An Atlas of Potentially Water-Related Diseases in South Africa
Total Page:16
File Type:pdf, Size:1020Kb
Recommended publications
-
Vaccine to Prevent Human Papillomavirus
Resolution No. 6/20-1 ADVISORY COMMITTEE ON IMMUNIZATION PRACTICES VACCINES FOR CHILDREN PROGRAM VACCINES TO PREVENT MENINGOCOCCAL DISEASE The purpose of this resolution is to update the resolution to reflect currently available meningococcal conjugate vaccines that can be used to prevent meningococcal disease attributable to serogroups A, C, W, and Y. VFC resolution 6/19-7 is repealed and replaced by the following: Meningococcal Conjugate Vaccines (MenACWY) Eligible Groups • Children aged 2 months through 10 years who are at increased risk for meningococcal disease attributable to serogroups A, C, W, and Y, including: o Children who have persistent complement component deficiencies (including inherited or chronic deficiencies in C3, C5-C9, properdin, factor H, or factor D) o Children taking a complement inhibitor (e.g., eculizumab [Soliris], ravulizumab [Ultomiris]) o Children who have anatomic or functional asplenia, including sickle cell disease o Children infected with human immunodeficiency virus (HIV) o Children traveling to or residing in countries in which meningococcal disease is hyperendemic or epidemic, particularly if contact with local population will be prolonged o Children identified to be at increased risk because of a meningococcal disease outbreak attributable to serogroups A, C, W, or Y • All children aged 11 through 18 years 1 Recommended Vaccination Schedule and Intervals The table below lists meningococcal conjugate vaccines currently available to prevent meningococcal disease attributable to serogroups A, C, W, and -
Estimating the Instantaneous Asymptomatic Proportion with a Simple Approach: Exemplified with the Publicly Available COVID-19 Surveillance Data in Hong Kong
ORIGINAL RESEARCH published: 03 May 2021 doi: 10.3389/fpubh.2021.604455 Estimating the Instantaneous Asymptomatic Proportion With a Simple Approach: Exemplified With the Publicly Available COVID-19 Surveillance Data in Hong Kong Chunyu Li 1†, Shi Zhao 2,3*†, Biao Tang 4,5, Yuchen Zhu 1, Jinjun Ran 6, Xiujun Li 1*‡ and Daihai He 7*‡ 1 2 Edited by: Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China, JC 3 Catherine Ropert, School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China, Chinese University of 4 Federal University of Minas Hong Kong (CUHK) Shenzhen Research Institute, Shenzhen, China, School of Mathematics and Statistics, Xi’an Jiaotong 5 Gerais, Brazil University, Xi’an, China, Laboratory for Industrial and Applied Mathematics, Department of Mathematics and Statistics, York University, Toronto, ON, Canada, 6 School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Reviewed by: Hong Kong, China, 7 Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China Mohammad Javanbakht, Baqiyatallah University of Medical Sciences, Iran Background: The asymptomatic proportion is a critical epidemiological characteristic Changjing Zhuge, that modulates the pandemic potential of emerging respiratory virus, which may vary Beijing University of Technology, China *Correspondence: depending on the nature of the disease source, population characteristics, source–host Daihai He interaction, and environmental factors. [email protected] Xiujun Li Methods: We developed a simple likelihood-based framework to estimate the [email protected] instantaneous asymptomatic proportion of infectious diseases. Taking the COVID-19 Shi Zhao epidemics in Hong Kong as a case study, we applied the estimation framework [email protected] to estimate the reported asymptomatic proportion (rAP) using the publicly available † These authors share first authorship surveillance data. -
Comparison of Annual and Biannual Mass Antibiotic Administration for Elimination of Infectious Trachoma
ORIGINAL CONTRIBUTION Comparison of Annual and Biannual Mass Antibiotic Administration for Elimination of Infectious Trachoma Muluken Melese, MD, MPH Context Treatment recommendations assume that repeated mass antibiotic distri- Wondu Alemayehu, MD, MPH butions can control, but not eradicate or even locally eliminate, the ocular strains of Takele Lakew, MD, MPH chlamydia that cause trachoma. Elimination may be an important end point because of concern that infection will return to communities that have lost immunity to chla- Elizabeth Yi, MPH mydia after antibiotics are discontinued. Jenafir House, MPH, MSW Objective To determine whether biannual treatment can eliminate ocular chla- Jaya D. Chidambaram, MBBS mydial infection from preschool children and to compare results with the World Health Organization–recommended annual treatment. Zhaoxia Zhou, BA Design, Setting, and Participants A cluster-randomized clinical trial of biannual Vicky Cevallos, MT vs annual mass azithromycin administrations to all residents of 16 rural villages in the Kathryn Ray, MA Gurage Zone, Ethiopia, from March 2003 to April 2005. Kevin Cyrus Hong, BA Interventions At scheduled treatments, all individuals aged 1 year or older were Travis C. Porco, PhD, MPH offered a single dose of oral azithromycin either annually or biannually. Isabella Phan, MD Main Outcome Measure Village prevalence of ocular chlamydial infection and pres- ence of elimination at 24 months in preschool children determined by polymerase chain Ali Zaidi, MD reaction, correcting for baseline prevalence. Antibiotic treatments were performed af- Bruce D. Gaynor, MD ter sample collections. John P. Whitcher, MD, MPH Results Overall, 14 897 of 16 403 eligible individuals (90.8%) received their sched- uled treatment. -
Global Dynamics of a Vaccination Model for Infectious Diseases with Asymptomatic Carriers
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2016019 AND ENGINEERING Volume 13, Number 4, August 2016 pp. 813{840 GLOBAL DYNAMICS OF A VACCINATION MODEL FOR INFECTIOUS DISEASES WITH ASYMPTOMATIC CARRIERS Martin Luther Mann Manyombe1;2 and Joseph Mbang1;2 Department of Mathematics, Faculty of Science University of Yaounde 1, P.O. Box 812 Yaounde, Cameroon 1;2;3; Jean Lubuma and Berge Tsanou ∗ Department of Mathematics and Applied Mathematics University of Pretoria, Pretoria 0002, South Africa (Communicated by Abba Gumel) Abstract. In this paper, an epidemic model is investigated for infectious dis- eases that can be transmitted through both the infectious individuals and the asymptomatic carriers (i.e., infected individuals who are contagious but do not show any disease symptoms). We propose a dose-structured vaccination model with multiple transmission pathways. Based on the range of the explic- itly computed basic reproduction number, we prove the global stability of the disease-free when this threshold number is less or equal to the unity. Moreover, whenever it is greater than one, the existence of the unique endemic equilibrium is shown and its global stability is established for the case where the changes of displaying the disease symptoms are independent of the vulnerable classes. Further, the model is shown to exhibit a transcritical bifurcation with the unit basic reproduction number being the bifurcation parameter. The impacts of the asymptomatic carriers and the effectiveness of vaccination on the disease transmission are discussed through through the local and the global sensitivity analyses of the basic reproduction number. Finally, a case study of hepatitis B virus disease (HBV) is considered, with the numerical simulations presented to support the analytical results. -
The Emergence of Epidemic Dengue Fever and Dengue Hemorrhagic
Editorial The emergence of A global pandemic of dengue fever (DF) and dengue hemorrhagic fever (DHF) began in Southeast Asia during World War II and in the years following that con- epidemic dengue flict (1). In the last 25 years of the 20th century the pandemic intensified, with increased geographic spread of both the viruses and the principal mosquito vec- fever and dengue tor, Aedes aegypti. This led to larger and more frequent epidemics and to the emergence of DHF as tropical countries and regions became hyperendemic with hemorrhagic fever the co-circulation of multiple virus serotypes. With the exception of sporadic epidemics in the Caribbean islands, in the Americas: dengue and yellow fever were effectively controlled in the Americas from 1946 a case of failed until the late 1970s as a result of the Ae. aegypti eradication program conducted by the Pan American Health Organization (PAHO) (1, 2). This was a vertically struc- public health policy tured, paramilitary program that focused on mosquito larval control using source reduction and use of insecticides, primarily dichlorodiphenyltrichloroethane (DDT). This highly successful program, however, was disbanded in the early 1970s because there was no longer a perceived need and there were competing 1 Duane Gubler priorities for resources; control of dengue and yellow fever was thereafter merged with malaria control. Another major policy change at that time was the use of ultra-low-volume space sprays for killing adult mosquitoes (adulticides) as the rec- ommended method to control Ae. aegypti and thus prevent and control DF and DHF. Both of these decisions were major policy failures because they were inef- fective in preventing the re-emergence of epidemic DF and the emergence of DHF in the Region. -
COVID-19 Scientific Advisory Group Rapid Response Report
COVID-19 Scientific Advisory Group Rapid Response Report Key Research Question: What is the evidence supporting the possibility of asymptomatic transmission of SARS-CoV-2? [Updated April 13, 2020] Context • Asymptomatic transmission (including pre-symptomatic transmission) of SARS-CoV-2 could reduce the effectiveness of control measures that are related to symptom onset (isolation, face masks and enhanced hygiene for symptomatic persons, and parameters of contact tracing), particularly if routine practices, including the use of diligent hand hygiene and environmental disinfection after patient encounters are not adhered to. • Concerns regarding asymptomatic transmission are driven by observations in various populations that suggested 18% – 50.5% of people with positive RT-PCR in various settings were asymptomatic at testing, and epidemiologic modelling suggesting that asymptomatic or presymptomatic cases may be responsible for potentially significant transmission, with a wide range of estimates from 0% to 44%. However, this is discrepant from epidemiologic descriptions from the initial epidemic in China and elsewhere which do not suggest that asymptomatic transmission is a major driver for the COVID19 epidemic. • The Public Health Agency of Canada (PHAC) has indicated that wearing a non-medical (cloth) mask in the community has not been proven to protect the person wearing it, however, it can be an additional measure to protect others around you, and might be useful in situations where physical distancing is not possible (e.g., grocery stores and public transit). (Tasker, 2020; Public Health Agency of Canada, 2020) Key Messages from the Evidence Summary • It is biologically plausible that SARS-CoV-2 can be transmitted when patients are asymptomatic, pre-symptomatic, or mildly symptomatic (potentially from 2.5 days prior to onset of symptoms), based on the finding that RT-PCR levels are high early in infection. -
Meeting of the Board of Scientific Counselors, Office of Infectious Diseases
MEETING OF THE BOARD OF SCIENTIFIC COUNSELORS, OFFICE OF INFECTIOUS DISEASES Centers for Disease Control and Prevention Tom Harkin Global Communications Center Atlanta, Georgia May 2–3, 2018 A one-and-a-half day, open public meeting of the Board of Scientific Counselors (BSC), Office of Infectious Diseases (OID), was held on May 2–3, 2018, at the Centers for Disease Control and Prevention (CDC) in Atlanta, Georgia. In addition to Board members and CDC staff, the meeting was attended by representatives of several public health partner organizations (appendix). The meeting included • Updates from OID, the Center for Global Health (CGH), and the National Centers for Immunization and Respiratory Diseases (NCIRD); HIV/AIDS, Viral Hepatitis, STD, and TB Prevention (NCHHSTP); and Emerging and Zoonotic Infectious Diseases (NCEZID) • Updates from the BSC Infectious Disease Laboratory Working Group (IDLWG) and the new OID– National Center for Environmental Health (NCEH)/Agency for Toxic Substances and Disease Registry (ATSDR) Vector-borne Diseases Workgroup • Updates on activities to address antimicrobial resistance by Veterinary Services (VS), Animal and Plant Health Inspection Service, U.S. Department of Agriculture (USDA/APHIS) and CDC • Presentations and discussion about CDC efforts to address the opioid epidemic, train the next generation of public health workers, and advance the CDC High Containment Laboratory Initiative The meeting also included a conversation with CDC Director Robert Redfield. Opening Remarks BSC Chair Ruth Lynfield, State Epidemiologist and Medical Director, Minnesota Department of Health, called the meeting to order and was joined in welcoming participants and facilitating introductions by Sonja Rasmussen, CDC Deputy Director for Infectious Diseases, and Sarah Wiley, the BSC/OID Designated Federal Official. -
Zoonotic Diseases Fact Sheet
ZOONOTIC DISEASES FACT SHEET s e ion ecie s n t n p is ms n e e s tio s g s m to a a o u t Rang s p t tme to e th n s n m c a s a ra y a re ho Di P Ge Ho T S Incub F T P Brucella (B. Infected animals Skin or mucous membrane High and protracted (extended) fever. 1-15 weeks Most commonly Antibiotic melitensis, B. (swine, cattle, goats, contact with infected Infection affects bone, heart, reported U.S. combination: abortus, B. suis, B. sheep, dogs) animals, their blood, tissue, gallbladder, kidney, spleen, and laboratory-associated streptomycina, Brucellosis* Bacteria canis ) and other body fluids causes highly disseminated lesions bacterial infection in tetracycline, and and abscess man sulfonamides Salmonella (S. Domestic (dogs, cats, Direct contact as well as Mild gastroenteritiis (diarrhea) to high 6 hours to 3 Fatality rate of 5-10% Antibiotic cholera-suis, S. monkeys, rodents, indirect consumption fever, severe headache, and spleen days combination: enteriditis, S. labor-atory rodents, (eggs, food vehicles using enlargement. May lead to focal chloramphenicol, typhymurium, S. rep-tiles [especially eggs, etc.). Human to infection in any organ or tissue of the neomycin, ampicillin Salmonellosis Bacteria typhi) turtles], chickens and human transmission also body) fish) and herd animals possible (cattle, chickens, pigs) All Shigella species Captive non-human Oral-fecal route Ranges from asymptomatic carrier to Varies by Highly infective. Low Intravenous fluids primates severe bacillary dysentery with high species. 16 number of organisms and electrolytes, fevers, weakness, severe abdominal hours to 7 capable of causing Antibiotics: ampicillin, cramps, prostration, edema of the days. -
Possible Modes of Transmission of Novel Coronavirus SARS-Cov-2
Acta Biomed 2020; Vol. 91, N. 3: e2020036 DOI: 10.23750/abm.v91i3.10039 © Mattioli 1885 Reviews / Focus on Possible modes of transmission of Novel Coronavirus SARS-CoV-2: a review Richa Mukhra1, Kewal Krishan1, Tanuj Kanchan2 1 Department of Anthropology (UGC Centre of Advanced Study), Panjab University, Sector-14, Chandigarh, India 2 Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, India. Abstract: Introduction: The widespread outbreak of the novel SARS-CoV-2 has raised numerous questions about the origin and transmission of the virus. Knowledge about the mode of transmission as well as assess- ing the effectiveness of the preventive measures would aid in containing the outbreak of the coronavirus. Presently, respiratory droplets, physical contact and aerosols/air-borne have been reported as the modes of SARS-CoV-2 transmission of the virus. Besides, some of the other possible modes of transmission are being explored by the researchers, with some studies suggesting the viral spread through fecal-oral, conjunctival secretions, flatulence (farts), sexual and vertical transmission from mother to the fetus, and through asymp- tomatic carriers, etc. Aim: The primary objective was to review the present understanding and knowledge about the transmission of SARS-CoV-2 and also to suggest recommendations in containing and preventing the novel coronavirus. Methods: A review of possible modes of transmission of the novel SARS-CoV-2 was conducted based on the reports and articles available in PubMed and ScienceDirect.com that were searched using keywords, ‘transmission’, ‘modes of transmission’, ‘SARS-CoV-2’, ‘novel coronavirus’, and ‘COVID-19’. Articles refer- ring to air-borne, conjunctiva, fecal-oral, maternal-fetal, flatulence (farts), and breast milk transmission were included, while the remaining were excluded. -
Epidemiology Annual Report
2018 Epidemiology Annual Report 535 South Loop 288 Denton, TX 76205-4502 www.DentonCounty.gov/Health Denton County Public Health Director Matt Richardson, DrPH, MPH Epidemiology Division Chief Epidemiologist Juan Rodriguez, MPH Epidemiologist Lily Metzler, MPH Epidemiologist Taylor Keplin, MPH Epidemiologist Abby Hoffman, M.S. Acknowledgments This report was prepared by the Epidemiology Division staff. We wish to acknowledge the contribution of our health care providers for reporting notifiable conditions and their cooperation in diseases investigations. In addition, we wish to thank Denton County Public Health staff and Medical Reserve Corp for their assistance in disease surveillance and investigations along with our colleagues at the Texas Department of State Health Services for providing data used in this report. Methodology The total population estimates used in this report were collected from the Texas Demographic Center1 and represent the population estimates for Denton County as of July 1, 2018. Population estimates may vary from previous Epidemiology Annual Reports due to changes of these estimates and are not directly associated to population estimates produced by the U.S. Census Bureau. The Sexually Transmitted Disease (STD) and Human Immunodeficiency Virus (HIV) case numbers and rates for Denton County were obtained from the Texas Department of State Health Services STD Surveillance Program Dashboard2. STD and HIV rates were calculated by the Texas Department of State Health Services based on population projections from the U.S. Census Bureau3. Data for Denton County notifiable conditions was collected from the Texas Department of State Health Services National Electronic Disease Surveillance System (NEDSS)4. This system delivers public health data to both state and local agencies, allowing data sharing and the ability to conduct disease surveillance. -
Waterborne Disease Risk Assessment Program 2019 Annual Report
New York City Department of Health & Mental Hygiene Bureau of Communicable Disease & New York City Department of Environmental Protection Bureau of Water Supply Waterborne Disease Risk Assessment Program 2019 Annual Report March 2020 Prepared in accordance with Section 8.1 of the NYSDOH 2017 NYC Filtration Avoidance Determination i TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................. i LIST OF TABLES ........................................................................................................................ iii LIST OF FIGURES ........................................................................................................................ iv LIST OF ACRONYMS ................................................................................................................... v ACKNOWLEDGMENTS .............................................................................................................. vi EXECUTIVE SUMMARY .......................................................................................................... vii 1. INTRODUCTION .................................................................................................................... 1 2. DISEASE SURVEILLANCE .................................................................................................. 1 2.1 Giardiasis .......................................................................................................................... 1 -
Recommended Adult Immunization Schedule
Recommended Adult Immunization Schedule UNITED STATES for ages 19 years or older 2021 Recommended by the Advisory Committee on Immunization Practices How to use the adult immunization schedule (www.cdc.gov/vaccines/acip) and approved by the Centers for Disease Determine recommended Assess need for additional Review vaccine types, Control and Prevention (www.cdc.gov), American College of Physicians 1 vaccinations by age 2 recommended vaccinations 3 frequencies, and intervals (www.acponline.org), American Academy of Family Physicians (www.aafp. (Table 1) by medical condition and and considerations for org), American College of Obstetricians and Gynecologists (www.acog.org), other indications (Table 2) special situations (Notes) American College of Nurse-Midwives (www.midwife.org), and American Academy of Physician Assistants (www.aapa.org). Vaccines in the Adult Immunization Schedule* Report y Vaccines Abbreviations Trade names Suspected cases of reportable vaccine-preventable diseases or outbreaks to the local or state health department Haemophilus influenzae type b vaccine Hib ActHIB® y Clinically significant postvaccination reactions to the Vaccine Adverse Event Hiberix® Reporting System at www.vaers.hhs.gov or 800-822-7967 PedvaxHIB® Hepatitis A vaccine HepA Havrix® Injury claims Vaqta® All vaccines included in the adult immunization schedule except pneumococcal 23-valent polysaccharide (PPSV23) and zoster (RZV) vaccines are covered by the Hepatitis A and hepatitis B vaccine HepA-HepB Twinrix® Vaccine Injury Compensation Program. Information on how to file a vaccine injury Hepatitis B vaccine HepB Engerix-B® claim is available at www.hrsa.gov/vaccinecompensation. Recombivax HB® Heplisav-B® Questions or comments Contact www.cdc.gov/cdc-info or 800-CDC-INFO (800-232-4636), in English or Human papillomavirus vaccine HPV Gardasil 9® Spanish, 8 a.m.–8 p.m.