Surrogate Organisms for Low Moisture Foods: Tables and References to Repost Or Cite, Please Use the Following Citation: Theofel, C., S
Total Page:16
File Type:pdf, Size:1020Kb
1 Surrogate Organisms for Low Moisture Foods: Tables and References To repost or cite, please use the following citation: Theofel, C., S. Yada, and L. J. Harris. 2019. Surrogate organisms for low moisture foods – published treatments [Tables and references]. Available at: https://ucfoodsafety.ucdavis.edu/low‐moisture‐foods/low‐moisture‐foods‐general‐information. Table 1. Studies that compare the survival of surrogate organisms to one or more target pathogens in low moisture foods under different processes Table 2. Studies that use surrogate organisms to study different processes in low moisture foods Table 1. Studies that compare the survival of surrogate organisms to one or more target pathogens in low moisture foods under different processes Process type Treatment Surrogate Target pathogen(s) Matrix Summary References organism Thermal Extrusion Enterococcus faecium Salmonella strains: Balanced Extrusion led to a 5‐log reduction Bianchini et al., 2014 NRRL B‐2354 Branderup NVSL 96‐ carbohydrate‐ of Salmonella. 12528, Oranienburg protein meal E. faecium showed greater heat NSVL 96‐12608, resistance than Salmonella. Typhimurium ATCC 14028, Enteritidis IV/NVSL 94‐13062, Heidelberg/Sheldon 3347‐1 Stagnant and forced Enterococcus faecium Salmonella strains: Peanuts, pecans E. faecium survived better or not Brar and Danyluk, dry air heating ATTC 84591; Senftenberg 775W significantly worse than 2019 (peanuts), hot oil Enterococcus faecalis ATCC 43845, Enteritidis Salmonella in all tested (pecan kernels), hot ATTC 29212 PT 30 ATCC BAA‐1045, processes. water (in‐shell Tennessee K4643 pecans) Heat process Pediococcus acidilactici Escherichia coli Beef jerky P. acidilactici displayed greater Buege et al., 2006 (from starter culture O157:H7 strains: ATCC thermal resistance than all (Formula 100, Trumark, 43894, ATCC 51657, pathogens evaluated when Linden, N.J.) ATCC 51658, ATCC reductions could be calculated. 43895; Salmonella strains: Typhimurium S9, Heidelberg S13, Enteritidis E40, Infantis S20, Hadar S21 C. Theofel, S. Yada, and L. J. Harris Updated 9/13/2019 2 Process type Treatment Surrogate Target pathogen(s) Matrix Summary References organism Water blanching, Pediococcus acidilactici Salmonella strains: Pet food Both P. acidilactici and E. faecium Ceylan et al., 2015 steam blanching ATCC 8042; Anatum, Montevideo, showed greater thermal Enterococcus faecium Senftenberg 775W, tolerance than the Salmonella NRRL B‐2354 Tennessee, cocktail. Schwarzengrund, Infantis, Mbandaka Heat process Enterococcus faecium Salmonella strains: Wheat flour E. faecium was more heat Channaiah et al., 2016 ATTC 8459; Typhimurium, resistant than the Salmonella. Saccharomyces Newport, Senftenberg S. cerevisiae was less heat cerevisiae 775W resistant than Salmonella. Heat process Escherichia coli K12 22 Shiga toxin– Wheat flour E. faecium and E. coli P1 were Daryaei et al., 2019 LMM 1010, Escherichia producing Escherichia good surrogates for the 22 STEC coli P1 ATCC BAA‐1427; coli strains (STEC) strains tested. Listeria innocua ATCC 33090; Enterococcus faecium NRRL B‐2354; Lactobacillus plantarum ATCC 8014; Bifidobacterium lactis Heat process Pediococcus acidilactici Salmonella strains: Toasted oat P. acidilactici survived similarly to Deen and Diez‐ ATCC 8042; Enteritidis 2415, Agona cereal, peanut E. faecium in peanut butter; both Gonzalez, 2019 Enterococcus faecium F5567, Typhimurium butter survived better than the NRRL B‐2354 ATCC 14028, Salmonella cocktail. P. acidilactici Tennessee K4643, and the Salmonella cocktail Newport MH57137, survived similarly in toasted oat Heidelberg MH27651 cereal treatment above 85°C. Moist‐air Enterococcus faecium Salmonella Enteritidis Almond kernels E. faecium is a conservative Jeong et al., 2011 convection heating NRRL B‐2354 Phage Type (PT) 30 surrogate for Salmonella Enteritidis PT 30 during moist‐air heating. Heat process Enterococcus faecium Salmonella Enteritidis Almond kernels E. faecium is a good surrogate for Jeong et al., 2017 NRRL B‐2354 PT 30 Salmonella, but E. faecium models showed higher error. Methodology, aw, and process humidity are important parameters to monitor. C. Theofel, S. Yada, and L. J. Harris Updated 9/13/2019 3 Process type Treatment Surrogate Target pathogen(s) Matrix Summary References organism Heat process Enterococcus faecium Salmonella strains: Brown rice flour E. faecium was a suitable Jin and Tang, 2019 NRRL B‐2354 Agona 447967, surrogate at 70 and 75°C but not Mbandaka 698538, at 80 or 85°C. Montevideo 488275, Tennessee K4643, Reading ATCC 6967 Hot water Enterococcus faecium Salmonella, E. coli In‐shell pecans Salmonella enterica and E. Kharel et al., 2018 ATTC 8459 O157:H7, Listeria faecium had the highest D‐values monocytogenes of all tested strains. E. faecium was overall the most heat resistant. Heat process Enterococcus faecium Salmonella Enteritidis Wheat flour E. faecium had similar or higher D Liu et al., 2018 NRRL B‐2354 PT 30 and Z values under all parameters tested. Radio frequency Enterococcus faecium Salmonella Enteritidis Corn flour E. faecium was a conservative Ozturk et al., 2019 heating and NRRL B‐2354 PT 30 surrogate for Salmonella under subsequent freezing the parameters tested. Heat process Enterococcus faecium Salmonella strains: Confectionery E. faecium was a suitable Rachon et al., 2016 NRRL B‐2354 Enteritidis PT 30, formulation, surrogate for all products studied Senftenberg 775W, chicken meat except for the confectionery Typhimurium, Anatum, powder, pet formulation. Montevideo, food, savory Tennessee; seasoning Listeria strains: ATCC 15313–53 XXIII, DSMZ 20600; ATCC 49594; ATCC 35152–NCTC 7973; ATCC 13932– LMG 21264, DSMZ 27575; FRRB 2542 Oil roasting, dry Enterococcus faecium Salmonella strains: Peanuts E. faecium strains showed greater Sanders and Calhoun, roasting ATCC 8459, Enteritidis PT 30, thermal resistance than all 2014 Enterococcus faecium Tennessee (2006/2007 Salmonella strains under all ATCC 35667 peanut outbreak parameters tested. strain), Typhimurium TM‐1, Cubana G2:229, Newport C2:e,h:1,2, Redba, Bredeney C. Theofel, S. Yada, and L. J. Harris Updated 9/13/2019 4 Process type Treatment Surrogate Target pathogen(s) Matrix Summary References organism Vacuum steam Enterococcus faecium Salmonella Enteritidis Quinoa, Vacuum steam pasteurizations Shah et al., 2017 pasteurization NRRL B‐2354 PT 30, E. coli O157:H7 sunflower effectively reduced pathogens on kernels, black the matrices at the parameters peppercorns, tested. E. faecium was a good whole flaxseed, surrogate for Salmonella PT 30 milled flaxseed and E. coli O157:H7 for the matrices and parameters tested. Heat process Enterococcus faecium Salmonella strains: Cocoa powder E. faecium was a suitable Tsai et al., 2019 NRRL B‐2354 Enteritidis PT 30, surrogate at lower aw but not at Tennessee K4643, aw above 0.45. Agona 447967 Radiofrequency Enterococcus faecium Salmonella Enteritidis Wheat flour E. faecium was a suitable Villa‐Rojas et al., 2017 heat NRRL B‐2354 PT 30 surrogate for Salmonella. Radiofrequency Enterococcus faecium Salmonella strains: Black E. faecium was a suitable Wei et al., 2018 heat NRRL B‐2354 Agona 447967, peppercorns surrogate for Salmonella. Reading, Tennessee K4643, Montevideo 488275, Mbandaka 698538 Radiofrequency Enterococcus faecium Salmonella strains: Egg white E. faecium was a suitable Wei et al., 2020 heat NRRL B‐2354 Agona 447967, powder surrogate for Salmonella. Reading, Tennessee K4643, Montevideo 488275, Mbandaka 698538 Steam treatment Enterococcus faecium Salmonella strains: Black Salmonella was the most Zhou et al., 2019 ATTC 8459; Listeria Senftenberg 775W peppercorns thermally resistant pathogen innocua ATCC 33090; ATCC 43845, Enteritidis tested. E. faecium was a suitable Escherichia coli P1 ATCC PT 30 ATCC BAA‐1045, surrogate for Salmonella. BAA‐1427, Escherichia Montevideo ATCC BAA‐ coli K12 ATCC 23631 710, Thompson; Listeria monocytogenes strains: 4b LMG 23192, 4b LMG 23194, 1/2b LMG 26484; Escherichia coli O157:H7 strains: ATCC 700728, BRMSID 188, LFMFP 846 C. Theofel, S. Yada, and L. J. Harris Updated 9/13/2019 5 Process type Treatment Surrogate Target pathogen(s) Matrix Summary References organism Thermal and Hot water, calcium Escherichia coli strains: E. coli O157:H7strains: Mung bean Hot water treatment led to Bari et al., 2009 Chemical hypochlorite 080618‐8, 080526‐4, CR‐3, MN‐28, MY‐29, seeds greater reductions than calcium treatment 080611‐3, 080602‐3, DT‐66; hypochlorite treatment. 080514‐2 Salmonella Enteritidis Surrogate E. coli strains strains: SE‐1, SE‐2 SE‐3, performed similarly to SE‐4 pathogenic strains. Product Enterococcus faecium Salmonella Tennessee, Peanut pastes Salmonella survived in all Kataoka et al., 2014 formulation: water NRRL B‐2354 Salmonella formulations for >12 months. activity and fat Typhimurium DT104 E. faecium survived at higher level, heat process levels than Salmonella during storage. Ozone, heated Enterococcus faecium Salmonella Enteritidis In‐shell almonds, E. faecium did not survive as well Perry et al., 2019 brine and ozone OSY 31284 ODA 99‐30581‐13 in‐shell as Salmonella in ozone treatment pistachios on almonds or pistachios. E. faecium was more resistant to heat‐ozone treatment than Salmonella. Chemical Peracetic acid Enterococcus faecium Salmonella strains: Chia seeds, flax E. faecium was an appropriate Hylton et al., 2019 NRRL B‐2354 Newport, Senftenberg seeds surrogate for Salmonella. 775W, Oranienburg, Saintpaul, Typhimurium DT104 Propylene oxide Enterococcus faecium Salmonella strains: Cashews, S. carnosus