Rbcl Gene Sequences Provide Evidence for the Evolutionary

Total Page:16

File Type:pdf, Size:1020Kb

Rbcl Gene Sequences Provide Evidence for the Evolutionary Proc. Nail. Acad. Sci. USA Vol. 91, pp. 5730-5734, June 1994 Evolution rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns (pteridophyte/molecular systematics/phylogenetls/ribulose-blsphosphate carboxylase) MITSUYASU HASEBE*, TOMOYUKI OMORI, MIYUKI NAKAZAWA, TOSHIO SANO, MASAHIRO KATO, AND KUNIO IWATSUKI Botanical Gardens, Faculty of Science, University of Tokyo, 3-7-1 Hakusan, Bunkyo-ku, Tokyo 112, Japan Communicated by Warren H. Wagner, Jr., March 15, 1994 ABSTRACT Pteridophytes have a longer evolutionary his- gies, both live in aquatic habitats and are characterized by tory than any other vascular land plant and, therefore, have heterospory, the latter being extremely rare in the leptospo- endured greater loss of phylogenetically informative informa- rangiate ferns. The phylogenetic relationship ofthese aquatic tion. This factor has resulted in substantial disagreements in ferns to the homosporus ferns remains unsolved (8). evaluating characters and, thus, controversy in establishing a Classification and phylogenetic relationships of the stable classification. To compare competing casicatis, we leptosporangiate ferns above the family level are controver- obtained DNA sequences ofa chloroplast gene. The sequence of sial (1, 5, 6, 8-10). The reasons for discrepancy among 1206 nt of the large subunit of the ribulose-bisphosphate classification schemes include disagreements in evaluation of carboxylase gene (rbcL) was determined from 58 species, morphological characters used. It is often difficult to identify representing almost all families of leptosporangiate ferns. homologous characters because similar characters are found Phylogenetic trees were inferred by the neighbor-joining and in apparently different phylogenetic lineages; convergent or the parsimony methods. The two methods produced almost parallel evolution probably often occurred during the long identical phylogenetic trees that provided insights concerning evolutionary history of ferns (11). Furthermore, frequent major general evolutionary trends in the leptosporangiate extinctions produced missing links, which have resulted in ferns. Interesting findings were as follows: (i) two morpholog- difficulties elucidating phylogenetic interrelationships of ma- ically distinct heterosporous water ferns, Marula and Sal- jor groups (1, 11). Micromolecular information (12) also is not vinia, are sister genera; (iu) the tree ferns (Cyatheaceae, useful to infer familial relationships for the same reasons. Dicksoniaceae, and Metaxyaceae) are monophyletic; and (ui) Recently molecular systematics in plants has progressed polypodiolds are distantly related to the gleicheniolds in spite rapidly with in vitro DNA amplification (polymerase chain of the imilarit of their exindusiate soral morphology and are reaction, PCR) mediated by thermostable DNA polymerase close to the higher indusiate ferns In addition, the affiities of and the direct sequencing methods. In angiosperm system- several "problematic genera" were assessed. atics, this molecular approach has been effective in address- ing many phylogenetic questions that had not been solved The extant ferns include -10,000 species and 250 genera in using phenotypic characters (13). The gene for the large the world (1). They are the most conspicuous spore-bearing subunit of the ribulose-bisphosphate carboxylase (rbcL), land plants and the principal members of land flora after the located on the chloroplast genome, is an appropriate choice flowering plants. Ferns range' widely from tropical to cold for inference of phylogenetic relationships at higher taxo- temperate regions and from lowland to alpine zones, and their nomic levels (13-15). Because of its slow synonymous nu- habitats vary from xeric to aquatic conditions, although the cleotide substitution rate in comparison with nuclear genes center of their distribution is wet tropical and subtropical and its functional constraint that reduces the evolutionary mountains. rate ofnonsynonymous substitutions (16), rbcL is considered Ferns, or megaphyllus pteridophytes, are usually classified to be more useful than the isozymes (e.g., ref. 17) and the into three major groups: the Ophioglossaceae, the Maratti- restriction fragment length polymorphisms (e.g., ref. 18) at aceae, and the leptosporangiate ferns. Although the former these taxonomic levels. Whereas rbcL sequence data have two eusporangiate families have formerly been classified in a been accumulated for angiosperms, only a few rbcL se- single group, recent analyses ofmorphological and molecular quences have been reported for ferns (3), because of the characters revealed that they are not monophyletic (2, 3). In difficulty of finding appropriate primers to amplify or se- contrast, leptosporangiate ferns were inferred to be a mono- quence the gene. Ferns include much more ancient groups phyletic group, because leptosporangia are present only in than angiosperms (19), and their nucleotide sequences are leptosporangiate ferns and this is considered an apomorphic diversified among fern groups. character (2). The eusporangiate condition, however, is a 'In this study, we produced effective primers for fern rbcL plesiomorphic character, observed in the other vascular gene sequencing, with which we could sequence represen- plants. Monophyly of the leptosporangiate ferns is also tatives from >90% ofextant fern families sensu Kramer (8).t supported by unusual gene arrangements on the chloroplast We attempted to (i) identify major evolutionary lineages of genome (4). ferns and infer relationships of the families, (ii) evaluate Based on morphology, the leptosporangiate ferns are usu- previous taxonomic schemes and propose a working hypoth- ally classified into three major groups, Marsileaceae, Salvin- esis for future studies, and (iii) determine the phylogenetic iaceae including Azollaceae, and the rest, which are often positions of problematic taxa. treated as different orders (5-7). Although both the Mar- sileaceae and the Salviniaceae have distinctive morpholo- Abbreviation: NJ, neighbor joining. *To whom reprint requests should be sent at present address: Department of Botany and Plant Pathology, Purdue University, The publication costs of this article were defrayed in part by page charge Lilly Hall of Life Sciences, West Lafayette, IN 47907. payment. This article must therefore be hereby marked "advertisement" tThe sequences reported in this paper have been deposited in the in accordance with 18 U.S.C. §1734 solely to indicate this fact. GenBank data base (accession nos. U05601-U05658). 5730 Downloaded by guest on September 26, 2021 Evolution: Hasebe et al. Proc. Natl. Acad. Sci. USA 91 (1994) 5731 MATERIALS AND METHODS PARS on, STEEPEST DESCENT on, and NNI branch swapping. The trees obtained in the analysis were then used as starting Sixty-four species were selected (see Fig. 2) representing trees to search more parsimonious trees under the equal >90%o offern families sensu Kramer (8). Voucher specimens weighting criterion using MULPARS on, STEEPEST DESCENT sequenced in this study have been deposited at the University on, and TBR branch swapping. We also used the heuristic of Tokyo (TI). Metaxia total DNA was kindly provided by search with the weighting criterion of Albert et al. (32) with Diana Stein (Mount Holyoke College) and David Conant 10 random sequence additions, MULPARS on, STEEPEST DE- (Lyndon State College, Lyndonville, VT), and the voucher SCENT on, and TBR branch swapping. The search was re- specimen is deposited at Lyndon State College. peated five times with different random seeds. We used the Total DNA was isolated (20) from single plants and usually bootstrap analyses (27, 28) and the decay analyses (33) to purified by CsCl density gradient centrifugation (21). Three measure the degree of support for given branches. The overlapping fragments, which cover most of the rbcL gene, bootstrap analysis was performed under unweighting crite- were amplified (22) by Taq polymerase-mediated PCRs. Two rion with 228 bootstrap replicates with simple sequence synthetic primers for each region (aF and aR, bF and bR, and additions, MULPARS on, STEEPEST DESCENT on, and NNI cF and cR in Fig. 1) were designed based on the reported rbcL branch swapping. sequences (3). We usually obtained a single amplified product using these primers. If amplification failed, we used other primers (effective primer arrangements for each taxon can be RESULTS AND DISCUSSION obtained from authors upon request). The amplified frag- Phylogenetic Analyses. We sequenced PCR-amplified frag- ments were electrophoresed on 1% agarose gel, sliced out, ments of rbcL gene from 58 leptosporangiate ferns and used and purified by Geneclean II (Bio 101). The purified double- previously published sequences from Angiopteris, Adiantum stranded DNA fragments were directly sequenced using the capillus-veneris, Botrypus, and Osmunda (3). Sequences of AutoCycle sequencing kit (Pharmacia). The same primers two species in the Aspleniaceae were kindly provided by N. were employed as those used in amplifications but their 5' Murakami (University of Tokyo). In our previous studies of ends were chemically labeled by the fluorescein amidite land plants (3, 34), we used the translated amino acid se- (FluoroPrime; Pharmacia) followed by column purification quences to construct phylogenetic trees, because this elim- (NAP-10 column; Pharmacia). We sequenced the fragments inates bias caused by variation in the GC content of land in both directions
Recommended publications
  • Glenda Gabriela Cárdenas Ramírez
    ANNALES UNIVERSITATIS TURKUENSIS UNIVERSITATIS ANNALES A II 353 Glenda Gabriea Cárdenas Ramírez EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriea Cárdenas Ramírez Painosaama Oy, Turku , Finand 2019 , Finand Turku Oy, Painosaama ISBN 978-951-29-7645-4 (PRINT) TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) SARJA - SER. A II OSA - TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 EVOLUTIONARY HISTORY OF FERNS AND THE USE OF FERNS AND LYCOPHYTES IN ECOLOGICAL STUDIES Glenda Gabriela Cárdenas Ramírez TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS SARJA - SER. A II OSA – TOM. 353 | BIOLOGICA - GEOGRAPHICA - GEOLOGICA | TURKU 2019 University of Turku Faculty of Science and Engineering Doctoral Programme in Biology, Geography and Geology Department of Biology Supervised by Dr Hanna Tuomisto Dr Samuli Lehtonen Department of Biology Biodiversity Unit FI-20014 University of Turku FI-20014 University of Turku Finland Finland Reviewed by Dr Helena Korpelainen Dr Germinal Rouhan Department of Agricultural Sciences National Museum of Natural History P.O. Box 27 (Latokartanonkaari 5) 57 Rue Cuvier, 75005 Paris 00014 University of Helsinki France Finland Opponent Dr Eric Schuettpelz Smithsonian National Museum of Natural History 10th St. & Constitution Ave. NW, Washington, DC 20560 U.S.A. The originality of this publication has been checked in accordance with the University of Turku quality assurance system using the Turnitin OriginalityCheck service. ISBN 978-951-29-7645-4 (PRINT) ISBN 978-951-29-7646-1 (PDF) ISSN 0082-6979 (Print) ISSN 2343-3183 (Online) Painosalama Oy – Turku, Finland 2019 Para Clara y Ronaldo, En memoria de Pepe Barletti 5 TABLE OF CONTENTS ABSTRACT ...........................................................................................................................
    [Show full text]
  • A Journal on Taxonomic Botany, Plant Sociology and Ecology Reinwardtia
    A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY REINWARDTIA A JOURNAL ON TAXONOMIC BOTANY, PLANT SOCIOLOGY AND ECOLOGY Vol. 13(4): 317 —389, December 20, 2012 Chief Editor Kartini Kramadibrata (Herbarium Bogoriense, Indonesia) Editors Dedy Darnaedi (Herbarium Bogoriense, Indonesia) Tukirin Partomihardjo (Herbarium Bogoriense, Indonesia) Joeni Setijo Rahajoe (Herbarium Bogoriense, Indonesia) Teguh Triono (Herbarium Bogoriense, Indonesia) Marlina Ardiyani (Herbarium Bogoriense, Indonesia) Eizi Suzuki (Kagoshima University, Japan) Jun Wen (Smithsonian Natural History Museum, USA) Managing editor Himmah Rustiami (Herbarium Bogoriense, Indonesia) Secretary Endang Tri Utami Lay out editor Deden Sumirat Hidayat Illustrators Subari Wahyudi Santoso Anne Kusumawaty Reviewers Ed de Vogel (Netherlands), Henk van der Werff (USA), Irawati (Indonesia), Jan F. Veldkamp (Netherlands), Jens G. Rohwer (Denmark), Lauren M. Gardiner (UK), Masahiro Kato (Japan), Marshall D. Sunberg (USA), Martin Callmander (USA), Rugayah (Indonesia), Paul Forster (Australia), Peter Hovenkamp (Netherlands), Ulrich Meve (Germany). Correspondence on editorial matters and subscriptions for Reinwardtia should be addressed to: HERBARIUM BOGORIENSE, BOTANY DIVISION, RESEARCH CENTER FOR BIOLOGY-LIPI, CIBINONG 16911, INDONESIA E-mail: [email protected] REINWARDTIA Vol 13, No 4, pp: 367 - 377 THE NEW PTERIDOPHYTE CLASSIFICATION AND SEQUENCE EM- PLOYED IN THE HERBARIUM BOGORIENSE (BO) FOR MALESIAN FERNS Received July 19, 2012; accepted September 11, 2012 WITA WARDANI, ARIEF HIDAYAT, DEDY DARNAEDI Herbarium Bogoriense, Botany Division, Research Center for Biology-LIPI, Cibinong Science Center, Jl. Raya Jakarta -Bogor Km. 46, Cibinong 16911, Indonesia. E-mail: [email protected] ABSTRACT. WARD AM, W., HIDAYAT, A. & DARNAEDI D. 2012. The new pteridophyte classification and sequence employed in the Herbarium Bogoriense (BO) for Malesian ferns.
    [Show full text]
  • Researc Research Article
    zz Available online at http://www.journalcra.com INTERNATIONAL JOURNAL OF CURRENT RESEARCH International Journal of Current Research Vol. 11, Issue, 09, pp.7060-7072, September, 2019 DOI: https://doi.org/10.24941/ijcr.36246.09.2019 ISSN: 0975-833X RESEARCH ARTICLE PALYNOLOGICAL CHARACTERIZATION OF FERNS OF ACARAI STATE PARK, SÃO FRANCISCO DO SUL, SANTA CATARINA STATE, SOUTHERN BRAZIL *1Nilton Paulo Vieira Junior, 1Gabriel da Rosa Schroeder, 2Enderlei Dec and 3Denise Monique Dubet da Silva Mouga 1 Academic, University of the Region of Joinville - UNIVILLE, Rua Paulo Malschitzki 10, CEP 89219-710, Joinville, 2 State of Santa Catarina, Brazil MSc, Museu Nacional, Federal University of Rio de Janeiro - UFRJ, Quinta da Boa Vista, CEP 20940-040, Rio de 3 Janeiro, State of Rio de Janeiro, Brazil PhD, Department of Biological Sciences, University of the Region of Joinville - UNIVILLE, Rua Paulo Malschitzki ARTICLE INFO 10, CEPABSTRACT 89219-710, Joinville, State of Santa Catarina, Brazil Article History: Sporopalynological descriptions are provided for fourteen species of ferns found to occur in Acarai Received 17th June, 2019 State Park, a full-protection conservation unit in Praia Grande, São Francisco do Sul, Santa Catarina, Received in revised form Brazil: Asplenium brasiliense Sw., Campyloneurum acrocarpon Fée, Cyathea phalerata Mart, 10th July, 2019 Lindsaea lancea (L.) Bedd, Macrothelypteris torresiana (Gaudich.) Ching, Microgramma Accepted 14th August, 2019 vacciniifolia (Langsd and Fisch.). Copel, Niphidium crassifolium (L.) Lellinger, Pecluma st Published online 30 September, 2019 chnoophora (Kunze) Salino and Costa Assis, Pecluma pectinatiformis (Lindm.) M.G. Price, Lepidopteris pleopeltis (Langsd. and Fisch.) de la Sota, Rumohra adiantiformis (G. Forst.) Ching, Key Word: Schizaea elegans (Vahl) Sw., Serpocaulon latipes (Langsd.
    [Show full text]
  • Chemical and Pharmacological Investigations of Metaxya Rostrata
    Chemical and Pharmacological Investigations of Metaxya rostrata Judith Virtbauera, Liselotte Krenna,*, Hanspeter Kähligb, Antje Hüfnerc, Oliver Donatha, and Brigitte Mariand a Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria. Fax: (+431) 427755259. E-mail: [email protected] b Institute of Organic Chemistry, University of Vienna, Vienna, Austria c Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria d Department of Medicine 1, Institute of Cancer Research, Medical University Vienna, Vienna, Austria * Author for correspondence and reprint requests Z. Naturforsch. 63c, 469Ð475 (2008); received February 11/March 12, 2008 In a bioassay-guided approach the chemical composition of rhizomes of Metaxya rostrata (Kunth C. Presl) was studied for the first time. Investigations of the cytotoxicity of extracts and fractions on SW480 colorectal carcinoma cells resulted in the isolation of two polyphe- nols Ð cinnamtannin B-1 and aesculitannin B. The structures of the compounds were eluci- dated by different NMR experiments. Additionally, sugars, common sterols, such as sitosterol, stigmasterol and campesterol, as well as chlorogenic acid and caffeic acid were identified in Metaxya rostrata. Key words: Metaxya rostrata, Polyphenols, Cytotoxic Effects Introduction ity, the capacity to alter the cell cycle, and the in- duction of apoptosis in SW480 colorectal carci- Metaxya rostrata is a tree fern widespread in noma cells by extracts from the rhizome of lowland rain forests of Central America and the Metaxya rostrata seemed of interest. north-western parts of South America. Within the Metaxyaceae family only two species Ð Metaxya Materials and Methods rostrata (Kunth C. Presl) and Metaxya lanosa A.
    [Show full text]
  • Metaxya Lanosa, a Second Species in the Genus and Fern Family Metaxyaceae
    Systematic Botany (2001), 26(3): pp. 480±486 q Copyright 2001 by the American Society of Plant Taxonomists Metaxya lanosa, a Second Species in the Genus and Fern Family Metaxyaceae ALAN R. SMITH University Herbarium, 1001 Valley Life Sciences Building #2465, University of California, Berkeley, California 94720-2465 HANNA TUOMISTO Department of Biology, University of Turku, FIN-20014 Turku, Finland KATHLEEN M. PRYER and JEFFERY S. HUNT Department of Botany, The Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, Illinois 60605-2496 PAUL G. WOLF Department of Biology, Utah State University, Logan, Utah 84322-5305 Communicating Editor: Jerrold I. Davis ABSTRACT. We describe and illustrate Metaxya lanosa, the second known species in the genus and the fern family Metaxyaceae (Pteridophyta). It is currently known from four different watersheds in Amazonian Peru and Venezuela. It can be distinguished readily from M. rostrata by the noticeably woolly-hairy stipes and rachises (hairs red-brown or orange-brown and easily abraded), broader, more elliptic pinnae, cartilag- inous and whitish pinna margins, more distinct veins abaxially, and longer pinna stalks, especially on the distal pinnae. rbcL data from a very limited sampling are ambiguous but do not reject support for the recognition of at least two species within Metaxya. The genus Metaxya (Metaxyaceae) heretofore has Peru, Bolivia, and northern Brazil. The new species been considered a monotypic genus in a monotypic is known from Amazonian Venezuela and Peru, family (Tryon 1970; Tryon and Tryon 1982; Kramer from four different watersheds, and is likely to be in Kubitzki 1990). Metaxyaceae is a member of the found in white-sand areas of Colombia and Brazil tree-fern assemblage of families (Smith 1995), as well.
    [Show full text]
  • Biogeographical Patterns of Species Richness, Range Size And
    Biogeographical patterns of species richness, range size and phylogenetic diversity of ferns along elevational-latitudinal gradients in the tropics and its transition zone Kumulative Dissertation zur Erlangung als Doktorgrades der Naturwissenschaften (Dr.rer.nat.) dem Fachbereich Geographie der Philipps-Universität Marburg vorgelegt von Adriana Carolina Hernández Rojas aus Xalapa, Veracruz, Mexiko Marburg/Lahn, September 2020 Vom Fachbereich Geographie der Philipps-Universität Marburg als Dissertation am 10.09.2020 angenommen. Erstgutachter: Prof. Dr. Georg Miehe (Marburg) Zweitgutachterin: Prof. Dr. Maaike Bader (Marburg) Tag der mündlichen Prüfung: 27.10.2020 “An overwhelming body of evidence supports the conclusion that every organism alive today and all those who have ever lived are members of a shared heritage that extends back to the origin of life 3.8 billion years ago”. This sentence is an invitation to reflect about our non- independence as a living beins. We are part of something bigger! "Eine überwältigende Anzahl von Beweisen stützt die Schlussfolgerung, dass jeder heute lebende Organismus und alle, die jemals gelebt haben, Mitglieder eines gemeinsamen Erbes sind, das bis zum Ursprung des Lebens vor 3,8 Milliarden Jahren zurückreicht." Dieser Satz ist eine Einladung, über unsere Nichtunabhängigkeit als Lebende Wesen zu reflektieren. Wir sind Teil von etwas Größerem! PREFACE All doors were opened to start this travel, beginning for the many magical pristine forest of Ecuador, Sierra de Juárez Oaxaca and los Tuxtlas in Veracruz, some of the most biodiverse zones in the planet, were I had the honor to put my feet, contemplate their beauty and perfection and work in their mystical forest. It was a dream into reality! The collaboration with the German counterpart started at the beginning of my academic career and I never imagine that this will be continued to bring this research that summarizes the efforts of many researchers that worked hardly in the overwhelming and incredible biodiverse tropics.
    [Show full text]
  • Fern Classification
    16 Fern classification ALAN R. SMITH, KATHLEEN M. PRYER, ERIC SCHUETTPELZ, PETRA KORALL, HARALD SCHNEIDER, AND PAUL G. WOLF 16.1 Introduction and historical summary / Over the past 70 years, many fern classifications, nearly all based on morphology, most explicitly or implicitly phylogenetic, have been proposed. The most complete and commonly used classifications, some intended primar• ily as herbarium (filing) schemes, are summarized in Table 16.1, and include: Christensen (1938), Copeland (1947), Holttum (1947, 1949), Nayar (1970), Bierhorst (1971), Crabbe et al. (1975), Pichi Sermolli (1977), Ching (1978), Tryon and Tryon (1982), Kramer (in Kubitzki, 1990), Hennipman (1996), and Stevenson and Loconte (1996). Other classifications or trees implying relationships, some with a regional focus, include Bower (1926), Ching (1940), Dickason (1946), Wagner (1969), Tagawa and Iwatsuki (1972), Holttum (1973), and Mickel (1974). Tryon (1952) and Pichi Sermolli (1973) reviewed and reproduced many of these and still earlier classifica• tions, and Pichi Sermolli (1970, 1981, 1982, 1986) also summarized information on family names of ferns. Smith (1996) provided a summary and discussion of recent classifications. With the advent of cladistic methods and molecular sequencing techniques, there has been an increased interest in classifications reflecting evolutionary relationships. Phylogenetic studies robustly support a basal dichotomy within vascular plants, separating the lycophytes (less than 1 % of extant vascular plants) from the euphyllophytes (Figure 16.l; Raubeson and Jansen, 1992, Kenrick and Crane, 1997; Pryer et al., 2001a, 2004a, 2004b; Qiu et al., 2006). Living euphyl• lophytes, in turn, comprise two major clades: spermatophytes (seed plants), which are in excess of 260 000 species (Thorne, 2002; Scotland and Wortley, Biology and Evolution of Ferns and Lycopliytes, ed.
    [Show full text]
  • Rumohra Adiantiformis
    Rumohra adiantiformis COMMON NAME Leathery shield fern, florists fern SYNONYMS Polystichum adiantiforme FAMILY Dryopteridaceae AUTHORITY Rumohra adiantiformis (G.Forst.) Ching FLORA CATEGORY Vascular – Native ENDEMIC TAXON No ENDEMIC GENUS No ENDEMIC FAMILY Sori, Dunedin. Photographer: John Barkla No STRUCTURAL CLASS Ferns NVS CODE RUMADI CHROMOSOME NUMBER 2n = 82 CURRENT CONSERVATION STATUS 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened DISTRIBUTION Indigenous. New Zealand: Three Kings, North, South, Stewart and Chatham Islands. Also Central and South America, southern Africa, Madagascar, the Mascarenes, Seychelles, New Guinea, Australia and New Zealand (depending on the way R. adiantiformis is circumscribed) Franz Josef. Apr 1981. Photographer: Jeremy HABITAT Rolfe Coastal to montane. Epiphytic, lithophytic or terrestrial in forest or dense scrub. Usually in indigenous forest but also commonly seen epiphytic on willow (Salix spp.) along river banks, in gullies and on the margins of wetlands. FEATURES hizome 10–15 mm diameter, densely covered in long, golden brown to red-brown scales; margins entire or minutely toothed; apices acuminate. Fronds often widely spaced or aggregated toward rhizome apices, 0.2–0.9 m long. Stipes 0.2–0.8 m long, thick, densely invested by peltate, golden brown scales. Lamina 2–3-pinnate, coriaceous, 100–500 × 70–400 mm, ovate to deltoid, adaxially glossy dark green to yellow-green (sometimes pale orange- green), abaxially paler and dull, ± scaly. Primary and lower secondary pinnae stalked; ultimate segments oblong, obtused to rounded, crenate to bluntly lobed; veins immersed. Sori black when mature; indusium with a dark centre. SIMILAR TAXA Davallia is superficially similar. Rumohra is easily separated from the New Zealand indigenous and naturalised Davallia by the dark black, circular sori.
    [Show full text]
  • UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE AGRONOMÍA ÁREA INTEGRADA APORTE a LA PRODUCCIÓN DE HOJA DE CUERO (Rumohra
    UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE AGRONOMÍA ÁREA INTEGRADA APORTE A LA PRODUCCIÓN DE HOJA DE CUERO (Rumohra adiantiformis (G. Forst.) Ching), DIAGNÓSTICO Y SERVICIOS EN LA FINCA COSTA SOL S.A., SAN MIGUEL DUEÑAS, SACATEPÉQUEZ, GUATEMALA, C.A. CLAUDIA CRISTINA GORDILLO ARRIOLA GUATEMALA, FEBRERO DE 2013 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE AGRONOMÍA ÁREA INTEGRADA APORTE A LA PRODUCCIÓN DE HOJA DE CUERO (Rumohra adiantiformis (G. Forst.) Ching), DIAGNÓSTICO Y SERVICIOS EN LA FINCA COSTA SOL S.A., SAN MIGUEL DUEÑAS, SACATEPÉQUEZ, GUATEMALA, C.A. PRESENTADO A LA HONORABLE JUNTA DIRECTIVA DE LA FACULTAD DE AGRONOMÍA DE LA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA POR CLAUDIA CRISTINA GORDILLO ARRIOLA EN EL ACTO DE INVESTIDURA COMO INGENIERA AGRÓNOMA EN SISTEMAS DE PRODUCCIÓN AGRÍCOLA EN EL GRADO ACADÉMICO DE LICENCIADA Guatemala, febrero de 2013 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE AGRONOMÍA RECTOR MAGNÍFICO Dr. Carlos Estuardo Gálvez Barrios JUNTA DIRECTIVA DE LA FACULTAD DE AGRONOMÍA DECANO Dr. Lauriano Figueroa Quiñonez VOCAL I Dr. Ariel Abderramán Ortiz López VOCAL II Ing. Agr. MSc. Marino Barrientos García VOCAL III Ing. Agr. MSc. Oscar René Leiva Ruano VOCAL IV Br. Ana Isabel Fión Ruíz VOCAL V Br. Luis Roberto Orellana López SECRETARIO Ing. Agr. Carlos Roberto Echeverría Escobedo Guatemala, febrero de 2013 Guatemala, febrero de 2013 Honorable Junta Directiva Honorable Tribunal Examinador Facultad de Agronomía Universidad de San Carlos de Guatemala Honorables miembros: De acuerdo con las normas establecidas por la Ley Orgánica de la Universidad de San Carlos de Guatemala, tengo el honor de someter a vuestra consideración, el trabajo de Graduación titulado: APORTE A LA PRODUCCIÓN DE HOJA DE CUERO (Rumohra adiantiformis (G.
    [Show full text]
  • Phylogenetic Analyses Place the Monotypic Dryopolystichum Within Lomariopsidaceae
    A peer-reviewed open-access journal PhytoKeysPhylogenetic 78: 83–107 (2017) analyses place the monotypic Dryopolystichum within Lomariopsidaceae 83 doi: 10.3897/phytokeys.78.12040 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae Cheng-Wei Chen1,*, Michael Sundue2,*, Li-Yaung Kuo3, Wei-Chih Teng4, Yao-Moan Huang1 1 Division of Silviculture, Taiwan Forestry Research Institute, 53 Nan-Hai Rd., Taipei 100, Taiwan 2 The Pringle Herbarium, Department of Plant Biology, The University of Vermont, 27 Colchester Ave., Burlington, VT 05405, USA 3 Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan 4 Natural photographer, 664, Hu-Shan Rd., Caotun Township, Nantou 54265, Taiwan Corresponding author: Yao-Moan Huang ([email protected]) Academic editor: T. Almeida | Received 1 February 2017 | Accepted 23 March 2017 | Published 7 April 2017 Citation: Chen C-W, Sundue M, Kuo L-Y, Teng W-C, Huang Y-M (2017) Phylogenetic analyses place the monotypic Dryopolystichum within Lomariopsidaceae. PhytoKeys 78: 83–107. https://doi.org/10.3897/phytokeys.78.12040 Abstract The monotypic fern genusDryopolystichum Copel. combines a unique assortment of characters that ob- scures its relationship to other ferns. Its thin-walled sporangium with a vertical and interrupted annulus, round sorus with peltate indusium, and petiole with several vascular bundles place it in suborder Poly- podiineae, but more precise placement has eluded previous authors. Here we investigate its phylogenetic position using three plastid DNA markers, rbcL, rps4-trnS, and trnL-F, and a broad sampling of Polypodi- ineae.
    [Show full text]
  • Historical Reconstruction of Climatic and Elevation Preferences and the Evolution of Cloud Forest-Adapted Tree Ferns in Mesoamerica
    Historical reconstruction of climatic and elevation preferences and the evolution of cloud forest-adapted tree ferns in Mesoamerica Victoria Sosa1, Juan Francisco Ornelas1,*, Santiago Ramírez-Barahona1,* and Etelvina Gándara1,2,* 1 Departamento de Biología Evolutiva, Instituto de Ecología AC, Carretera antigua a Coatepec, El Haya, Xalapa, Veracruz, Mexico 2 Instituto de Ciencias/Herbario y Jardín Botánico, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico * These authors contributed equally to this work. ABSTRACT Background. Cloud forests, characterized by a persistent, frequent or seasonal low- level cloud cover and fragmented distribution, are one of the most threatened habitats, especially in the Neotropics. Tree ferns are among the most conspicuous elements in these forests, and ferns are restricted to regions in which minimum temperatures rarely drop below freezing and rainfall is high and evenly distributed around the year. Current phylogeographic data suggest that some of the cloud forest-adapted species remained in situ or expanded to the lowlands during glacial cycles and contracted allopatrically during the interglacials. Although the observed genetic signals of population size changes of cloud forest-adapted species including tree ferns correspond to predicted changes by Pleistocene climate change dynamics, the observed patterns of intraspecific lineage divergence showed temporal incongruence. Methods. Here we combined phylogenetic analyses, ancestral area reconstruction, and divergence time estimates with climatic and altitudinal data (environmental space) for phenotypic traits of tree fern species to make inferences about evolutionary processes Submitted 29 May 2016 in deep time. We used phylogenetic Bayesian inference and geographic and altitudinal Accepted 18 October 2016 distribution of tree ferns to investigate ancestral area and elevation and environmental Published 16 November 2016 preferences of Mesoamerican tree ferns.
    [Show full text]
  • For Review Only Journal: Molecular Ecology Resources
    Molecular Ecology Resources DNA barcoding exposes a case of mistaken identity in the fern horticultural trade For Review Only Journal: Molecular Ecology Resources Manuscript ID: MER-10-0003.R1 Manuscript Type: DNA Barcoding Date Submitted by the 16-Mar-2010 Author: Complete List of Authors: Pryer, Kathleen; Duke University, Biology Schuettpelz, Eric; National Evolutionary Synthesis Center; Duke University, Biology Huiet, Layne; Duke University, Biology Grusz, Amanda; Duke University, Biology Rothfels, Carl; Duke University, Biology Avent, Tony; Juniper Level Botanic Garden, Plant Delights Nursery Schwartz, David; 9715 Chirtsey Way Windham, Michael; Duke University, Biology Keywords: DNA Barcoding, Ferns & Allies, Molecular Evolution, Systematics Page 1 of 21 Molecular Ecology Resources 1 2 DNA BARCODING 3 DNA barcoding exposes a case of mistaken identity in the fern horticultural trade 4 * * * * 5 KATHLEEN M. PRYER , ERIC SCHUETTPELZ , † LAYNE HUIET , AMANDA L. GRUSZ , * * 6 CARL J. ROTHFELS , TONY A VENT ,‡ DAVID SCHWARTZ § and MICHAEL D. WINDHAM 7 For Review Only 8 *Department of Biology, Duke University, Durham, NC 27708, USA, †National Evolutionary 9 Synthesis Center, 2024 West Main St., Suite A200, Durham, NC 27705, USA, ‡Plant Delights 10 Nursery @ Juniper Level Botanic Garden, 9241 Sauls Road, Raleigh, NC 27603, USA, §9715 11 Chirtsey Way, Bakersfield, CA 93312, USA 12 13 14 15 Correspondence: Kathleen M. Pryer, Fax: +1 (919) 6607293; E-mail: pryer @duke.edu 16 17 Running title: DNA barcoding for the fern trade 18 Molecular Ecology Resources Page 2 of 21 Pryer et al. pg. 2 of 18 19 20 Abstract 21 Using cheilanthoid ferns, we provide an example of how DNA barcoding approaches can be 22 useful to the horticultural community for keeping plants in the trade accurately identified.
    [Show full text]