MEMORIA IAC 2011 SUBCOMITES - Finanzas 2 9 - Operación Del Obs

Total Page:16

File Type:pdf, Size:1020Kb

MEMORIA IAC 2011 SUBCOMITES - Finanzas 2 9 - Operación Del Obs MEMORIA 2011 “INSTITUTO DE ASTROFISICA DE CANARIAS” “INSTITUTO DE ASTROFISICA DE CANARIAS” GABINETE DE DIRECCIÓN INSTITUTO DE ASTROFÍSICA DE CANARIAS (IAC) MAQUETACIÓN: Ana M. Quevedo PORTADA: Gotzon Cañada PREIMPRESIÓN E IMPRESIÓN: Producciones Gráficas S.L. DEPÓSITO LEGAL: TF-1905/94 7- PRESENTACIÓN Indice general 8- CONSORCIO PÚBLICO IAC 11- LOS OBSERVATORIOS DE CANARIAS 12- - Observatorio del Teide (OT) 13- - Observatorio del Roque de los Muchachos (ORM) 14- COMISIÓN PARA LA ASIGNACIÓN DE TIEMPO (CAT) 18- ACUERDOS 19- Gran Telescopio CANARIAS (GTC) 23- ÁREA DE INVESTIGACIÓN 26- - Estructura del Universo y Cosmología 42- - El Universo Local 91- - Física de las estrellas, Sistemas Planetarios y Medio Interestelar 125- - El Sol y el Sistema Solar 147- - Instrumentación y Espacio 176- - Otros 193- ÁREA DE INSTRUMENTACIÓN 193- - Ingeniería 206- - Producción 213- - Oficina de Proyectos Institucionales y Transferencia de Resultados de Investigación (OTRI) 225- ÁREA DE ENSEÑANZA 225- - Cursos de doctorado 227- - Seminarios científicos 230- - Coloquios 231- - Becas 233- - XXIII Escuela de Invierno: ”Evolución Secular de Galaxias” 235- ADMINISTRACIÓN DE SERVICIOS GENERALES 235- - Instituto de Astrofísica 236- - Observatorio del Teide 237- - Observatorio del Roque de los Muchachos 238- - Centro de Astrofísica de la Palma 238- - Oficina Técnica para la Protección de la Calidad del Cielo (OTPC) 241- - Ejecución del Presupuesto 2011 243- GABINETE DE DIRECCIÓN 243- - Ediciones 245- - Comunicación y divulgación 255- - Web 257- - Visitas a las instalaciones del IAC 259- SERVICIOS INFORMÁTICOS COMUNES (SIC) 263- BIBLIOTECA 264- PUBLICACIONES CIENTÍFICAS 264- - Artículos en revistas internacionales con árbitros 285- - Artículos de revisión invitados (Invited Reviews) 285- - Charlas invitadas (Invited Talks) 286- - Comunicaciones a congresos internacionales 299- - Comunicaciones a congresos nacionales 300- - Artículos en revistas internacionales sin árbitros y comunicaciones cortas 302- - Artículos en revistas nacionales 303- - Libros y capítulos de libros 303- - Tesis doctorales 305- REUNIONES CIENTÍFICAS 312- TIEMPO DE OBSERVACIÓN FUERA DE CANARIAS 313- DISTINCIONES 315- RECURSOS HUMANOS 319- PERSONAL 332- DIRECCIONES Y TELÉFONOS El cielo del Observatorio del Roque de los Muchachos, con los telescopios MAGIC II, en primer plano, y Gran Telescopio CANARIAS (GTC), bajo la Vía Láctea. Foto: Daniel López (IAC). PRESENTACIÓN Mientras la presentación de la Memoria del IAC del año 2010 fue extensa y reivindicativa, la de este 2011 es amable y breve. De este año 2011 únicamente quiero destaca la concesión al Instituto de Astrofísica de Canarias IAC de la Certificación de Excelencia en Investigación “Severo Ochoa”, otorgada por el Ministerio de Ciencia e Innovación. Solo ha habido ocho instituciones que han logrado tal distinción, la única de Astrofísica y la única no situada en Barcelona o Madrid. Con ello se nos ha señalado como uno de los centros de investigación más conocidos y prestigiosos. Entre los jurados internacionales había investigadores de los más distinguidos en el mundo, entre ellos varios Premios Nobel. Gracias a los fondos asociados a este programa Severo Ochoa, el IAC avanzará más en la comprensión de las leyes que gobiernan el origen y la evolución de las distintas formas de materia y energía en el Universo. En los próximos años pretendemos profundizar en las cuestiones clave de la Astrofísica, desde fenómenos de muy alta energía inmediatos al Big-Bang y a los agujeros negros, hasta la génesis en el Universo de los rayos cósmicos y rayos gamma, pasando por la formación y evolución de las galaxias, y de manera especial en los procesos de su nacimiento y muerte. Continuaremos estudiando en profundidad la física de los campos magnéticos en el Sol, incluida la interacción Sol-Tierra. También se impulsarán los programas de búsqueda de planetas similares a la Tierra en estrellas cercanas. El IAC hará uso de una gran variedad de instrumentos en la frontera tecnológica desde observatorios terrestres y espaciales y, en particular, del Gran Telescopio CANARIAS (GTC). Se desarrollará también un programa específico para atraer y retener MEMORIA investigadores. IAC 2011 Vamos a ver cuantas de estas maravillosas y optimistas expectativas 7 nos permite realizar la crisis económica que tenemos encima. Prof. Francisco Sánchez DIRECTOR CONSORCIO PUBLICO “INSTITUTO DE ASTROFISICA DE CANARIAS” El Consorcio Público “Instituto de Astrofísica de Canarias” está integrado por la Administración del Estado (a través del Ministerio de Educación y Ciencia), la Comunidad Autónoma de Canarias, la Universidad de La Laguna y el Consejo Superior de Investigaciones Científicas. Esta fórmula jurídica de consorcio fue una avanzada solución administrativa, consecuencia de un pacto por el que las entidades implicadas, concentrando sus esfuerzos y evitando duplicidades innecesarias, se comprometieron a unificar objetivos y medios en un único ente, al que dotaron de personalidad jurídica propia. Se trataba de que el IAC fuese un centro de referencia, no sólo capaz de cumplir las responsabilidades derivadas de los Acuerdos Internacionales de Cooperación en materia de Astrofísica, en los cuales representa a Españá, sino además de ser palanca para el desarrollo de la Astrofísica en el país. Cada uno de estos entes consorciados aporta algo esencial. La Comunidad Autónoma de Canarias: el suelo y, sobre todo, el cielo de Canarias; la Universidad de La Laguna: el Instituto Universitario de Astrofísica, germen del propio IAC; y el Consejo Superior de Investigaciones Científicas: su experiencia en relaciones científicas internacionales. La Administración del Estado a través de el Ministerio de Ciencia y Tecnología, por su parte, no sólo contribuye con el mayor porcentaje al presupuesto del Instituto, sino que, además, lo engloba dentro de sus organismos públicos de investigación y lo proyecta en la comunidad científica nacional e internacional. Especialmente importante es la participación internacional. Téngase en cuenta que la mayoría de las instalaciones telescópicas de los Observatorios del IAC pertenecen a otros organismos e instituciones de investigación europeas. La participación de las instituciones de los diversos países en los Observatorios se realiza a través del Comité Científico Internacional (CCI). La contrapartida principal que se recibe por el “cielo de Canarias” es del 20% del tiempo de observación (más un 5% para programas cooperativos) en cada uno de los telescopios instalados en los Observatorios del IAC. Un porcentaje realmente significativo que una Comisión para la Asignación de Tiempo (CAT) MEMORIA reparte cuidadosamente entre las numerosas peticiones formuladas por los astrofísicos 2011 IAC españoles. 8 El IAC lo integran: - EL INSTITUTO DE ASTROFISICA (La Laguna - Tenerife) - EL OBSERVATORIO DEL TEIDE (Izaña - Tenerife) - EL OBSERVATORIO DEL ROQUE DE LOS MUCHACHOS (Garafía - La Palma) - EL CENTRO DE ASTROFISICA DE LA PALMA (Breña Baja – La Palma) Se estructura en áreas: - Investigación - Instrumentación - Enseñanza - Administración de Servicios Generales Organos Directivos: Nº Reuniones * CONSEJO RECTOR PRESIDENTE - Ministro de Ciencia e Innovación VOCALES - Presidente del Gobierno de Canarias - Representante de la Administración del Estado - Rector de la Universidad de La Laguna - Presidente del CSIC - Director del IAC * DIRECTOR Organos Colegiados: Nº Reuniones * COMISION ASESORA PARA LA INVESTIGACION (CAI) * COMITE DE DIRECCION (CD) 33 - Consejo de Investigadores 1 - Comisión de Investigación 14 - Comisión de Enseñanza * - Comisión de Doctores * - Comité de la Biblioteca * (* = virtuales) * COMITE CIENTIFICO INTERNACIONAL (CCI) 2 MEMORIA IAC 2011 SUBCOMITES - Finanzas 2 9 - Operación del Obs. del Roque de los Muchachos 2 - Operación del Obs. del Teide 2 - Calidad Astronómica del Cielo 2 * COMISION PARA LA ASIGNACION DE TIEMPO (CAT) - Telescopios nocturnos (sala nocturna) 2 - Telescopios solares (sala diurna) 1 REUNIONES CELEBRADAS Reuniones del Comité Científico Internacional (CCI) Durante 2011 tuvieron lugar dos reuniones del CCI: - - El 5 de mayo en el Faculty Club de la Universidad de Lovaina (Bélgica), organizada por el STER, el CCI celebró su reunión número 65. En la reunión se acordó conceder el Tiempo Internacional ITP disponible de 2011-2012 a KOTAK et al. para ampliar su programa de observación ITP 4/10, que ya estaba llevando a cabo con éxito (Ver Memoria 2010). - La reunión número 66 del CCI, se celebró el 15 de noviembre el Hotel Taburiente, en Los Cancajos, Breña Baja (La Palma). En la reunión se acordó explorar las posibilidades de colaboración en temas de divulgación, especialmente escolar, entre los diferentes telescopios robóticos y/o de control remoto instalados en los Observatorios del Teide (OT) y del Roque de los Muchachos. También se acordó elevar una petición a los gobiernos de España, de Canarias y autoridades de La Palma para que resuelvan definitivamente los problemas de la carretera dorsal de la Isla. MEMORIA 2011 IAC 10 LOS OBSERVATORIOS DE CANARIAS MEMORIA IAC 2011 11 OBSERVATORIO DEL TEIDE (OT) - Superficie: 50 hectáreas - Altitud: 2.390 m - Situación: Isla de Tenerife (Islas Canarias/España) - Longitud: 16030’35” Oeste - Latitud: 28018’00” Norte Diámetro INSTRUMENTO PROPIETARIO Operativo (cm) (año) SHABAR IAC (E) 2010 20 Monitor de seeing automático (DIMMA) IAC (E) 2010 30 Telescopio EARTHSHINE New Jersey Inst. Technology (EEUU) 2009 IAC (E) 30 Telescopio robótico Bradford Univ. de Bradford (RU) 2005 40 x 2 Red de
Recommended publications
  • External Shocks (Reverse) (Forward)
    Open Ques)ons in GRB Physics (Bing Zhang, University of Nevada Las Vegas) (Zhang 2011, Comptes Rendus Physique, 12, 206-225; arXiv:1104.0932) Jul. 10, 2012 Gamma 2012, Heidelberg, July 9-13, 2012 Gamma-ray bursts: the most luminous explosions in the universe The GRB field • An ac)ve, exci)ng field • Due to their elusive nature, it is very difficult to observe GRBs in all the temporal and spectral regimes • the mystery of GRBs is gradually unveiled when new temporal or spectral windows are opened • GRBs may be also strong emiNers of non- electromagne)c signals (e.g. high energy neutrinos, gravitaonal waves) • A sketch of physical picture is available, but many details remain vague – many open quesons Physical Picture: A Sketch Afterglow Progenitor Central GRB prompt emission Engine photosphere internal (shock) external shocks (reverse) (forward) Increasingly difficult to diagnose with electromagnetic signals Open Ques)ons in GRB Physics • Progenitors & classificaon (massive stars vs. compact stars; others? how many physically dis)nct types?) • Central engine (black hole, magnetar?) • Ejecta composi)on (baryonic, leptonic, magne)c?) • Energy dissipaon mechanism (shock vs. magne)c reconnec)on) • Par)cle acceleraon & radiaon mechanisms (synchrotron, inverse Compton, quasi-thermal) • Aerglow physics (medium interac)on vs. long-term engine ac)vity) Open Queson 1: Origin of Aerglow Physical Picture: A Sketch Afterglow Progenitor Central GRB prompt emission Engine photosphere internal (shock) external shocks (reverse) (forward) Standard aerglow model Synchrotron emission from external forward shock: Meszaros & Rees (1997); Sari et al. (1998) AZerglow Closure Relaons Well-predicted temporal decay indices and spectral indices Pre-SwiZ: Confron)ng data with theory Panaitescu & Kumar (01, 02) SwiZ surprise Gehrels et al.
    [Show full text]
  • Near-Infrared Luminosity Relations and Dust Colors L
    A&A 578, A47 (2015) Astronomy DOI: 10.1051/0004-6361/201525817 & c ESO 2015 Astrophysics Obscuration in active galactic nuclei: near-infrared luminosity relations and dust colors L. Burtscher1, G. Orban de Xivry1, R. I. Davies1, A. Janssen1, D. Lutz1, D. Rosario1, A. Contursi1, R. Genzel1, J. Graciá-Carpio1, M.-Y. Lin1, A. Schnorr-Müller1, A. Sternberg2, E. Sturm1, and L. Tacconi1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel Received 5 February 2015 / Accepted 5 April 2015 ABSTRACT We combine two approaches to isolate the AGN luminosity at near-IR wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 µm CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arcsecond and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 MIR X sources are 7 (10) times brighter in the near-IR at log LAGN = 42.5 (log LAGN = 42.5).
    [Show full text]
  • FY08 Technical Papers by GSMTPO Staff
    AURA/NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation July 23, 2008 Revised as Complete and Submitted December 23, 2008 NGC 660, ~13 Mpc from the Earth, is a peculiar, polar ring galaxy that resulted from two galaxies colliding. It consists of a nearly edge-on disk and a strongly warped outer disk. Image Credit: T.A. Rector/University of Alaska, Anchorage NATIONAL OPTICAL ASTRONOMY OBSERVATORY NOAO ANNUAL REPORT FY 2008 Submitted to the National Science Foundation December 23, 2008 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. 1 1 SCIENTIFIC ACTIVITIES AND FINDINGS ..................................................................................... 2 1.1 Cerro Tololo Inter-American Observatory...................................................................................... 2 The Once and Future Supernova η Carinae...................................................................................................... 2 A Stellar Merger and a Missing White Dwarf.................................................................................................. 3 Imaging the COSMOS...................................................................................................................................... 3 The Hubble Constant from a Gravitational Lens.............................................................................................. 4 A New Dwarf Nova in the Period Gap............................................................................................................
    [Show full text]
  • Opening PANDORA's Box: APEX Observations of CO In
    Astronomy & Astrophysics manuscript no. APEX_CO_ArXiv c ESO 2018 November 8, 2018 Opening PANDORA’s box: APEX observations of CO in PNe L. Guzman-Ramirez1; 2, A. I. Gómez-Ruíz3, H. M. J. Boffin4, D. Jones5; 6, R. Wesson7, A. A. Zijlstra8; 9, C. L. Smith10, and Lars-Ake˚ Nyman2; 10 1 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands e-mail: [email protected] 2 European Southern Observatory, Alonso de Córdova 3107, Santiago, Chile 3 CONACYT Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis E. Erro 1, 72840 Tonantzintla, Puebla, México 4 European Southern Observatory, Karl-Schwarzschild-str. 2, D-85748 Garching, Germany 5 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife, Spain 6 Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 7 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK 8 Jodrell Bank Centre for Astrophysics, University of Manchester, Manchester, UK 9 Department of Physics & Laboratory for Space Research, University of Hong Kong, Pok Fu Lam Road, Hong Kong 10 Centre for Research in Earth and Space Sciences, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada 11 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile Received xx, 2018; accepted xx, 2018 ABSTRACT Context. Observations of molecular gas have played a key role in developing the current understanding of the late stages of stellar evolution. Aims. The survey Planetary nebulae AND their cO Reservoir with APEX (PANDORA) was designed to study the circumstellar shells of evolved stars with the aim to estimate their physical parameters.
    [Show full text]
  • Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange
    Lateinischer Name: Deutscher Name: Hya Hydra Wasserschlange Atlas Karte (2000.0) Kulmination um Cambridge 10, 16, Mitternacht: Star Atlas 17 12, 13, Sky Atlas Benachbarte Sternbilder: 20, 21 Ant Cnc Cen Crv Crt Leo Lib 9. Februar Lup Mon Pup Pyx Sex Vir Deklinationsbereic h: -35° ... 7° Fläche am Himmel: 1303° 2 Mythologie und Geschichte: Bei der nördlichen Wasserschlange überlagern sich zwei verschiedene Bilder aus der griechischen Mythologie. Das erste Bild zeugt von der eher harmlosen Wasserschlange aus der Geschichte des Raben : Der Rabe wurde von Apollon ausgesandt, um mit einem goldenen Becher frisches Quellwasser zu holen. Stattdessen tat sich dieser an Feigen gütlich und trug bei seiner Rückkehr die Wasserschlange in seinen Fängen, als angebliche Begründung für seine Verspätung. Um jedermann an diese Untat zu erinnern, wurden der Rabe samt Becher und Wasserschlange am Himmel zur Schau gestellt. Von einem ganz anderen Schlag war die Wasserschlange, mit der Herakles zu tun hatte: In einem Sumpf in der Nähe von Lerna, einem See und einer Stadt an der Küste von Argo, hauste ein unsagbar gefährliches und grässliches Untier. Diese Schlange soll mehrere Köpfe gehabt haben. Fünf sollen es gewesen sein, aber manche sprechen auch von sechs, neun, ja fünfzig oder hundert Köpfen, aber in jedem Falle war der Kopf in der Mitte unverwundbar. Fürchterlich war es, da diesen grässlichen Mäulern - ob die Schlange nun schlief oder wachte - ein fauliger Atem, ein Hauch entwich, dessen Gift tödlich war. Kaum schlug ein todesmutiger Mann dem Untier einen Kopf ab, wuchsen auf der Stelle zwei neue Häupter hervor, die noch furchterregender waren. Eurystheus, der König von Argos, beauftragte Herakles in seiner zweiten Aufgabe diese lernäische Wasserschlange zu töten.
    [Show full text]
  • Planetary Nebulae
    Planetary Nebulae A planetary nebula is a kind of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from old red giant stars late in their lives. The term "planetary nebula" is a misnomer that originated in the 1780s with astronomer William Herschel because when viewed through his telescope, these objects appeared to him to resemble the rounded shapes of planets. Herschel's name for these objects was popularly adopted and has not been changed. They are a relatively short-lived phenomenon, lasting a few tens of thousands of years, compared to a typical stellar lifetime of several billion years. The mechanism for formation of most planetary nebulae is thought to be the following: at the end of the star's life, during the red giant phase, the outer layers of the star are expelled by strong stellar winds. Eventually, after most of the red giant's atmosphere is dissipated, the exposed hot, luminous core emits ultraviolet radiation to ionize the ejected outer layers of the star. Absorbed ultraviolet light energizes the shell of nebulous gas around the central star, appearing as a bright colored planetary nebula at several discrete visible wavelengths. Planetary nebulae may play a crucial role in the chemical evolution of the Milky Way, returning material to the interstellar medium from stars where elements, the products of nucleosynthesis (such as carbon, nitrogen, oxygen and neon), have been created. Planetary nebulae are also observed in more distant galaxies, yielding useful information about their chemical abundances. In recent years, Hubble Space Telescope images have revealed many planetary nebulae to have extremely complex and varied morphologies.
    [Show full text]
  • The AGB Stars of the Intermediate-Age LMC Cluster NGC 1846 Variability and Age Determination
    A&A 475, 643–650 (2007) Astronomy DOI: 10.1051/0004-6361:20078395 & c ESO 2007 Astrophysics The AGB stars of the intermediate-age LMC cluster NGC 1846 Variability and age determination T. Lebzelter1 andP.R.Wood2 1 Institute of Astronomy, University of Vienna, Tuerkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected] 2 Research School for Astronomy & Astrophysics, Australian National University, Weston Creek, ACT 2611, Australia Received 1 August 2007 / Accepted 18 September 2007 ABSTRACT Aims. We investigate variability and we model the pulsational behaviour of AGB variables in the intermediate-age LMC cluster NGC 1846. Methods. Our own photometric monitoring has been combined with data from the MACHO archive to detect 22 variables among the cluster’s AGB stars and to derive pulsation periods. According to the global parameters of the cluster we construct pulsation models taking into account the effect of the C/O ratio on the atmospheric structure. In particular, we have used opacities appropriate for both O-rich stars and carbon stars in the pulsation calculations. Results. The observed P-L-diagram of NGC 1846 can be fitted using a mass of the AGB stars of about 1.8 M. We show that the period of pulsation is increased when an AGB star turns into a carbon star. Using the mass on the AGB defined by the pulsational behaviour of our sample we derive a cluster age of 1.4 × 109 years. This is the first time the age of a cluster has been derived from the variability of its AGB stars.
    [Show full text]
  • Annual Report 2016–2017 AAVSO
    AAVSO The American Association of Variable Star Observers Annual Report 2016–2017 AAVSO Annual Report 2012 –2013 The American Association of Variable Star Observers AAVSO Annual Report 2016–2017 The American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138-1203 USA Telephone: 617-354-0484 Fax: 617-354-0665 email: [email protected] website: https://www.aavso.org Annual Report Website: https://www.aavso.org/annual-report On the cover... At the 2017 AAVSO Annual Meeting.(clockwise from upper left) Knicole Colon, Koji Mukai, Dennis Conti, Kristine Larsen, Joey Rodriguez; Rachid El Hamri, Andy Block, Jane Glanzer, Erin Aadland, Jamin Welch, Stella Kafka; and (clockwise from upper left) Joey Rodriguez, Knicole Colon, Koji Mukai, Frans-Josef “Josch” Hambsch, Chandler Barnes. Picture credits In additon to images from the AAVSO and its archives, the editors gratefully acknowledge the following for their image contributions: Glenn Chaple, Shawn Dvorak, Mary Glennon, Bill Goff, Barbara Harris, Mario Motta, NASA, Gary Poyner, Msgr. Ronald Royer, the Mary Lea Shane Archives of the Lick Observatory, Chris Stephan, and Wheatley, et al. 2003, MNRAS, 345, 49. Table of Contents 1. About the AAVSO Vision and Mission Statement 1 About the AAVSO 1 What We Do 2 What Are Variable Stars? 3 Why Observe Variable Stars? 3 The AAVSO International Database 4 Observing Variable Stars 6 Services to Astronomy 7 Education and Outreach 9 2. The Year in Review Introduction 11 The 106th AAVSO Spring Membership Meeting, Ontario, California 11 The
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]
  • The Inner Resonance Ring of NGC 3081. II. Star Formation, Bar Strength, Disk Surface Mass Density, and Mass-To-Light Ratio
    The Inner Resonance Ring of NGC 3081. II. Star Formation, Bar Strength, Disk Surface Mass Density, and Mass-to-Light Ratio Gene G. Byrd – University of Alabama Tarsh Freeman – Bevill State Community College Ronald J. Buta – University of Alabama Deposited 06/13/2018 Citation of published version: Byrd, G., Freeman, T., Buta, R. (2006): The Inner Resonance Ring of NGC 3081. II. Star Formation, Bar Strength, Disk Surface Mass Density, and Mass-to-Light Ratio. The Astronomical Journal, 131(3). DOI: 10.1086/499944 © 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astronomical Journal, 131:1377–1393, 2006 March # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE INNER RESONANCE RING OF NGC 3081. II. STAR FORMATION, BAR STRENGTH, DISK SURFACE MASS DENSITY, AND MASS-TO-LIGHT RATIO Gene G. Byrd,1 Tarsh Freeman,2 and Ronald J. Buta1 Received 2005 July 19; accepted 2005 November 19 ABSTRACT We complement our Hubble Space Telescope (HST ) observations of the inner ring of the galaxy NGC 3081 using an analytical approach and n-body simulations. We find that a gas cloud inner (r) ring forms under a rotating bar perturbation with very strong azimuthal cloud crowding where the ring crosses the bar major axis. Thus, star forma- tion results near to and ‘‘downstream’’ of the major axis. From the dust distribution and radial velocities, the disk rotates counterclockwise (CCW) on the sky like the bar pattern speed. We explain the observed CCW color asym- metry crossing the major axis as due to the increasing age of stellar associations inside the r ring major axis.
    [Show full text]