JEM-EUSO Extreme Universe Space Observatory Onboard Japanese Experiment Module

Total Page:16

File Type:pdf, Size:1020Kb

JEM-EUSO Extreme Universe Space Observatory Onboard Japanese Experiment Module JEM-EUSO Extreme Universe Space Observatory onboard Japanese Experiment Module Report on the Phase A Study JEM-EUSO Collaboration December 2008 JEM-EUSO: Extreme Universe Space Observatory onboard Japanese Experiment Module - ii - Report on the Phase A Study (Purple Book) JEM-EUSO Collaboration JEM-EUSO is a collaborating effort of 170 members from 12 countries and 62 institutes (list updated on December 2008): Japan: T. Ebisuzaki, H. Omori, K. Maekawa, Y. Hachisu, K. Katahira, M. Mizutani, Y. Kawasaki, Y. Takizawa, S. Wada, K. Kawai, H. Mase, K. Shinozaki, T. Ogawa (RIKEN), F. Kajino, M. Sakata, Y. Yamamoto, F. Sato, N. Ebizuka, T. Yamamoto (Konan Univ.), M. Nagano, Y. Miyazaki (Fukui Univ. of Technology), T. Shibata, N. Sakaki (Aoyama Gakuin Univ.), N. Inoue (Saitama Univ.), Y. Uchibori (National Institute of Radiological Sciences), K. Nomoto (Tokyo Univ.), Y. Takahashi (Tohoku Univ.), M. Takeda (ICRR), H. Shimizu, Y. Arai, Y. Kurihara, J. Fujimoto (KEK), S. Yoshida, K. Mase (Chiba Univ.) , Y. Mizumoto, J. Watanabe, S. Inoue, K. Asano, T. Kajino (NAOJ), H. Ikeda, M. Suzuki, H. Yano (ISAS/JAXA), T. Murakami, D. Yonetoku (Kanazawa Univ.), N. Sugiyama (Nagoya Univ.), Y. Itow (STE, Nagoya Univ.), S. Nagataki (Yukawa Institute for Theoretical Physics, Kyoto Univ.), A. Saito (Graduate School of Science, Faculty of Science, Kyoto Univ.), S. Abe, M. Nagata (Kobe Univ.), M. Chikawa (Kinki Univ.), F. Tajima (Hiroshima Univ.), M. Sato (Hokkaido Univ.) USA: J. H. Adams, S. Mitchell, M.J. Christl, J. Watts Jr., A. English, R. Young (MSFC/NASA) , Y. Takahashi, D. Gregory, M. Bonamente, V. Connaughton, K. Pitalo, J. Hadaway, J. Geary, R. Lundquist, P. Reardon, T. Blackwell (Univ. Alabama), H. Crawford, E. Judd, C. Pennypacker (LBL, Univ. California, Berkeley), V. Andreev, K. Arisaka, D. Cline (UCLA), A. Berlind ,T. Weiler, S. Czorna (Vanderbilt Univ.), R. Chipman, S. McClain (Univ. Arizona) France: D. Allard, J-N. Capdevielle, J. Dolbeau, Ph. Gorodetzky, J-J. Jaeger, E. Parizot, T. Patzak, D. Semikoz, J. Weisbard (APC Paris) Germany: M. Teshima, H. Miyamoto, T. Schweizer (MPI Munich), A. Santangelo, E. Kendziorra, F. Fenu (Univ. Tübingen), P. Biermann (MPI Bonn), K. Mannheim (Wuerzburg), J. Wilms (Univ. Erlangen), T.Tajiman (LMU & MPQ) Italy: E. Pace, M. Focardi, P. Spillantini (Univ. Firenze), V. Bratina, L. Gambicorti, A. Zuccaro (INOA/CNR Firenze), A. Anzalone, O. Catalano, G. La Rosa, M.C. Maccarone, B. Sacco (IASF- PA/INAF Palermo), G. D’Alì Staiti, D. Tegolo (Univ. Palermo), M. Casolino, M.P. De Pascale, A. Morselli, P. Picozza, R. Sparvoli (INFN and Univ. “Tor Vergata” Roma), P. Vallania (IFSI/INAF Torino), P. Galeotti, M. Bertaina, C. Vigorito (Univ. Torino), D. D’Urso, F. Guarino, F. Isgrò, S. Russo (Univ. Napoli), M. Ambrosio, C. Aramo, D. Campana, G. De Rosa, G. Osteria (INFN-Napoli), M. Ricci (INFN-Frascati) Mexico: G. Medina-Tanco, J.C. D’Olivo, J.F. Valdés (UNAM), H. Salazar, O. Martines (BUAP), L. Villaseñor (UMSNH) Poland: T. Batsch, B. Szabelska, J. Szabelski, T. Wibig (IPJ), T. Tymieniecka( Podlasie Univ.), Z. Wlodarczyk (Kielce Univ.), G. Siemieniec-Ozieblo (Jagiellonian Univ.) Republic of Korea: S. Nam, I.H. Park, J. Yang, J.H. Park, T. Chung (Ehwa W. Univ.), T.W. Kim (Ajou Univ.), S.W. Kim (Yonsei Univ.), K.K. Joo (Chonnam National Univ.) Russia: G.K. Garipov, B.A. Khrenov, P.A. Klimov, M.I. Panasyuk, I.V. Yashin (SINP MSU), D. Naumov, L. Tkachev (Dubna JINR) Slovakia: K. Kudela, R. Bucik, R. Bobik, M. Slivka (Inst. Experimental Physics, KOSICE) Spain: M.D. Rodriguez-Frias, L.Peral, J. Gutierrez, R. Gomez-Herrero (Univ. Alcala) Switzerland: A. Maurissen, V. Mitev (CSEM Neuchatel) - iii - JEM-EUSO: Extreme Universe Space Observatory onboard Japanese Experiment Module - iv - Report on the Phase A Study (Purple Book) JEM-EUSO Mission Summary Accommodated on the Japanese Experiment Module (JEM) of the International Space Station (ISS), the Extreme Universe Space Observatory JEM-EUSO will utilize the Earth atmosphere as a giant detector of the highest energy cosmic rays, the most energetic particles coming from the Universe. Looking downward the Earth from Space, JEM-EUSO will detect such particles observing the fluorescence signal produced during their pass in the atmosphere. The main objective of JEM-EUSO is the possibility of doing astronomy and astrophysics through the particle channel with extreme energies above 1020 eV, so extending, with a significant statistical evidence, the measurement of the energy spectrum of the cosmic radiation beyond the Greisen-Zatsepin-Kuzmin (GZK) cut-off. Moreover, using the atmosphere as a giant detector, JEM-EUSO could observe extremely high energy neutrinos, so opening the field of high energy neutrino astronomy. Furthermore, JEM-EUSO will contribute to the investigation of phenomena intrinsic to the Earth’s atmosphere or induced by the flux of meteoroids incoming from Space. JEM-EUSO has been designed to operate for more than 3 years onboard the International Space Station orbiting around the Earth every 90 minutes at altitude of about 400 km. JEM-EUSO is a worldwide collaborating effort of 62 research groups from 12 countries. Scientific Objectives Main Objective: Astronomy and astrophysics through particle channel with extreme energies > 1020 eV Identification of sources by the high-statistics arrival direction analysis Measurement of the energy spectra from individual sources to constrain acceleration or emission mechanisms Exploratory Objectives: Detection of extreme energy gamma-rays Detection of extreme energy neutrinos Study of the Galactic magnetic field Verification of the relativity and the quantum gravity effect in extreme energy Global of nightglows, plasma discharges and lightning Parameters of Instrument Parameters of Mission Field of View ±30° Time of launch year 2013 Observational area >1.9×105 km2 Operation period 3 years (+ 2 years) Optical bandwidth 330 ÷400 nm Launching rocket H2B Focal Surface area 4.5 m2 Transportation to ISS, non pressurized Carrier of H2 international Space Station Transfer Vehicle HTV Number of pixels ~2.0×105 Site to attach Japanese Exposure Module JEM/ Exposure Facility EF#2 Pixel size 4.5 mm Mass 1983 kg Pixel size at ground 750 m Power 926 W (operative), and spatial resolution 0.1° 352 W (non-operative) Event time sampling ≤ 2.5 µs Data transfer rate 285 kpbs Duty cycle ~20% Orbit: height , inclination ~ 400 km, 51.64° - v - JEM-EUSO: Extreme Universe Space Observatory onboard Japanese Experiment Module - vi - Report on the Phase A Study (Purple Book) Table of contents Foreword................................................................................................................... 1 1. Mission Overview............................................................................................ 3 2. Science Objectives........................................................................................... 5 2.1. Main Objective: Astronomy and Astrophysics through the Particle Channel...............5 2.1.1. Identification of sources by the high-statistics arrival direction analysis..............7 2.1.2. Measurements of the energy spectra from individual sources .............................10 2.2. Exploratory Objectives....................................................................................................15 2.2.1. Detection of extreme energy gamma rays .............................................................15 2.2.2. Detection of extreme energy neutrinos..................................................................18 2.2.3. Study of the galactic magnetic field.......................................................................20 2.2.4. Verification of the relativity and the quantum gravity effect...............................21 2.2.5. Global observation of nightglows, plasma discharges, and lightning .................21 3. Observation Principle and Requirements.................................................... 25 3.1. Observation Principle......................................................................................................25 3.2. Accuracy of Observables ................................................................................................27 3.2.1. Effective area...........................................................................................................27 3.2.2. Time resolution, collecting aperture, pixel size, Xmax...........................................27 3.2.3. Dark current and night sky background.................................................................29 3.3. Requirements ...................................................................................................................29 3.3.1. Scientific requirements ...........................................................................................29 3.3.2. Observation requirements.......................................................................................29 3.3.3. Instrument requirements .........................................................................................29 3.3.4. Miscellanea..............................................................................................................30 3.4. Success Criteria ...............................................................................................................31 4. Instrument..................................................................................................... 33 4.1. Overview..........................................................................................................................33
Recommended publications
  • IVS NICT-TDC News No.39
    ISSN 1882-3432 CONTENTS Proceedings of the 18th NICT TDC Symposium (Kashima, October 1, 2020) KNIFE, Kashima Nobeyama InterFErometer . 3 Makoto Miyoshi Space-Time Measurements Research Inspired by Kashima VLBI Group . 8 Mizuhiko Hosokawa ALMA High Frequency Long Baseline Phase Correction Using Band-to-band ..... 11 (B2B) Phase Referencing Yoshiharu Asaki and Luke T. Maud Development of a 6.5-22.5 GHz Very Wide Band Feed Antenna Using a New ..... 15 Quadruple-Ridged Antenna for the Traditional Radio Telescopes Yutaka Hasegawa*, Yasumasa Yamasaki, Hideo Ogawa, Taiki Kawakami, Yoshi- nori Yonekura, Kimihiro Kimura, Takuya Akahori, Masayuki Ishino, Yuki Kawa- hara Development of Wideband Antenna . 18 Hideki Ujihara Performance Survey of Superconductor Filter Introduced in Wideband Re- ..... 20 ceiver for VGOS of the Ishioka VLBI Station Tomokazu Nakakuki, Haruka Ueshiba, Saho Matsumoto, Yu Takagi, Kyonosuke Hayashi, Toru Yutsudo, Katsuhiro Mori, Tomokazu Kobayashi, and Mamoru Sekido New Calibration Method for a Radiometer Without Using Liquid Nitrogen ..... 23 Cooled Absorber Noriyuki Kawaguchi, Yuichi Chikahiro, Kenichi Harada, and Kensuke Ozeki Comparison of Atmospheric Delay Models (NMF, VMF1, and VMF3) in ..... 27 VLBI analysis Mamoru Sekido and Monia Negusini HINOTORI Status Report . 31 Hiroshi Imai On-the-Fly Interferometer Experiment with the Yamaguchi Interferometer . 34 Kenta Fujisawa, Kotaro Niinuma, Masanori Akimoto, and Hideyuki Kobayashi Superconducting Wide-band BRF for Geodetic VLBI Observation with ..... 36 VGOS Radio Telescope
    [Show full text]
  • Orbital Phase Resolved Spectroscopy of 4U1538-52 with MAXI
    Astronomy & Astrophysics manuscript no. jjrr-mif-maxi_rev5 c ESO 2018 September 12, 2018 Orbital phase resolved spectroscopy of 4U1538−52 with MAXI J. J. Rodes-Roca1, 2, 3,,⋆ T. Mihara3, S. Nakahira4, J. M. Torrejón1, 2, Á. Giménez-García1, 2, 5, and G. Bernabéu1, 2 1 Dept. of Physics, Systems Engineering and Sign Theory, University of Alicante, 03080 Ali- cante, Spain e-mail: [email protected] 2 University Institute of Physics Applied to Sciences and Technologies, University of Alicante, 03080 Alicante, Spain 3 MAXI team, Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan e-mail: [email protected] 4 ISS Science Project Office, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan 5 School of Physics, Faculty of Science, Monash University, Clayton, Victoria 3800, Australia XX-XX-XX; XX-XX-XX ABSTRACT Context. 4U 1538−52, an absorbed high mass X-ray binary with an orbital period of ∼3.73 days, shows moderate orbital intensity modulations with a low level of counts during the eclipse. Sev- eral models have been proposed to explain the accretion at different orbital phases by a spherically arXiv:1507.04274v2 [astro-ph.HE] 18 Jul 2015 symmetric stellar wind from the companion. Aims. The aim of this work is to study both the light curve and orbital phase spectroscopy of this source in the long term. Particularly, the folded light curve and the changes of the spectral parameters with orbital phase to analyse the stellar wind of QV Nor, the mass donor of this binary system.
    [Show full text]
  • Pushing the Limits of the Coronagraphic Occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph
    Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes Bin Ren Glenn Schneider John H. Debes, Bin Ren, Glenn Schneider, “Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph,” J. Astron. Telesc. Instrum. Syst. 5(3), 035003 (2019), doi: 10.1117/1.JATIS.5.3.035003. Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Astronomical-Telescopes,-Instruments,-and-Systems on 02 Jul 2019 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 035003 (Jul–Sep 2019) Pushing the limits of the coronagraphic occulters on Hubble Space Telescope/Space Telescope Imaging Spectrograph John H. Debes,a,* Bin Ren,b,c and Glenn Schneiderd aSpace Telescope Science Institute, AURA for ESA, Baltimore, Maryland, United States bJohns Hopkins University, Department of Physics and Astronomy, Baltimore, Maryland, United States cJohns Hopkins University, Department of Applied Mathematics and Statistics, Baltimore, Maryland, United States dUniversity of Arizona, Steward Observatory and the Department of Astronomy, Tucson Arizona, United States Abstract. The Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) contains the only currently operating coronagraph in space that is not trained on the Sun. In an era of extreme-adaptive- optics-fed coronagraphs, and with the possibility of future space-based coronagraphs, we re-evaluate the con- trast performance of the STIS CCD camera. The 50CORON aperture consists of a series of occulting wedges and bars, including the recently commissioned BAR5 occulter. We discuss the latest procedures in obtaining high-contrast imaging of circumstellar disks and faint point sources with STIS.
    [Show full text]
  • Large-Angle Observatory with Energy Resolution for Synoptic X-Ray Studies (LOBSTER-SXS) ∗ Paul Gorenstein , Harvard-Smithsonian Center for Astrophysics, 60 Garden St
    Large-angle OBServaTory with Energy Resolution for Synoptic X-ray Studies (LOBSTER-SXS) ∗ Paul Gorenstein , Harvard-Smithsonian Center for Astrophysics, 60 Garden St. MS-4, Cambridge, MA USA 02138 ABSTRACT The soft X-ray band hosts a larger, more diverse range of variable sources than any other region of the electromagnetic spectrum. They are stars, compact binaries, SMBH’s, the X-ray components of Gamma-Ray Bursts, their X-ray afterglows, and soft X-ray flares from supernova. We describe a concept for a very wide field (~ 4 ster) modular hybrid X-ray telescope system that can measure positions of bursts and fast transients with as good as arc second accuracy, the precision required to identify fainter and increasingly more distant events. The dimensions and materials of all telescope modules are identical. All but two are part of a cylindrical lobster-eye telescope with flat double sided mirrors that focus in one dimension and utilize a coded mask for resolution in the other. Their positioning accuracy is about an arc minute. The two remaining modules are made from the same materials but configured as a Kirkpatrick-Baez telescope with longer focal length that focuses in two dimensions. When pointed it refines the hybrid telescope’s arc minute positions to an arc second and provides larger effective area for spectral and temporal measurements. Above 10 keV the mirrors act as an imaging collimator with positioning capability. For short duration events this hybrid focusing/coded mask system is more sensitive and versatile than either a 2D coded mask or a 2D lobster-eye telescope.
    [Show full text]
  • Annual Report of S.P
    ANNUAL REPORT OF S.P. KOROLEV ROCKET AND SPACE PUBLIC CORPORATION ENERGIA FOR 2019 This Annual Report of S.P.Korolev Rocket and Space Public Corporation Energia (RSC Energia) was prepared based upon its performance in 2019 with due regard for the requirements stated in the Russian Federation Government Decree of December 31, 2010 No. 1214 “On Improvement of the Procedure to Control Open Joint-Stock Companies whose Stock is in Federal Ownership and Federal State Unitary Enterprises”, and in accordance with the Regulations “On Information Disclosure by the Issuers of Outstanding Securities” No. 454-P approved by the Bank of Russia on December 30, 2014 Accuracy of the data contained in this Annual Report, including the Report on the interested-party transactions effected by RSC Energia in 2019, was confirmed by RSC Energia’s Auditing Committee Report as of 01.06.2020. This Annual Report was preliminary approved by RSC Energia’s Board of Directors on August 24, 2020 (Minutes No. 31). This Annual Report was approved at RSC Energia’s General Shareholders’ Meeting on September 28, 2020 (Minutes No 40 of 01.10.2020). 2 TABLE OF CONTENTS 1. BACKGROUND INFORMATION ABOUT RSC ENERGIA ............................. 6 1.1. Company background .........................................................................................................................6 1.2. Period of the Company operation in the industry ...............................................................................6 1.3. Information about the purchase and sale contracts for participating interests, equities, shares of business partnerships and companies concluded by the Company in 2019 ..............................................7 1.4. Information about the holding structure and the organizations involved ...........................................8 2. PRIORITY DIRECTIONS OF RSC ENERGIA OPERATION ........................ 11 2.1.
    [Show full text]
  • Optical Blocking Performance of Ccds Developed for the X-Ray
    Optical Blocking Performance of CCDs Developed for the X-ray Astronomy Satellite XRISM Hiroyuki Uchidaa,∗, Takaaki Tanakaa, Yuki Amanoa, Hiromichi Okona, Takeshi G. Tsurua, Hirofumi Nodae,f, Kiyoshi Hayashidae,f, Hironori Matsumotoe,f, Maho Hanaokae, Tomokage Yoneyamae, Koki Okazakie, Kazunori Asakurae, Shotaro Sakumae, Kengo Hattorie, Ayami Ishikurae, Hiroshi Nakajimah, Mariko Saitod, Kumiko K. Nobukawad,b, Hiroshi Tomidag, Yoshiaki Kanemaruc, Jin Satoc, Toshiyuki Takakic, Yuta Teradac, Koji Moric, Hikari Kashimurah, Takayoshi Kohmurai, Kouichi Haginoi, Hiroshi Murakamij, Shogo B. Kobayashik, Yusuke Nishiokac, Makoto Yamauchic, Isamu Hatsukadec, Takashi Sakol, Masayoshi Nobukawal, Yukino Urabem, Junko S. Hiragam, Hideki Uchiyaman, Kazutaka Yamaokao, Masanobu Ozakip, Tadayasu Dotanip,q, Hiroshi Tsunemie, Hisanori Suzukir, Shin-ichiro Takagir, Kenichi Sugimotor, Sho Atsumir, Fumiya Tanakar aDepartment of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo, Kyoto, Kyoto 606-8502, Japan bDepartment of Physics, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan cFaculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan dDepartment of Physics, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara, Nara 630-8506, Japan eDepartment of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan fProject Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan gJapan
    [Show full text]
  • Optical Design of Diffraction-Limited X-Ray Telescopes
    Research Article Vol. 59, No. 16 / 1 June 2020 / Applied Optics 4901 Optical design of diffraction-limited x-ray telescopes Brandon D. Chalifoux, Ralf K. Heilmann, Herman L. Marshall, AND Mark L. Schattenburg* Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA *Corresponding author: [email protected] Received 11 March 2020; revised 21 April 2020; accepted 23 April 2020; posted 23 April 2020 (Doc. ID 392479); published 27 May 2020 Astronomical imaging with micro-arcsecond (µas) angular resolution could enable breakthrough scientific discov- eries. Previously proposed µas x-ray imager designs have been interferometers with limited effective collecting area. Here we describe x-ray telescopes achieving diffraction-limited performance over a wide energy band with large effective area, employing a nested-shell architecture with grazing-incidence mirrors, while matching the optical path lengths between all shells. We present two compact nested-shell Wolter Type 2 grazing-incidence telescope designs for diffraction-limited x-ray imaging: a micro-arcsecond telescope design with 14 µas angular resolution and 2.9 m2 of effective area at 5 keV photon energy (λ D 0.25 nm), and a smaller milli-arcsecond telescope design with 525 µas resolution and 645 cm2 effective area at 1 keV (λ D 1.24 nm). We describe how to match the optical path lengths between all shells in a compact mirror assembly and investigate chromatic and off-axis aberrations. Chromatic aberration results from total external reflection off of mirror surfaces, and we greatly mitigate its effects by slightly adjusting the path lengths in each mirror shell.
    [Show full text]
  • Johannes Kepler“ Erfolgreich Raumfahrtaktivitäten Zuständig
    Aktuelles aus dem DLR Raumfahrtmanagement I Topics from DLR Space Administration I Heft 2/2011 Mai 2011 I Issue 2/2011 May 2011 I Nr.15 newsLecounttterDown Das DLR im Überblick DLR at a glance Das DLR ist das nationale Forschungszentrum der Bundesrepu- DLR is Germany´s national research centre for aeronautics and blik Deutschland für Luft- und Raumfahrt. Seine umfangreichen space. Its extensive research and development work in Aero- Forschungs- und Entwicklungsarbeiten in Luftfahrt, Raumfahrt, nautics, Space, Energy, Transport and Security is integrated into Energie, Verkehr und Sicherheit sind in nationale und internati- national and international cooperative ventures. As Germany´s onale Kooperationen eingebunden. Über die eigene Forschung space agency, DLR has been given responsibility for the forward Raumfahrtsysteme hinaus ist das DLR als Raumfahrt-Agentur im Auftrag der Bun- planning and the implementation of the German space pro- desregierung für die Planung und Umsetzung der deutschen gramme by the German federal government as well as for the Mission „Johannes Kepler“ erfolgreich Raumfahrtaktivitäten zuständig. Zudem fungiert das DLR als international representation of German interests. Furthermore, Dachorganisation für den national größten Projektträger. Germany’s largest project-management agency is also part of DLR. Space Flight Systems In den 15 Standorten Köln (Sitz des Vorstands), Augsburg, Ber- Approximately 6,900 people are employed at 15 locations in Mission ‘Johannes Kepler‘ Proceeded Successfully lin, Bonn, Braunschweig, Bremen, Göttingen, Hamburg, Lam- Germany: Cologne (headquarters), Augsburg, Berlin, Bonn, Heft 2/2011 Mai 2011 I Issue 2/2011 May 2011 poldshausen, Neustrelitz, Oberpfaffenhofen, Stade, Stuttgart, Braunschweig, Bremen, Goettingen, Hamburg, Lampoldshausen, Seite 6 / page 6 Trauen und Weilheim beschäftigt das DLR circa 6.900 Mitarbei- Neustrelitz, Oberpfaffenhofen, Stade, Stuttgart, Trauen, and terinnen und Mitarbeiter.
    [Show full text]
  • An Extremely Powerful Long Lived Superluminal Ejection from the Black Hole MAXI J1820+070
    An extremely powerful long lived superluminal ejection from the black hole MAXI J1820+070 J. S. Bright1, R. P. Fender1;2, S. E. Motta1, D. R. A. Williams1, J. Moldon3;4, R. M. Plotkin5;6, J. C. A. Miller-Jones6, I. Heywood1;7;8, E. Tremou9, R. Beswick4, G. R. Sivakoff10, S. Corbel9;11, D. A. H. Buckley12, J. Homan13;14;15, E. Gallo16, A. J. Tetarenko17, T. D. Russell18, D. A. Green19, D. Titterington19, P. A. Woudt2;20, R. P. Armstrong2;1;8, P. J. Groot21;2;12, A. Horesh22, A. J. van der Horst23;24, E. G. Kording¨ 21, V. A. McBride2;12;25, A. Rowlinson18;26 & R. A. M. J. Wijers18 1Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK 2Department of Astronomy, University of Cape Town, Private Bag X3, Rondenbosch, 7701, South Africa 3Instituto de Astrof´ısica de Andaluc´ıa (IAA, CSIC), Glorieta de las Astronom´ıa, s/n, E-18008 Granada, Spain 4Jodrell Bank Centre for Astrophysics, The University of Manchester, M13 9PL, UK 5Department of Physics, University of Nevada, Reno, Nevada, 89557, USA 6International Centre for Radio Astronomy Research, Curtin University, GPO Box, U1987, Perth, WA 6845, Australia 7Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa 8South African Radio Astronomy Observatory (SARAO), 2 Fir Street, Observatory, Cape Town, 7925, South Africa 9AIM/CEA Paris-Saclay, Universite` Paris Diderot, CNRS, F-91191 Gif-sur-Yvette, France 1 10Department of Physics, CCIS 4-183, University of Alberta, Edmonton, AB, T6G 2E1, Canada 11Station de Radioastronomie de Nanc¸ay, Observatoire de Paris, PSL Research University, CNRS, Univ.
    [Show full text]
  • Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace
    Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Joseph, Christine and Danielle Wood. "Understanding Socio- Technical Issues Affecting the Current Microgravity Research Marketplace." 2019 IEEE Aerospace Conference, March 2019, Big Sky, Montana, USA, Institute of Electrical and Electronics Engineers, June 2019. © 2019 IEEE As Published http://dx.doi.org/10.1109/aero.2019.8742202 Publisher Institute of Electrical and Electronics Engineers (IEEE) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/131219 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Understanding Socio-Technical Issues Affecting the Current Microgravity Research Marketplace Christine Joseph Danielle Wood Massachusetts Institute of Technology Massachusetts Institute of Technology 77 Massachusetts Ave 77 Massachusetts Ave Cambridge, MA 02139 Cambridge, MA 02139 [email protected] [email protected] Abstract— For decades, the International Space Station (ISS) 1. INTRODUCTION has operated as a bastion of international cooperation and a unique testbed for microgravity research. Beyond enabling For anyone who is a teenager in October 2019, the insights into human physiology in space, the ISS has served as a International Space Station has been in operation and hosted microgravity platform for numerous science experiments. In humans for the entirety of that person’s life. The platform has recent years, private industry has also been affiliating with hosted a diverse spectrum of microgravity, human space NASA and international partners to offer transportation, exploration, technology demonstration, and education related logistics management, and payload demands.
    [Show full text]
  • Kibo HANDBOOK
    Kibo HANDBOOK September 2007 Japan Aerospace Exploration Agency (JAXA) Human Space Systems and Utilization Program Group Kibo HANDBOOK Contents 1. Background on Development of Kibo ............................................1-1 1.1 Summary ........................................................................................................................... 1-2 1.2 International Space Station (ISS) Program ........................................................................ 1-2 1.2.1 Outline.........................................................................................................................1-2 1.3 Background of Kibo Development...................................................................................... 1-4 2. Kibo Elements...................................................................................2-1 2.1 Kibo Elements.................................................................................................................... 2-2 2.1.1 Pressurized Module (PM)............................................................................................ 2-3 2.1.2 Experiment Logistics Module - Pressurized Section (ELM-PS)................................... 2-4 2.1.3 Exposed Facility (EF) .................................................................................................. 2-5 2.1.4 Experiment Logistics Module - Exposed Section (ELM-ES)........................................ 2-6 2.1.5 JEM Remote Manipulator System (JEMRMS)............................................................
    [Show full text]
  • Multiwavelength Challenges in the Fermi Era
    71h AGILE Workshop: The Bright -y-ray Sky Multiwavelength Challenges in the Fermi Era D. J. THOMPSON' 'NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA on behalf of the Fermi Large Area Telescope Collaboration ABSTRACT. The gamma-ray surveys of the sky by AGILE and the Fermi Gamma-ray Space Telescope offer both opportunities and challenges for multiwavelength and multi-messenger studies. Gamma-ray bursts, pulsars, binary sources, flaring Active Galactic Nuclei, and Galactic transient sources are all phenomena that can best be studied with a wide variety of instruments simultaneously or contemporaneously. From the gamma-ray side, a principal challenge is the latency from the time of an astrophysical event to the recognition of this event in the data. Obtaining quick and complete multiwavelength coverage of gamma-ray sources of interest can be difficult both in germs of logistics and in terms of generating scientific interest. 1. Introduction - The Multiwavelength Revolution The process of astrophysical research has changed dramatically in the past 30 years, and the inclusion of multiwavelength studies has been an important aspect of that change. As an example of the growing importance of studies that reach beyond a single wavelength, consider this simple literature search using NASA ADS (http://adsabs.harvard.edu/ads-abstracts.html) . The search was for the word "Multiwavelength" in titles for each of four years spanning three decades. The result is shown in Table 1. TABLE I Papers with "Multiwavelength" in the Title Year Papers 1976 0 1986 2 1996 58 2006 97 Even considering the normal growth of scientific publications, the increase in multi- wavelength research has been dramatic.
    [Show full text]