A Green Line Around the Box Means a Habitable Planet Exists in the Starsystem

Total Page:16

File Type:pdf, Size:1020Kb

A Green Line Around the Box Means a Habitable Planet Exists in the Starsystem Hussey 575 BD+30 2494 BD+24 2733 1.5 BD+14 2774 2.5 1.5 1.5 Ross 512 1.5 WO 9502 1.5 BD+17 2785 2 BD+15 3108 G136-101 Sigma Bootis BD+30 2512 1 Struve 1785 1.5 1 2.5 via LP441.33 1.5 BD+24 2786 1.5 1.5 1.5 1.5 1.5 45 Bootis L1344-37 GJ 3966 Ross 863 1.5 Lambda Serpentis Wolf 497 BD+25 2874 1.5 3 via V645 Herc Gliese 625 1 1.5 3.5 via GJ 3910 3 via V645 Herc 1.5 BD-9 3413 GJ-1179 Zeta Herculis 1.5 Eta Bootes 1 Rho Coronae Borealis 1.5 1.5 2.5 via Giclas 258.33 Luyten 758-105 BD+54 1716 1 BD+25 3173 Giclas 179-43 1.5 1.5 1.5 1 3 via Ross 948 3 via WO 9564 3 via GJ 3796 3 via Ross 948 Eta Coronae Borealis Chi Draconis 3 via HYG86887 1 3.5 via V645 Herc 1 Gamma Serpentis 2 BD+17 2611 (VESTA) Arcturus 3 via V645 Herc 3 via BD+21 2763 3.5 via BD+0 2989, DT Virginis 4 via HYG86887&8 Struve 2135 BD+33 2777 14 Herculis Porimma (Gamma Virginis) 3.5 via BD+45 2247 3 via BD+41 2695 1.5 3.5 BD+60 1623 BD+53 1719 THETIS 1.5 Chi Hercules 2 3.5 1.5 1.5 BD+38 3095 3.5 via BD+46 1189 Mu Herculis 4 via WO 9564 CR Draconis BD+52 2045 3 via BD+43 2796 1.5 3 via Giclas 179-43 BD+36 2393 Queen Isabel Star Sigma Draconis 3.5 via BD+43 2796 CE Bootes 1.5 BD+19 2881 1 1.5 1.5 1.5 2.5 I Bootis via BD+45 2247 BD+47 2112 1 4 via EGWD 329, CR Draconis 3 via LP 272-25 4.5 via Ross 948, L 910-10 44 Bootis Aitkens Double Star 1 ADS 10288 3 via BD+61 2068 1.5 Gilese 625 1.5 Vega 3 via Kuiper 79 3 via Giclas 179-43 4 via BD+46 1189, BD+50 2030 Ross 52 Theta Draconis 2 EV Lacertae Gliese 892 BD+39 2947 3 via BD+18 3421 1.5 0.5 Theta Bootis 1.5 3 via EV Lacertae 2.5 via BD+18 3421 Kappa Ceti 1 Beta Virginis 3 via Struve 2398 BD-5 4426 BD+47 2420 61 Cygni 2 1.5 3.5 via Do Cephei 2 3 via Wolf 636 BD+6 398 Eta Cassiopiea Wolf 635 2.5 Beta Comae Berenices BD+36 2219 Denebola 2.5 1.5 Altair BD+2 3312 107 Piscis 1 1.5 1.5 3 via Wolf 636 Mu Cassiopia 2.5 via L989-20 BD+3 3465 4.5 via LHS 1326, Luyten 1305-10 1 .5 2 1.5 3.5 via Wolf 630 2 3 via DO Cephei 2 via GJ 1207 Delta Trianguli 2 1.5 61 Ursa Majoris 3 via GJ 1207 1.5 0.5 2 Giclas 165-8 Beta Canum Venaticorum Groombridge 34 97 G Piscium (BD+4 123) V1581 Cygni Gliese 410 2 70 Ophiuchi 3 via Wolf 629 1 12 Ophiuchi BD+5 3409 BD+63 229 3 via Luyten 989-20 1 1 .5 1.5 3.5 via LP 378-541 BD+56 1458 5 BD+11 2576 Gliese 436 1.5 BD+1 4774 1.5 Gliese 414 1.5 3 via Wolf 630 2 via BD+36 2219 Wolf 46, 47 5 via BD+2 3312 1.5 1.5 1.5 4 Giclas 243-50, Ross 15 1.5 Groombridge 1830 BD+16 2620 Awashima 3 via BD+48 1829 Ross 780 36 Ursae Majoris BD-3 4223 3 via MSWD 11261 3 via Giclas 119-62 3 via Gliese 1224 36 Ophiuchi .5 1.5 1.5 1 CD-48 11837 Xi Ursa Majoris BD+63 238 NTANGU 1 1 Gliese 397 1.75 Xi Bootes 3.5 via G119-62 Van Maanen's Star LP 378-541 2 2 47 Ursa Majoris 1 3.5 via BD+48 1829 1 Gliese 408 EZ Aquarii Giclas 158-27 1 1.5 2.5 via EGWD 473 3.5 via Luyten 205-128, Cd-44 11909 Theta Ursae Majoris FL Virginis 3 via AC+23468-46 Gliese 667 HJ 5173 1 1.75 1.5 2 2 via CD-44 11909 Wolf 359 Groombridge 1618 41 Arae (Gliese 666) 3.5 via Luyten 205-128, CD-44 11909 YZ Ceti Heintz 299 1.5 1.5 CD-37 10765 2.5 via CD -49 13515 Iota Perseii 1.5 1.5 2.5 via CD -45 13677 1 AD Leonis Delta Pavonis 3.5 via WX Ursa Majoris 1 .5 3 via CD-45 13595 .5 Epsilon Indii 2.5 via CD -49 13515 Lalande 21185 3 via CD-37 15492 Wolf 294 1 1.5 2 Tau Ceti 2.5 via Luyten 205-128 .5 UV Ceti 2.5 via LTT 12352 1 CD-46 11540; Gliese 674 Pollux Luyten 763-63 82 Eridani 3 via CD-40 9712 LP 734-32 1 Gliese 570 CREE 3 via Luyten 119-14 2.5 via CD-49 13515 2.5 via Brown Dwarf LP 944-20 1.5 DX Cancri 4 Giclas 111-47, U/I M7 1.5 AX Microscopii/Lacaille 8760 2 1.5 CD-45 13515; L-354-89 1 Kapteyn's Star 2.5 via Ross 695 5 via HR5668 to Luyten 768-119, 2.5 via Gliese 1061 and then via a brown dwarf 2.5 via VV Lyncis 1.5 QY Aurigae CD-26 8883 1 1.5 Epsilon Eridani 1 Ross 619 3 via Ross 695 61 Virginis Sol 1.5 1 3.5 via Luyten 961-1 2 Ross 154 2 .5 Gliese 275.2 Beta Hydri Procyon 2.5 via YZ Canis Minoris 2 1 1 1.5 Alpha Centauri 1 1 .5 LTT 13408 1 Sirius CD-32 8179 CD-26 8853 3.5 .25 1.5 1 1 Proxima Centauri BD+5 1668 Luyten's Star 1 1 Barnard's Star .1 3 1.5 1.5 BD-5 1584 1 1 2 SZ Crateris CD-68 41 Ross 614 5.5 Alpha Centauri B Omicron 2 Eridani 2.5 via Luyten 1723 CD-39 7301 1 Ross 47 1.5 Zeta Tucanae 1.5 via Steph. 538 4 via Steph 538, Giclas 99-49 1.5 1 Luyten 49-19 Gamma Leporis 1 1.5 4 via L737-9, BD-21 1074 2.5 via Donner 91 CD-43 7228 BD-5 1123 1.5 1.5 Pi 3 Orionis 1.5 1.5 58 Eridani 2.5 via Steph 538 Gamma Pavonis CD-76 1182 BD-3 1123 1.5 2.5 via Luyten 679 Colonies <1M pop. p Eridani 2 via EG 290 Colonies >1M pop. .5 1.5 1 1.5 MRSITG FORBIDDEN Giclas 99-49 Delta Eridani "Rana" AY Indi Chi Orionis A Green line around the box means a habitable planet exists in the starsystem. BD-21 1074 1.5 Advanced Intelligent Life BD+18 683 1.5 3 via tiny red 6 via 3 red dwarfs as of March 2008 1.5 (game time 2205) 4 via LTT 11472, Ross 594 Wolf 227 Luyten 879-14 Gliese 902 1.5 BD+52 657 BD-3 1110 BD+21 652 1.5 6 via EGWD 169, Wolf 1539 and HYG 15882 BD+20 802 6 via EGWD 169, Wolf 1539 and HYG 15882 BD+17 917 111 Tauri.
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • 195 9Mnras.119. .255E Stellar Groups, Iv. the Groombridge
    STELLAR GROUPS, IV. THE GROOMBRIDGE 1830 GROUP OF .255E HIGH VELOCITY STARS AND ITS RELATION TO THE GLOBULAR CLUSTERS 9MNRAS.119. Olm J. Eggen and Allan R. Sondage 195 (Communicated by the Astronomer Royal) (Received 1959 March 4) Summary The available proper motions and radial velocity data have been used to establish the existence of a moving group of subdwarfs (Groombridge 1830 ¿roup) which includes RR Lyrae. On the basis of the relationship between the observed ultra-violet excess and displacement below the normal main sequence, the subdwarfs in the Groombridge 1830 group are identified with main sequence stars in the globular clusters. This identification gives a modulus of m — M= i4m-2 for the globular cluster M13 with the result that ikTp-~ + om*5 for the z RR Lyrae variables and My= — 2m*3 for the brightest stars in the cluster. RR Lyrae itself, for which we derive ikfp~ + om*8 from the moving cluster parallax, is shown to obey the period-amplitude relation for the variables in M3 and to be reddened by om*o5 with respect to those variables. By equating the luminosity of RR Lyrae to the mean of the variables in M3 we obtain a modulus of m — M= i5m-o for the cluster. We have not derived this modulus in the logical way of fitting the M3 main sequence to the main sequence of the Groombridge 1830 group because the colour observations of the M3 main sequence stars may contain a systematic error. Because the presence of RR Lyrae variables in stellar groups may provide the only accurate calibration of the luminosities of these stars, it is important to make a systematic search for such groups.
    [Show full text]
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
    THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close.
    [Show full text]
  • EPSC2018-126, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018
    EPSC Abstracts Vol. 12, EPSC2018-126, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Stellar wind interaction with the expanding atmosphere of Gliese 436b A.G. Berezutskiy (1), I.F. Shaikhislamov (1), M.L. Khodachenko (2,3) and I.B. Miroshnichenko (1,4) (1) Institute of Laser Physics, Siberian Brunch Russian Academy of Science, Novosibirsk, Russia; (2) Space Research Institute, Austrian Academy of Science, Graz, Austria; (3) Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia (4) Novosibirsk State Technical University, Novosibirsk, Russia ([email protected]) Abstract the escaping planetary upper atmospheric material are also taken into account. We study an exosphere of a Neptune-size exoplanet Gliese 436b, orbiting the red dwarf at an extremely 3. Results close distance (0.028 au), taking into account its interaction with the stellar wind plasma flow. It was At the initial state of the simulations, the atmosphere shown that Gliese 436 b has a bowshock region of Gliese 436b is assumed to consist of the molecular between planetary and stellar wind which localized hydrogen and helium atoms at a ratio NHe / NH2 = 1/5 on the distance of ~33 Rp, where density of planetary with the temperature 750 K. We consider the case of -3 atoms slightly dominates over the protons. a weak stellar wind (SW) with nsw=100 cm , Tsw=1 МК, Vsw=70 km/s, which is much less intense than 1. Introduction the solar wind. Because of this fact, , we did not consider generation of Energetic Neutral Atoms The modelled planet Gliese 436b has a mass (ENAs).
    [Show full text]
  • Abstract a Search for Extrasolar Planets Using Echoes Produced in Flare Events
    ABSTRACT A SEARCH FOR EXTRASOLAR PLANETS USING ECHOES PRODUCED IN FLARE EVENTS A detection technique for searching for extrasolar planets using stellar flare events is explored, including a discussion of potential benefits, potential problems, and limitations of the method. The detection technique analyzes the observed time versus intensity profile of a star’s energetic flare to determine possible existence of a nearby planet. When measuring the pulse of light produced by a flare, the detection of an echo may indicate the presence of a nearby reflective surface. The flare, acting much like the pulse in a radar system, would give information about the location and relative size of the planet. This method of detection has the potential to give science a new tool with which to further humankind’s understanding of planetary systems. Randal Eugene Clark May 2009 A SEARCH FOR EXTRASOLAR PLANETS USING ECHOES PRODUCED IN FLARE EVENTS by Randal Eugene Clark A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics in the College of Science and Mathematics California State University, Fresno May 2009 © 2009 Randal Eugene Clark APPROVED For the Department of Physics: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree. Randal Eugene Clark Thesis Author Fred Ringwald (Chair) Physics Karl Runde Physics Ray Hall Physics For the University Graduate Committee: Dean, Division of Graduate Studies AUTHORIZATION FOR REPRODUCTION OF MASTER’S THESIS X I grant permission for the reproduction of this thesis in part or in its entirety without further authorization from me, on the condition that the person or agency requesting reproduction absorbs the cost and provides proper acknowledgment of authorship.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • The Transfiguration in the Theology of Gregory Palamas And
    Duquesne University Duquesne Scholarship Collection Electronic Theses and Dissertations Spring 2015 Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology Cory Hayes Follow this and additional works at: https://dsc.duq.edu/etd Recommended Citation Hayes, C. (2015). Deus in se et Deus pro nobis: The rT ansfiguration in the Theology of Gregory Palamas and Its Importance for Catholic Theology (Doctoral dissertation, Duquesne University). Retrieved from https://dsc.duq.edu/etd/640 This Immediate Access is brought to you for free and open access by Duquesne Scholarship Collection. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Duquesne Scholarship Collection. For more information, please contact [email protected]. DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY A Dissertation Submitted to the McAnulty Graduate School of Liberal Arts Duquesne University In partial fulfillment of the requirements for the degree of Doctor of Philosophy By Cory J. Hayes May 2015 Copyright by Cory J. Hayes 2015 DEUS IN SE ET DEUS PRO NOBIS: THE TRANSFIGURATION IN THE THEOLOGY OF GREGORY PALAMAS AND ITS IMPORTANCE FOR CATHOLIC THEOLOGY By Cory J. Hayes Approved March 31, 2015 _______________________________ ______________________________ Dr. Bogdan Bucur Dr. Radu Bordeianu Associate Professor of Theology Associate Professor of Theology (Committee Chair) (Committee Member) _______________________________ Dr. Christiaan Kappes Professor of Liturgy and Patristics Saints Cyril and Methodius Byzantine Catholic Seminary (Committee Member) ________________________________ ______________________________ Dr. James Swindal Dr.
    [Show full text]
  • AD Leonis: Flares Observed by XMM-Newton and Chandra
    A&A 411, 587–593 (2003) Astronomy DOI: 10.1051/0004-6361:20031398 & c ESO 2003 Astrophysics AD Leonis: Flares observed by XMM-Newton and Chandra E. J. M. van den Besselaar1;2, A. J. J. Raassen1;3,R.Mewe1,R.L.J.vanderMeer1,M.G¨udel4, and M. Audard5 1 SRON National Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands e-mail: [email protected];[email protected];[email protected] 2 Department of Astrophysics, University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands 3 Astronomical Institute “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands 4 Paul Scherrer Institut, W¨urenlingen & Villigen, 5232 Villigen PSI, Switzerland e-mail: [email protected] 5 Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027, USA e-mail: [email protected] Received 3 February 2003 / Accepted 2 September 2003 Abstract. The M-dwarf AD Leonis has been observed with the Reflection Grating Spectrometers and the European Photon Imaging Camera aboard XMM-Newton and also with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory. In the observation taken with XMM-Newton five large flares produced by AD Leo were identified and only one in the observation taken with Chandra. A quiescent level to the lightcurves is difficult to define, since several smaller flares mutually overlap each other. However, we defined a quasi-steady state outside of obvious flares or flare decays. The spectra from the flare state and the quasi-steady state are analysed separately.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]