FDHT-PET to Predict Bicalutamide Efficacy in Patients with Androgen

Total Page:16

File Type:pdf, Size:1020Kb

FDHT-PET to Predict Bicalutamide Efficacy in Patients with Androgen University of Groningen Serial [F-18]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer Boers, Jorianne; Venema, Clasina M; de Vries, Erik F J; Hospers, Geke A P; Boersma, Hendrikus H; Rikhof, Bart; Dorbritz, Christine; Glaudemans, Andor W J M; Schröder, Carolina P Published in: European Journal of Cancer DOI: 10.1016/j.ejca.2020.11.008 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2021 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Boers, J., Venema, C. M., de Vries, E. F. J., Hospers, G. A. P., Boersma, H. H., Rikhof, B., Dorbritz, C., Glaudemans, A. W. J. M., & Schröder, C. P. (2021). Serial [F-18]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer. European Journal of Cancer, 144, 151-161. https://doi.org/10.1016/j.ejca.2020.11.008 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 European Journal of Cancer 144 (2021) 151e161 Available online at www.sciencedirect.com ScienceDirect journal homepage: www.ejcancer.com Original Research Serial [18F]-FDHT-PET to predict bicalutamide efficacy in patients with androgen receptor positive metastatic breast cancer* Jorianne Boers a, Clasina M. Venema a, Erik F.J. de Vries b, Geke A.P. Hospers a, Hendrikus H. Boersma b,c, Bart Rikhof d, Christine Dorbritz e, Andor W.J.M. Glaudemans b, Carolina P. Schro¨der a,* a Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands b Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands c Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands d Department of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, the Netherlands e Medical Imaging Center, Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands Received 13 July 2020; received in revised form 11 October 2020; accepted 7 November 2020 KEYWORDS Abstract Background: The androgen receptor (AR) is a potential target in metastatic breast 18 Bicalutamide; cancer (MBC), and 16b-[ F]-fluoro-5a-dihydrotestosterone positron emission tomography 18 18 Metastatic breast ([ F]-FDHT-PET) can be used for noninvasive visualisation of AR. [ F]-FDHT uptake cancer; reduction during AR-targeting therapy reflects AR occupancy and might be predictive for 18 Androgen receptor; treatment response. We assessed the feasibility of [ F]-FDHT-PET to detect changes in [18F]-FDHT-PET AR availability during bicalutamide treatment and correlated these changes with treatment response. * List of where and when the study has been presented in part elsewhere: Part of the data was presented at the AACR virtual annual meeting 2020. * Corresponding author: Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands. E-mail address: [email protected] (C.P. Schro¨der). https://doi.org/10.1016/j.ejca.2020.11.008 0959-8049/ª 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). 152 J. Boers et al. / European Journal of Cancer 144 (2021) 151e161 Patients and methods: Patients with AR þ MBC, regardless of oestrogen receptor status, received an [18F]-FDHT-PET at baseline and after 4e6 weeks bicalutamide treatment. Base- line [18F]-FDHT uptake was expressed as maximum standardised uptake value. Percentage change in tracer uptake, corrected for background activity (SUVcor), between baseline and follow-up PET scan (% reduction), was assessed per-patient and lesion. Clinical benefit was determined in accordance with Response Evaluation Criteria in Solid Tumours (RECIST) 1.1 or clinical evaluation (absence of disease progression for 24 weeks). Results: Baseline [18F]-FDHT-PET in 21 patients detected 341 of 515 lesions found with stan- dard imaging and 21 new lesions. Follow-up [18F]-FDHT-PET was evaluable in 17 patients with 349 lesions, showing a decrease in median SUVcor from 1.3 to 0.7 per-patient and lesion (P < 0.001). Median % reduction per-patient was À45% and per-lesion À39%. In patients with progressive disease (n Z 11), median % reduction was À30% versus À53% for patients who showed clinical benefit (in accordance with RECIST (n Z 3) or clinical evaluation (n Z 3); P Z 0.338). Conclusion: In this feasibility study, a bicalutamide-induced reduction in [18F]-FDHT uptake could be detected by follow-up [18F]-FDHT-PET in patients with AR þ MBC. However, this change could not predict bicalutamide response. Clinical trial information: NCT02697032. ª 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1. Introduction showed that [18F]-FDHT uptake reduction during AR- targeting therapy reflects AR occupancy and might be Hormone receptors play a vital role in the development predictive for treatment response [22e25]. This makes of several malignancies [1]. Although oestrogen receptor the follow-up of patients using [18F]-FDHT-PET during (ER) expression is routinely determined in breast cancer AR-targeting treatment a potentially interesting tool for (BC), this is not the case for androgen receptor (AR) BC patients. In addition, the AR/ER ratio and hormone expression [3]. The AR is expressed in 60e85% of all levels may influence treatment response in patients with BCs, with a high prevalence among ER þ tumours BC [26,27]. (85e95%), and lower rates in triple-negative BC Therefore, in this study, we assessed the feasibility of (10e40%) [2e11]. The AR may be a possible target for [18F]-FDHT-PET to detect changes in [18F]-FDHT up- therapeutic strategies in BC patients. Studies with AR- take during treatment with the AR antagonist bicalu- targeting drugs, such as bicalutamide, enzalutamide, tamide in patients with AR þ MBC. In addition, we abiraterone acetate, and orteronel have been conducted evaluated whether a reduction in [18F]-FDHT uptake, in patients with metastatic BC (MBC), including triple- and other exploratory markers including AR/ER ratio, negative [12e14] and ER þ tumours [15e19]. were related to bicalutamide response. Patients with ER À/AR þ tumours show a modest clinical benefit rate from AR-targeting drugs [12e14]. Controversies in (pre)clinical studies exist regarding the 2. Methods effectiveness of this strategy in ER þ(/AR þ) tumours [15e20]. Therefore, the degree of AR blockade will 2.1. Study design and patients possibly lead to more insight into the prediction of treatment response between the patient subgroups. This prospective, single-center study (NCT02697032) Monitoring AR expression during treatment can be was conducted at the University Medical Center Gro- performed by serial biopsies; however a (metastasis) ningen, the Netherlands. The institutional review board biopsy is not always feasible and not necessarily repre- approved the protocol, and patients provided written sentative for the AR status throughout the body, owing informed consent. Postmenopausal patients with AR þ, to heterogeneity. Another approach to obtain (serial) human epidermal growth factor receptor 2enegative assessment of whole-body AR expression is the imaging MBC were eligible, independent of their ER status. technique positron emission tomography (PET) with the Additional inclusion criteria were measurable disease in tracer 16b-[18F]-fluoro-5a-dihydrotestosterone ([18F]- accordance with the Response Evaluation Criteria in FDHT). In previous work, we have shown that AR Solid Tumours (RECIST v1.1) or evaluable disease [28], expression in a metastasis biopsy of BC patients corre- performance status <2, and adequate organ function. lates with tracer uptake on the 16b-[([18F]-FDHT-PET) Exclusion criteria included symptomatic brain metasta- scan [21]. Studies in patients with prostate cancer ses, or a cardiovascular history <6 months before J. Boers et al. / European Journal of Cancer 144 (2021) 151e161 153 screening. In addition, concomitant use of CYP3A4 2.5. Imaging analysis inhibitors was not allowed. Metastatic lesions were identified on CT and bone 2.2. Study procedures scintigraphy. Lesions only present on CT, were consid- ered metastases if they had a minimum diameter of Contrast-enhanced computed tomography (CT) of the 10 mm. An experienced nuclear medicine physician thorax/abdomen and conventional bone scintigraphy (A.G.) visually identified [18F]-FDHT-PET lesions with (with single-photon emission CT if necessary) were tracer uptake above the background signal, which could performed for baseline staging. At baseline, an [18F]- not be attributed to physiological uptake or an artifact. FDHT-PET scan, twelve-lead electrocardiogram, and Liver lesions were excluded due to high physiological peripheral blood to measure testosterone and dihy- [18F]-FDHT uptake. We used syngo.via VB20 imaging drotestosterone levels were obtained. Wherever feasible, software for quantifying tracer uptake. Guided by CT a metastasis biopsy was obtained, except for patients of and/or bone scintigraphy (including lesions not visible which a biopsy was taken in the past 6 months.
Recommended publications
  • The 2021 List of Pharmacological Classes of Doping Agents and Doping Methods
    BGBl. III - Ausgegeben am 8. Jänner 2021 - Nr. 1 1 von 23 The 2021 list of pharmacological classes of doping agents and doping methods www.ris.bka.gv.at BGBl. III - Ausgegeben am 8. Jänner 2021 - Nr. 1 2 von 23 www.ris.bka.gv.at BGBl. III - Ausgegeben am 8. Jänner 2021 - Nr. 1 3 von 23 THE 2021 PROHIBITED LIST WORLD ANTI-DOPING CODE DATE OF ENTRY INTO FORCE 1 January 2021 Introduction The Prohibited List is a mandatory International Standard as part of the World Anti-Doping Program. The List is updated annually following an extensive consultation process facilitated by WADA. The effective date of the List is 1 January 2021. The official text of the Prohibited List shall be maintained by WADA and shall be published in English and French. In the event of any conflict between the English and French versions, the English version shall prevail. Below are some terms used in this List of Prohibited Substances and Prohibited Methods. Prohibited In-Competition Subject to a different period having been approved by WADA for a given sport, the In- Competition period shall in principle be the period commencing just before midnight (at 11:59 p.m.) on the day before a Competition in which the Athlete is scheduled to participate until the end of the Competition and the Sample collection process. Prohibited at all times This means that the substance or method is prohibited In- and Out-of-Competition as defined in the Code. Specified and non-Specified As per Article 4.2.2 of the World Anti-Doping Code, “for purposes of the application of Article 10, all Prohibited Substances shall be Specified Substances except as identified on the Prohibited List.
    [Show full text]
  • Androgen Receptor: a Complex Therapeutic Target for Breast Cancer
    cancers Review Androgen Receptor: A Complex Therapeutic Target for Breast Cancer Ramesh Narayanan 1 and James T. Dalton 2,* 1 Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA; [email protected] 2 College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected] Academic Editor: Emmanuel S. Antonarakis Received: 28 September 2016; Accepted: 23 November 2016; Published: 2 December 2016 Abstract: Molecular and histopathological profiling have classified breast cancer into multiple sub-types empowering precision treatment. Although estrogen receptor (ER) and human epidermal growth factor receptor (HER2) are the mainstay therapeutic targets in breast cancer, the androgen receptor (AR) is evolving as a molecular target for cancers that have developed resistance to conventional treatments. The high expression of AR in breast cancer and recent discovery and development of new nonsteroidal drugs targeting the AR provide a strong rationale for exploring it again as a therapeutic target in this disease. Ironically, both nonsteroidal agonists and antagonists for the AR are undergoing clinical trials, making AR a complicated target to understand in breast cancer. This review provides a detailed account of AR’s therapeutic role in breast cancer. Keywords: androgen receptor; breast cancer; selective androgen receptor modulator (SARM); estrogen receptor; triple-negative breast cancer (TNBC) 1. Introduction Over 240,000 women will develop breast cancer and ~40,000 will die from the disease in the United States in 2016 [1]. Globally, about 1.7 million women were diagnosed with breast cancer in 2012, emphasizing the urgent need for effective and safe therapeutic approaches [2].
    [Show full text]
  • Selective Androgen Receptor Modulators: the Future of Androgen Therapy?
    148 Review Article Selective androgen receptor modulators: the future of androgen therapy? Andrew R. Christiansen1, Larry I. Lipshultz2,3, James M. Hotaling4, Alexander W. Pastuszak4 1University of Utah School of Medicine, Salt Lake City, UT, USA; 2Scott Department of Urology; 3Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, USA; 4Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA Contributions: (I) Conception and design: AR Christiansen; (II) Administrative support: AW Pastuszak; (III) Provision of study material or patients: AR Christiansen; (IV) Collection and assembly of data: AR Christiansen; (V) Data analysis and interpretation: AR Christiansen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Alexander W. Pastuszak, MD, PhD. Assistant Professor, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, USA. Email: [email protected]. Abstract: Selective androgen receptor modulators (SARMs) are small molecule drugs that function as either androgen receptor (AR) agonists or antagonists. Variability in AR regulatory proteins in target tissues permits SARMs to selectively elicit anabolic benefits while eschewing the pitfalls of traditional androgen therapy. SARMs have few side effects and excellent oral and transdermal bioavailability and may, therefore, represent viable alternatives to current androgen therapies. SARMs have been studied as possible therapies for many conditions, including osteoporosis, Alzheimer’s disease, breast cancer, stress urinary incontinence (SUI), prostate cancer (PCa), benign prostatic hyperplasia (BPH), male contraception, hypogonadism, Duchenne muscular dystrophy (DMD), and sarcopenia/muscle wasting/cancer cachexia. While there are no indications for SARMs currently approved by the Food and Drug Administration (FDA), many potential applications are still being explored, and results are promising.
    [Show full text]
  • Cancer Palliative Care and Anabolic Therapies
    Cancer Palliative Care and Anabolic Therapies Aminah Jatoi, M.D. Professor of Oncology Mayo Clinic, Rochester, Minnesota USA • 2 Androgens • Creatine • Comments von Haehling S, et al, 2017 Oxandrolone: androgen that causes less virilization oxandrolone RANDOMIZE megestrol acetate #1: Oxandrolone (Lesser, et al, ASCO abstract 9513; 2008) • N=155 patients receiving chemotherapy • oxandrolone (10 mg twice a day x 12 weeks) versus megestrol acetate (800 mg/day x 12 weeks) • oxandrolone led to – a non-statistically significant increase in lean body mass (bioelectrical impedance) at 12 weeks (2.67 versus 0.82 pounds with megestrol acetate, p = 0.12), but – a decrease in overall weight as compared with megestrol acetate (-3.3 versus +5.8 pounds, respectively). • more oxandrolone patients dropped out prior to completing 12 weeks (63% versus 39 %). #2: Oxandrolone (von Roenn, et al, ASCO, 2003) • N=131 • Single arm • 81% of patients gained/maintained weight • Safe (PRIMARY ENDPOINT): 19% edema; 18% dyspnea; mild liver function test abnormalities #3: Oxandrolone: placebo controlled trial • results unknown SUMMARY OF OXANDROLONE: • Multiple studies (not yet peer-reviewed) • Hints of augmentation of lean tissue • High drop out in the phase 3 oxandrolone arm raises concern Enobosarm: selective androgen receptor modulator (less virilizing) ENOBOSARM RANDOMIZE* PLACEBO *All patients had non-small cell lung cancer, and chemotherapy was given concomittantly. percentage of subjects at day 84 with stair climb power change >=10% from their baseline value percentage of subjects at day 84 with lean body mass change >=0% from their baseline value SUMMARY OF ENOBOSARM: • Leads to incremental lean body mass, but functionality not demonstrated • Pivotal registration trial (not yet peer- reviewed (but FDA-reviewed….)) • 2 Androgens • Creatine • Comments Creatine: an amino acid derivative This study was funded by R21CA098477 and the Alliance for Clinical Trials NCORP grant.
    [Show full text]
  • Sarms in Dietary Supplements and Other Products
    SARMs in Dietary Supplements and Other Products Selective androgen receptor modulators, or SARMs, are syn- damage.” They’re also prohibited for use in sport. For exam- thetic drugs designed to mimic the effects of testosterone. Al- ple, a 2017 FDA Safety Alert describes andarine and ostarine though these drugs are still in the research and testing stages as “unapproved drugs and anabolic steroid-like substances.” of development, and they are classified as drugs, yet most are In addition, some experimental drugs that are not SARMs are readily available online both as ingredients in dietary supple- being marketed as or along with SARMs, but they are equally ment products and as chemicals available for “research only.” illegal in dietary supplements and prohibited for sport. As a Some websites marketing SARMs for “research use” include result, the most common of these are also included on the next descriptions with language clearly targeting use for bodybuild- page. In addition, there are dietary supplements marketed as ing. However, according to FDA “Body-building products that contain selective androgen receptor modulators, or SARMs, SARMs that do not contain any of the drugs listed here. The have not been approved by the FDA and are associated with following list will help you recognize these drugs, which often serious safety concerns, including potential to increase the risk go by various names, as well as currently available products of heart attack or stroke and life threatening reactions like liver that contain them. SARMs • LGD-3033
    [Show full text]
  • UFC PROHIBITED LIST Effective June 1, 2021 the UFC PROHIBITED LIST
    UFC PROHIBITED LIST Effective June 1, 2021 THE UFC PROHIBITED LIST UFC PROHIBITED LIST Effective June 1, 2021 PART 1. Except as provided otherwise in PART 2 below, the UFC Prohibited List shall incorporate the most current Prohibited List published by WADA, as well as any WADA Technical Documents establishing decision limits or reporting levels, and, unless otherwise modified by the UFC Prohibited List or the UFC Anti-Doping Policy, Prohibited Substances, Prohibited Methods, Specified or Non-Specified Substances and Specified or Non-Specified Methods shall be as identified as such on the WADA Prohibited List or WADA Technical Documents. PART 2. Notwithstanding the WADA Prohibited List and any otherwise applicable WADA Technical Documents, the following modifications shall be in full force and effect: 1. Decision Concentration Levels. Adverse Analytical Findings reported at a concentration below the following Decision Concentration Levels shall be managed by USADA as Atypical Findings. • Cannabinoids: natural or synthetic delta-9-tetrahydrocannabinol (THC) or Cannabimimetics (e.g., “Spice,” JWH-018, JWH-073, HU-210): any level • Clomiphene: 0.1 ng/mL1 • Dehydrochloromethyltestosterone (DHCMT) long-term metabolite (M3): 0.1 ng/mL • Selective Androgen Receptor Modulators (SARMs): 0.1 ng/mL2 • GW-1516 (GW-501516) metabolites: 0.1 ng/mL • Epitrenbolone (Trenbolone metabolite): 0.2 ng/mL 2. SARMs/GW-1516: Adverse Analytical Findings reported at a concentration at or above the applicable Decision Concentration Level but under 1 ng/mL shall be managed by USADA as Specified Substances. 3. Higenamine: Higenamine shall be a Prohibited Substance under the UFC Anti-Doping Policy only In-Competition (and not Out-of- Competition).
    [Show full text]
  • Anti-Cytokines in the Treatment of Cancer Cachexia
    79 Review Article Anti-cytokines in the treatment of cancer cachexia Bernard Lobato Prado1, Yu Qian2 1Department of Oncology and Hematology, Hospital Israelita Albert Einstein, Sao Paulo, Brazil; 2Department of Thoracic Oncology, Hubei Cancer Hospital, Wuhan 430070, China Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Bernard Prado, MD. Department of Oncology and Hematology, Hospital Israelita Albert Einstein, Albert Einstein Av. 627, Sao Paulo 05652-900, Brazil. Email: [email protected]. Abstract: Cancer-related cachexia (CRC) is a multidimensional, frequent and devastating syndrome. It is mainly characterized by a loss of skeletal muscle tissue, accompanied or not by a loss of adipose tissue that leads to impaired functionality, poor quality of life, less tolerability to cancer-directed therapies, high levels of psychosocial distress, and shorter survival. Despite its clinical importance, there is a lack of effective pharmacological therapies to manage CRC. Pro-cachectic cytokines have been shown to play a critical role in its pathogenesis, providing the conceptual basis for testing anti-cytokine drugs to treat this paraneoplastic syndrome. The aim of this review was to examine the current evidence on anti-cytokines in the treatment of CRC. Several anti-cytokine agents targeting one or more molecules (i.e., TNF-alpha, IL-1 alpha, IL- 6, and others) have been investigated in clinical trials for the treatment of CRC, mainly in phase I and II studies.
    [Show full text]
  • Enhanced UHPLC-MS/MS Screening of Selective Androgen Receptor Modulators Following Urine Hydrolysis
    MethodsX 7 (2020) 100926 Contents lists available at ScienceDirect MethodsX j o u r n a l h o m e p a g e: w w w . e l s e v i e r . c o m / l o c a t e / m e x Method Article Enhanced UHPLC-MS/MS screening of selective androgen receptor modulators following urine hydrolysis ∗ ∗ Anna Gadaj a,b, , Emiliano Ventura a, , Jim Healy c,d, Francesco Botrè e, Saskia S. Sterk f, Tom Buckley g, Mark H. Mooney a a Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, BT9 5DL, United Kingdom b Chemical and Immunodiagnostic Sciences Branch, Veterinary Sciences Division, Agri-Food & Biosciences Institute (AFBI), Stoney Road, Belfast BT4 3SD, United Kingdom c Laboratory, Irish Greyhound Board, Limerick Greyhound Stadium, Ireland d Applied Science Department, Limerick Institute of Technology, Moylish, Limerick, Ireland e Laboratorio Antidoping, Federazione Medico Sportiva Italiana, Italy f Wageningen Food Safety Research, Wageningen University & Research, European Union Reference Laboratory, Wageningen, the Netherlands g Irish Diagnostic Laboratory Services Ltd., Johnstown, W91 RH93, Co. Kildare, Ireland a b s t r a c t Selective androgen receptor modulators (SARMs) represent non-steroidal agents commonly abused in human and animal (i.e. equine, canine) sports, with potential for further misuse as growth promoting agents in livestock- based farming. As a direct response to the real and possible implications of illicit application in both sport as well as food production systems, this study incorporated enzymatic hydrolysis ( β-glucuronidase/arylsulfatase) into a previously established protocol while maintaining the minimal volume (200 μL) of urine sample required to detect SARMs encompassing various pharmacophores in urine from a range of species (i.e.
    [Show full text]
  • Pushing Estrogen Receptor Around in Breast Cancer
    Page 1 of 55 Accepted Preprint first posted on 11 October 2016 as Manuscript ERC-16-0427 1 Pushing estrogen receptor around in breast cancer 2 3 Elgene Lim 1,♯, Gerard Tarulli 2,♯, Neil Portman 1, Theresa E Hickey 2, Wayne D Tilley 4 2,♯,*, Carlo Palmieri 3,♯,* 5 6 1Garvan Institute of Medical Research and St Vincent’s Hospital, University of New 7 South Wales, NSW, Australia. 2Dame Roma Mitchell Cancer Research Laboratories 8 and Adelaide Prostate Cancer Research Centre, University of Adelaide, SA, 9 Australia. 3Institute of Translational Medicine, University of Liverpool, Clatterbridge 10 Cancer Centre, NHS Foundation Trust, and Royal Liverpool University Hospital, 11 Liverpool, UK. 12 13 ♯These authors contributed equally. *To whom correspondence should be addressed: 14 [email protected] or [email protected] 15 16 Short title: Pushing ER around in Breast Cancer 17 18 Keywords: Estrogen Receptor; Endocrine Therapy; Endocrine Resistance; Breast 19 Cancer; Progesterone receptor; Androgen receptor; 20 21 Word Count: 5620 1 Copyright © 2016 by the Society for Endocrinology. Page 2 of 55 22 Abstract 23 The Estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) 24 that is expressed in approximately 75% of breast cancers. Therapies that modulate 25 ER action have substantially improved the survival of patients with ER-positive breast 26 cancer, but resistance to treatment still remains a major clinical problem. Treating 27 resistant breast cancer requires co-targeting of ER and alternate signalling pathways 28 that contribute to resistance to improve the efficacy and benefit of currently available 29 treatments.
    [Show full text]
  • The Selective Androgen Receptor Modulator Gtx-024
    J Cachexia Sarcopenia Muscle (2011) 2:153–161 DOI 10.1007/s13539-011-0034-6 ORIGINAL ARTICLE The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: results of a double-blind, placebo-controlled phase II trial James T. Dalton & Kester G. Barnette & Casey E. Bohl & Michael L. Hancock & Domingo Rodriguez & Shontelle T. Dodson & Ronald A. Morton & Mitchell S. Steiner Received: 20 April 2011 /Accepted: 11 July 2011 /Published online: 2 August 2011 # The Author(s) 2011. This article is published with open access at Springerlink.com Abstract resistance (P=0.013, 3 mg vs. placebo). The incidence of Background Cachexia, also known as muscle wasting, is a adverse events was similar between treatment groups. complex metabolic condition characterized by loss of Conclusion GTx-024 showed a dose-dependent improve- skeletal muscle and a decline in physical function. Muscle ment in total lean body mass and physical function and was wasting is associated with cancer, sarcopenia, chronic well tolerated. GTx-024 may be useful in the prevention obstructive pulmonary disease, end-stage renal disease, and/or treatment of muscle wasting associated with cancer and other chronic conditions and results in significant and other chronic diseases. morbidity and mortality. GTx-024 (enobosarm) is a nonste- roidal selective androgen receptor modulator (SARM) that Keywords Muscle wasting . Selective androgen receptor has tissue-selective anabolic effects in muscle and bone, modulator . Cachexia . Physical function . Lean body mass while sparing other androgenic tissue related to hair growth in women and prostate effects in men.
    [Show full text]
  • RAD140 | Medchemexpress
    Inhibitors Product Data Sheet RAD140 • Agonists Cat. No.: HY-14383 CAS No.: 1182367-47-0 Molecular Formula: C₂₀H₁₆ClN₅O₂ • Molecular Weight: 393.83 Screening Libraries Target: Androgen Receptor Pathway: Others Storage: Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month SOLVENT & SOLUBILITY In Vitro DMSO : ≥ 100 mg/mL (253.92 mM) * "≥" means soluble, but saturation unknown. Mass Solvent 1 mg 5 mg 10 mg Concentration Preparing 1 mM 2.5392 mL 12.6958 mL 25.3917 mL Stock Solutions 5 mM 0.5078 mL 2.5392 mL 5.0783 mL 10 mM 0.2539 mL 1.2696 mL 2.5392 mL Please refer to the solubility information to select the appropriate solvent. In Vivo 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (6.35 mM); Clear solution 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: 2.5 mg/mL (6.35 mM); Suspended solution; Need ultrasonic 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (6.35 mM); Clear solution BIOLOGICAL ACTIVITY Description RAD140 is a potent, orally active, nonsteroidal selective androgen receptor modulator (SARM) with a Ki of 7 nM. RAD140 shows good selectivity over other steroid hormone nuclear receptors[1]. IC₅₀ & Target Ki: 7 nM (Androgen receptor)[1] In Vitro RAD140 (0-300 nM; pretreated for 1 hour) increases neuron viability against Aβ in a concentration-dependent manner[2].
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]