RNA nuclear export remains 27 inadequate. Here, we identified that ANP32A and ANP32B mediate the export of unspliced or partially spliced 28 viral mRNA via interacting with Rev and CRM1.
    [Show full text]
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • (Ubl-Ptms): Small Peptides with Huge Impact in Liver Fibrosis
    cells Review Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis 1 1, 1, Sofia Lachiondo-Ortega , Maria Mercado-Gómez y, Marina Serrano-Maciá y , Fernando Lopitz-Otsoa 2, Tanya B Salas-Villalobos 3, Marta Varela-Rey 1, Teresa C. Delgado 1,* and María Luz Martínez-Chantar 1 1 Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; [email protected] (S.L.-O.); [email protected] (M.M.-G.); [email protected] (M.S.-M.); [email protected] (M.V.-R.); [email protected] (M.L.M.-C.) 2 Liver Metabolism Lab, CIC bioGUNE, 48160 Derio, Spain; fl[email protected] 3 Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 66450, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +34-944-061318; Fax: +34-944-061301 These authors contributed equally to this work. y Received: 6 November 2019; Accepted: 1 December 2019; Published: 4 December 2019 Abstract: Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like (Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as novel and more effective therapeutic approaches.
    [Show full text]
  • Fine Mapping Studies of Quantitative Trait Loci for Baseline Platelet Count in Mice and Humans
    Fine mapping studies of quantitative trait loci for baseline platelet count in mice and humans A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy Melody C Caramins December 2010 University of New South Wales ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. This thesis is dedicated to my father. Dad, thanks for the genes – and the environment! ACKNOWLEDGEMENTS “Nothing can come out of nothing, any more than a thing can go back to nothing.” - Marcus Aurelius Antoninus A PhD thesis is never the work of one person in isolation from the world at large. I would like to thank the following people, without whom this work would not have existed. Thank you firstly, to all my teachers, of which there have been many. Undoubtedly, the greatest debt is owed to my supervisor, Dr Michael Buckley.
    [Show full text]
  • A. Cellular Senescence
    Generation of antisense RNAs at convergent gene loci in cells undergoing senescence Maharshi Krishna Deb To cite this version: Maharshi Krishna Deb. Generation of antisense RNAs at convergent gene loci in cells undergo- ing senescence. Human genetics. Université Paul Sabatier - Toulouse III, 2016. English. NNT : 2016TOU30274. tel-03209213 HAL Id: tel-03209213 https://tel.archives-ouvertes.fr/tel-03209213 Submitted on 27 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5)µ4& &OWVFEFMPCUFOUJPOEV %0$503"5%&-6/*7&34*5²%&506-064& %ÏMJWSÏQBS Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) 1SÏTFOUÏFFUTPVUFOVFQBS DEB Maharshi Krishna -F mercredi 30 mars 2016 5Jtre : Generation of antisense RNAs at convergent gene loci in cells undergoing senescence École doctorale et discipline ou spécialité : ED BSB : Génétique moléculaire 6OJUÏEFSFDIFSDIF CNRS-UMR5088; LBCMCP %JSFDUFVS T EFʾÒTF Dr. TROUCHE Didier Co-Directeur/trice(s) de Thèse : Dr. NICOLAS Estelle 3BQQPSUFVST Prof. GILSON Eric, Dr. LIBRI Domenico, Dr. VERDEL Andre "VUSF T NFNCSF T EVKVSZ Prof. GLEIZES Pierre Emmanuel, President of Jury Dr. TROUCHE Didier, Thesis Supervisor This thesis is dedicated to any patients who may get cured with treatments manifesting from this work.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • DRE-1/FBXO11, a Conserved F Box Protein, Regulates Apoptosis in C
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2011 DRE-1/FBXO11, A Conserved F Box Protein, Regulates Apoptosis in C. elegans and is Mutated in Human Lymphoma Michael Chiorazzi Follow this and additional works at: http://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons Recommended Citation Chiorazzi, Michael, "DRE-1/FBXO11, A Conserved F Box Protein, Regulates Apoptosis in C. elegans and is Mutated in Human Lymphoma" (2011). Student Theses and Dissertations. Paper 139. This Thesis is brought to you for free and open access by Digital Commons @ RU. It has been accepted for inclusion in Student Theses and Dissertations by an authorized administrator of Digital Commons @ RU. For more information, please contact [email protected]. DRE-1/FBXO11, A CONSERVED F BOX PROTEIN, REGULATES APOPTOSIS IN C. ELEGANS AND IS MUTATED IN HUMAN LYMPHOMA A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Michael Chiorazzi June 2011 © Copyright by Michael Chiorazzi 2011 DRE-1/FBXO11, a conserved F box protein, regulates apoptosis in C. elegans and is mutated in human lymphoma Michael Chiorazzi, Ph.D. The Rockefeller University 2011 In the course of metazoan embryonic and post-embryonic development, more cells are generated than exist in the mature organism, and these cells are deleted by the process of programmed cell death. In addition, cells can be pushed toward death when they accumulate genetic errors, are virally-infected or are otherwise deemed potentially-harmful to the overall organism. Caenorhabditis elegans has proved to be an excellent model system for elucidating the genetic underpinnings of cell death, and research has shown that the core machinery, made up of the egl-1, ced-9, ced-4 and ced-3 genes, is conserved across metazoans, and their homologues are crucial for such diseases as cancer, neurodegeneration and autoimmunity.
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE Investigations Into The
    UNIVERSITY OF CALIFORNIA RIVERSIDE Investigations into the Role of TAF1-mediated Phosphorylation in Gene Regulation A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Cell, Molecular and Developmental Biology by Brian James Gadd December 2012 Dissertation Committee: Dr. Xuan Liu, Chairperson Dr. Frank Sauer Dr. Frances M. Sladek Copyright by Brian James Gadd 2012 The Dissertation of Brian James Gadd is approved Committee Chairperson University of California, Riverside Acknowledgments I am thankful to Dr. Liu for her patience and support over the last eight years. I am deeply indebted to my committee members, Dr. Frank Sauer and Dr. Frances Sladek for the insightful comments on my research and this dissertation. Thanks goes out to CMDB, especially Dr. Bachant, Dr. Springer and Kathy Redd for their support. Thanks to all the members of the Liu lab both past and present. A very special thanks to the members of the Sauer lab, including Silvia, Stephane, David, Matt, Stephen, Ninuo, Toby, Josh, Alice, Alex and Flora. You have made all the years here fly by and made them so enjoyable. From the Sladek lab I want to thank Eugene, John, Linh and Karthi. Special thanks go out to all the friends I’ve made over the years here. Chris, Amber, Stephane and David, thank you so much for feeding me, encouraging me and keeping me sane. Thanks to the brothers for all your encouragement and prayers. To any I haven’t mentioned by name, I promise I haven’t forgotten all you’ve done for me during my graduate years.
    [Show full text]
  • A 1Bp Deletion in the Dual Reading Frame Deafness Gene LRTOMT Causes a Frameshift from the First Into the Second Reading Frame
    RESEARCH LETTER A 1 bp Deletion in the Dual Reading Frame Deafness Gene LRTOMT Causes a Frameshift From the First Into the Second Reading Frame Maarten Vanwesemael,1 Isabelle Schrauwen,1 Ruben Ceuppens,1 Fatemeh Alasti,1 Ellen Jorssen,1 Effat Farrokhi,2 Morteza Hashemzadeh Chaleshtori,2 and Guy Van Camp1* 1Department of Medical Genetics, University of Antwerp, 2610, Wilrijk, Belgium 2Cellular and Molecular Research Center, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran Received 29 November 2010; Accepted 12 April 2011 TO THE EDITOR: How to Cite this Article: Congenital hearing impairment (HI) affects one in 650 newborns Vanwesemael M, Schrauwen I, Ceuppens R, and has a genetic cause in 50% of the cases. Autosomal recessive Alasti F, Jorssen E, Farrokhi E, Chaleshtori non-syndromic hearing impairment (ARNSHI) is responsible for MH, Van Camp G. 2011. A 1 bp deletion in the 70–80% of all hereditary cases of HI. ARNSHI is genetically highly dual reading frame deafness gene LRTOMT heterogeneous and until today mutations in 37 genes have been causes a frameshift from the first into the identified [Van Camp and Smith, 2011]. One of the latest genes for second reading frame. ARNSHI is LRTOMT (at locus DFNB63 on 11q13.3-q13.4). The Am J Med Genet Part A 155:2021–2023. structure of human LRTOMT has only recently been elucidated [Ahmed et al., 2008]. LRTOMT is an evolutionary recent fusion gene with alternative reading frames that exclusively exists in analysis was performed on an ABI 3130XL DNA sequence primates and is a fusion of non-primate Lrrc51 (Leucine rich repeat analyzer (Applied Biosystems Inc., Foster City, CA), using standard containing 51) and Tomt (Transmembrane O-methyltransferase) procedures.
    [Show full text]