Author Index
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report 2016–2017 AAVSO
AAVSO The American Association of Variable Star Observers Annual Report 2016–2017 AAVSO Annual Report 2012 –2013 The American Association of Variable Star Observers AAVSO Annual Report 2016–2017 The American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138-1203 USA Telephone: 617-354-0484 Fax: 617-354-0665 email: [email protected] website: https://www.aavso.org Annual Report Website: https://www.aavso.org/annual-report On the cover... At the 2017 AAVSO Annual Meeting.(clockwise from upper left) Knicole Colon, Koji Mukai, Dennis Conti, Kristine Larsen, Joey Rodriguez; Rachid El Hamri, Andy Block, Jane Glanzer, Erin Aadland, Jamin Welch, Stella Kafka; and (clockwise from upper left) Joey Rodriguez, Knicole Colon, Koji Mukai, Frans-Josef “Josch” Hambsch, Chandler Barnes. Picture credits In additon to images from the AAVSO and its archives, the editors gratefully acknowledge the following for their image contributions: Glenn Chaple, Shawn Dvorak, Mary Glennon, Bill Goff, Barbara Harris, Mario Motta, NASA, Gary Poyner, Msgr. Ronald Royer, the Mary Lea Shane Archives of the Lick Observatory, Chris Stephan, and Wheatley, et al. 2003, MNRAS, 345, 49. Table of Contents 1. About the AAVSO Vision and Mission Statement 1 About the AAVSO 1 What We Do 2 What Are Variable Stars? 3 Why Observe Variable Stars? 3 The AAVSO International Database 4 Observing Variable Stars 6 Services to Astronomy 7 Education and Outreach 9 2. The Year in Review Introduction 11 The 106th AAVSO Spring Membership Meeting, Ontario, California 11 The -
Meeting Program
A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ. -
Very Massive Stars (VMS) in the Local Universe
Highlights of Astronomy, Volume 16 XXVIIth IAU General Assembly, August 2009 c 2012 International Astronomical Union Thierry Montmerle, ed. DOI: 00.0000/X000000000000000X Very Massive Stars in the local Universe Jorick S. Vink1, Alexander Heger2, Mark R. Krumholz3, Joachim Puls4, S. Banerjee5, N. Castro6, K.-J. Chen7, A.-N. Chen`e8,9, P.A. Crowther10, A. Daminelli11, G. Gr¨afener1, J. H. Groh12, W.-R. Hamann13, S. Heap14, A. Herrero15, L. Kaper16, F. Najarro17, L. M. Oskinova13, A. Roman-Lopes18, A. Rosen3, A. Sander13, M. Shirazi19, Y. Sugawara20, F. Tramper16, D. Vanbeveren21, R. Voss22, A. Wofford23, Y. Zhang24 and the participants of JD2 1Armagh Observatory, College Hill, BT61 9DG, Armaghm Northern Ireland, UK email: [email protected] 2Monash Centre for Astrophysics School of Mathematical Sciences, Building 28, M401 Monash University, Vic 3800, Australia 3Department of Astronomy & Astrophysics, University of California, Santa Cruz, CA 95064, USA 4Universit¨ats-Sternwarte, Scheinerstrasse 1, 81679, Munchen, Germany 5Argelander-Institut f¨ur Astronomie, Auf dem H¨ugel 71, D-53121, Bonn, Germany 6Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou St. P. Penteli, 15236 Athens, Greece 7Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455, USA 8Departamento de F´ısica y Astronom´ıa, Universidad de Valpara´ıso, Av. Gran Breta˜na 1111, Playa Ancha, Casilla 5030, Chile 9Departamento de Astronom´ıa, Universidad de Concepci´on, Casilla 160-C, Chile 10Dept. of Physics & Astronomy, -
Arxiv:0905.1328V3
Spitzer SAGE Infrared Photometry of Massive Stars in the Large Magellanic Cloud A. Z. Bonanos1,2, D.L. Massa2, M. Sewilo2, D. J. Lennon2, N. Panagia2,3, L. J. Smith2, M. Meixner2, B. L. Babler4, S. Bracker4, M. R. Meade4, K.D. Gordon2, J.L. Hora5, R. Indebetouw6, B. A. Whitney7 ABSTRACT We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric cat- alog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3 − 24 µm in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color–magnitude diagrams illustrate that the supergiant B[e], red super- giant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free– free emission among ∼ 900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to 1Giacconi Fellow. 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA; bonanos, massa, sewilo, lennon, panagia, lsmith, meixner, [email protected] 3INAF/Osservatorio Astrofisico di Catania, Via S.Sofia 78, I-95123 Catania, Italy; and Supernova Ltd., arXiv:0905.1328v3 [astro-ph.SR] 11 Aug 2009 VGV #131, Northsound Road, Virgin Gorda, British Virgin Islands. -
Arxiv:2102.05972V1 [Astro-Ph.SR] 11 Feb 2021 1 INTRODUCTION Standing of the True Nature of R136 Has Significantly Improved with Increasing Telescope Resolution
MNRAS 000,1–23 (2020) Preprint 12 February 2021 Compiled using MNRAS LATEX style file v3.0 High contrast and resolution near infrared photometry of the core of R136¢ Zeinab Khorrami,1y Maud Langlois,2 Paul C. Clark,1 Farrokh Vakili,3,9 Anne S. M. Buckner,4 Marta Gonzalez,5 Paul Crowther,6 Richard Wünsch,7 Jan Palouš,7 Stuart Lumsden,8 Estelle Moraux5 1School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK 2 Universite de Lyon, Universite Lyon 1, CNRS, CRAL UMR5574, Saint-Genis Laval, France 3 Universite Cote d’Azur, OCA, CNRS, Lagrange, France 4 School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK 5 Universite Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France 6 Department of Physics and Astronomy, Hounsfield Road, University of Sheffield, Sheffield, S3 7RH, UK 7 Astronomical Institute of the Czech Academy of Sciences, BočníII 1401/1a, 141 00 Praha 4, Czech Republic 8 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK 9 Department of Physics, Shahid Beheshti University, G.C., Tehran, Iran Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present the sharpest and deepest near infrared photometric analysis of the core of R136, a newly formed massive star cluster at the centre of the 30 Doradus star forming region in the Large Magellanic Cloud. We used the extreme adaptive optics of the SPHERE focal instrument implemented on the ESO Very Large Telescope and operated in its IRDIS imaging mode, for the second time with longer exposure time in the H- and K filters. -
Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1
Effects of Rotation Arund the Axis on the Stars, Galaxy and Rotation of Universe* Weitter Duckss1 1Independent Researcher, Zadar, Croatia *Project: https://www.svemir-ipaksevrti.com/Universe-and-rotation.html; (https://www.svemir-ipaksevrti.com/) Abstract: The article analyzes the blueshift of the objects, through realized measurements of galaxies, mergers and collisions of galaxies and clusters of galaxies and measurements of different galactic speeds, where the closer galaxies move faster than the significantly more distant ones. The clusters of galaxies are analyzed through their non-zero value rotations and gravitational connection of objects inside a cluster, supercluster or a group of galaxies. The constant growth of objects and systems is visible through the constant influx of space material to Earth and other objects inside our system, through percussive craters, scattered around the system, collisions and mergers of objects, galaxies and clusters of galaxies. Atom and its formation, joining into pairs, growth and disintegration are analyzed through atoms of the same values of structure, different aggregate states and contiguous atoms of different aggregate states. The disintegration of complex atoms is followed with the temperature increase above the boiling point of atoms and compounds. The effects of rotation around an axis are analyzed from the small objects through stars, galaxies, superclusters and to the rotation of Universe. The objects' speeds of rotation and their effects are analyzed through the formation and appearance of a system (the formation of orbits, the asteroid belt, gas disk, the appearance of galaxies), its influence on temperature, surface gravity, the force of a magnetic field, the size of a radius. -
The Star-Forming Complex LMC-N79 As a Future Rival to 30 Doradus
The star-forming complex LMC-N79 as a future rival to 30 Doradus Bram B. Ochsendorf1;∗, Hans Zinnecker2;3, Omnarayani Nayak1, John Bally4, Margaret Meixner1;5, Olivia C. Jones5, Remy Indebetouw6;7 & Mubdi Rahman1 1Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA, [email protected] 2Deutsches SOFIA Institut (DSI), University of Stuttgart, Pfaffenwaldring 29, D-70569, Germany 3Universidad Autonoma de Chile, Santiago de Chile, Chile 4Astrophysical and Planetary Sciences Department, University of Colorado, UCB 389 Boulder, Colorado 80309, USA 5Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 6Department of Astronomy, University of Virginia, PO 400325, Charlottesville, VA 22904, USA 7National Radio Astronomy Observatory, 520 Edgemont Rd, Charlottesville, VA 22903, USA Within the early Universe, ‘extreme’ star formation may have been the norm rather than the 1, 2 5 exception . Super Star Clusters (SSCs; M? & 10 M ) are thought to be the modern-day analogs of globular clusters, relics of a cosmic time (z & 2) when the Universe was filled with vigorously star-forming systems3. The giant HII region 30 Doradus in the Large Magellanic Cloud (LMC) is often regarded as a benchmark for studies of extreme star formation4. Here, we report the discovery of a massive embedded star forming complex spanning ∼ 500 pc in the unexplored southwest region of the LMC, which manifests itself as a younger, embedded twin of 30 Doradus. Previously known as N79, this region has a star formation efficiency exceeding that of 30 Doradus by a factor of ∼ 2 as measured over the past . -
A Massive Nebula Around the Luminous Blue Variable Star RMC
Astronomy & Astrophysics manuscript no. r143-manuscript c ESO 2019 May 22, 2019 A massive nebula around the Luminous Blue Variable star RMC143 revealed by ALMA C. Agliozzo1,2,3, A. Mehner1, N. M. Phillips2, P. Leto4, J. H. Groh5, A. Noriega-Crespo6, C. Buemi4, F. Cavallaro4, L. Cerrigone7, A. Ingallinera4, R. Paladini8, G. Pignata3,9, C. Trigilio4, G. Umana4 1 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching bei München, 85748, Germany 3 Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago, 8320000, Chile 4 INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy 5 Trinity College Dublin, The University of Dublin, College Green, Dublin, Ireland 6 Space Telescope Science Institute 3700 San Martin Dr., Baltimore, MD, 21218, USA 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 Infrared Processing Analysis Center, California Institute of Technology, 770 South Wilson Ave., Pasadena, CA 91125, USA 9 Millennium Institute of Astrophysics (MAS), Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile ABSTRACT The luminous blue variable (LBV) RMC143 is located in the outskirts of the 30 Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. The spectral energy distribution (SED) of RMC143 suggests that two emission mechanisms contribute to the sub-mm emission: optically thin bremsstrahlung and dust. -
Download This Article in PDF Format
A&A 626, A126 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935239 & c ESO 2019 Astrophysics A massive nebula around the luminous blue variable star RMC 143 revealed by ALMA?,?? C. Agliozzo1,2,3 , A. Mehner1, N. M. Phillips2, P. Leto4, J. H. Groh5, A. Noriega-Crespo6, C. Buemi4, F. Cavallaro4, L. Cerrigone7, A. Ingallinera4, R. Paladini8, G. Pignata3,9, C. Trigilio4, and G. Umana4 1 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile e-mail: [email protected] 2 European Southern Observatory, Karl-Schwarzschild-Strasse 2, Garching bei München 85748, Germany 3 Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago 8320000, Chile 4 INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy 5 Trinity College Dublin, The University of Dublin, College Green, Dublin, Ireland 6 Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 Infrared Processing Analysis Center, California Institute of Technology, 770 South Wilson Ave., Pasadena, CA 91125, USA 9 Millennium Institute of Astrophysics (MAS), Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile Received 9 February 2019 / Accepted 9 May 2019 ABSTRACT The luminous blue variable (LBV) RMC 143 is located in the outskirts of the 30 Doradus complex, a region rich with interstellar material and hot luminous stars. We report the 3σ sub-millimetre detection of its circumstellar nebula with ALMA. The observed morphology in the sub-millimetre is different than previously observed with HST and ATCA in the optical and centimetre wavelength regimes. -
Research Annual Report
Research Annual Report 2017 科 研 工 作 年 度 报 告 Purple Mountain Observatory CAS 中国科学院紫金山天文台 2017 科研工作年度报告 中国科学院紫金山天文台科技处 2018 年 7 月 Cover: Dark Matter Particle Explorer published its measurement of electrons and positrons in a very wide energy range 封面:暗物质粒子探测卣星収布首批科孥成果 Annual Report’2017-Content 目 录 目录 PMO 目 录 ..................................................................................................................... I 2017 年度科研工作总结 ..................................................................................... 1 一、科研工作总体情冡 ............................................................................................. 1 ABSTRACT LIST OF PUBLICATIONS IN 2017 ....................................................... 28 I. .............................................................................. DARK MATTER & SPACE ASTRONOMY 29 1-01 Cosmic Gamma Ray Bursts, Neutron Stars, and Relevant Physics ................. 29 中国科学院紫金山天文台 (1)A parameterized energy correction method for electromagnetic showers in BGO-ECAL of DAMPE ................................................................................................. 29 科技处 (2)Revealing Physical Activity of GRB Central Engine with Macronova/Kilonova Data ........................................................................................................................... 29 地 址:南京市北京西路 2 叴 (3)GRB 111005A at z=0.0133 and the Prospect of Establishing Long-Short 邮 编:210008 GRB/GW Association ................................................................................................ -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs RAVE spectroscopy of luminous blue variables in the Large Magellanic Cloud Journal Item How to cite: Munari, U.; Siviero, A.; Bienayme, O.; Binney, J.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B.; Gilmore, G.; Grebel, E.; Helmi, A.; Navarro, J.; Parker, Q.; Reid, W.; Seabroke, G.; Siebert, A.; Steinmetz, M.; Watson, F.; Williams, M.; Wyse, R. and Zwitter, T. (2009). RAVE spectroscopy of luminous blue variables in the Large Magellanic Cloud. Astronomy & Astrophysics, 503 pp. 511–520. For guidance on citations see FAQs. c 2009 ESO Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1051/0004-6361/200912398 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk A&A 503, 511–520 (2009) Astronomy DOI: 10.1051/0004-6361/200912398 & c ESO 2009 ! Astrophysics RAVE spectroscopy of luminous blue variables in the Large Magellanic Cloud U. Munari1, A. Siviero1,5, O. Bienaymé2, J. Binney3, J. Bland-Hawthorn4, R. Campbell5,6, K. C. Freeman7, J. P. Fulbright8, B. K. Gibson9, G. Gilmore10, E. K. Grebel11, A. Helmi12, J. F. Navarro13, Q. A. Parker6, W. Reid6, G. M. Seabroke10,14, A. Siebert2,5, M. Steinmetz5, F. G. Watson15, M. Williams5,7, R. F. G. Wyse8, and T. Zwitter16 1 INAF Osservatorio -
Far Ultraviolet Spectroscopic Explorer Spectroscopy of the Nova-Like BB
Far Ultraviolet Spectroscopic Explorer Spectroscopy of the Nova-like BB Doradus 1 Patrick Godon2, Edward M. Sion Department of Astronomy and Astrophysics, Villanova University, Villanova, PA 19085 [email protected] [email protected] Paul E. Barrett United States Naval Observatory, Washington, DC 20392 [email protected] Paula Szkody Department of Astronomy, University of Washington, Seattle, WA 98195 [email protected] and Eric M. Schlegel Department of Physics and Astronomy, University of Texas, San Antonio, TX 78249 [email protected] ABSTRACT arXiv:0805.4209v1 [astro-ph] 27 May 2008 We present an analysis of the Far Ultraviolet Spectroscopic Explorer(FUSE) spectra of the little-known southern nova-like BB Doradus. The spectrum was obtained as part of our Cycle 8 FUSE survey of high declination nova-like stars. The FUSE spectrum of BB Dor, observed in a high state, is modeled with an accretion disk with a very low inclination (possibly lower than 10◦). Assuming 1Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE was operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985 2Visiting at the Space Telescope Science Institute, Baltimore, MD 21218, [email protected] –2– −9 an average WD mass of 0.8M⊙ leads to a mass accretion rate of 10 M⊙/yr and a distance of the order of ∼650 pc, consistent with the extremely low galactic reddening in its direction. The spectrum presents some broad and deep silicon and sulfur absorption lines, indicating that these elements are over-abundant by 3 and 20 times solar, respectively.