The History of Galveston's Concrete Ships

Total Page:16

File Type:pdf, Size:1020Kb

The History of Galveston's Concrete Ships THE HISTORY OF GALVESTON’S CONCRETE SHIPS A Thesis by DOROTHY ANNE ROWLAND Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Kevin Crisman Committee Members, Donny L. Hamilton Zachary Grasley Head of Department, Cynthia Werner December 2018 Major Subject: Maritime Archaeology and Conservation Copyright 2018 Dorothy Rowland ABSTRACT Selma is one of three World War I concrete shipwrecks in the Galveston area. While the other two are not identified, one of them is likely the Durham. This research explores how and why these ships ended their service here, and looks at the different methods used for the creation of early concrete ships and the differences in their performance. Selma, one of twelve Emergency Fleet Corporation ships, had a much different design than Durham, but both of the ships were out of use quickly after launch. Selma ran aground and damaged its bow; it was subsequently taken to Galveston for repairs that never occurred. Durham proved to be a very poor sailor, but remained afloat for many more years before becoming a fishing pier in Galveston. Both of these ships have histories of re-use that last beyond their abandonment. This research focuses on the history and construction of Selma and Durham. The text discusses the developments that lead to the development of these ships and how they fared after construction. Additionally, visual survey of how the condition of Selma has changed over time is included. ii DEDICATION This thesis is dedicated to my parents. My father who always encourages and believes in me, and my mother who was always supportive and inspiring. iii ACKNOWLEDGEMENTS I would like to thank my committee chair, Dr. Kevin Crisman, and my committee members, Dr. Donny Hamilton, and Dr. Zachary Grasley, for their guidance and support throughout the course of this research. The faculty of the Nautical Archaeology Program who were always available to for help or advice. Thanks also go to the Texas Historical Commission, Amy Borgens, and Sarah Linden for their help and support with the visual survey. Without their help parts of this thesis would not have been possible. Special thanks to Ken and Bonnie Cox, the family of Pat A. Daniels, and the SS Selma Association for sharing their stories, knowledge, and past research. Finally, thanks to my family and friends who have encouraged and supported me in this journey, especially Uncle Wayne for his financial support. Special thanks to the science ducklings for being wonderful friends as we went through the trials of writing theses together. iv CONTRIBUTORS AND FUNDING SOURCES Contributors This work was supervised by a thesis committee consisting of Professor Kevin Crisman, advisor, and Professor Donny Hamilton of the Department of Anthropology and Professor Zachary Grasley of the Department of Engineering. The survey data in Chapter 4 was collected with the help of the Texas Historical Commission, Amy Borgens, and Sarah Linden. All other work conducted for the thesis was completed by the student independently. Funding Sources There are no outside funding contributions to acknowledge related to the research and compilation of this document. v TABLE OF CONTENTS Page CHAPTER I INTRODUCTION ..................................................................................... 1 CHAPTER II HISTORY ................................................................................................ 3 Beginnings of Concrete Ships ............................................................................ 3 Early Concrete Ships in Europe ......................................................................... 5 Emergency Fleet Corporation ............................................................................ 8 SS Selma ............................................................................................................. 12 Other Concrete Ships and Shipwrecks ............................................................... 23 Conclusion .......................................................................................................... 31 CHAPTER III CONSTRUCTION OF WORLD WAR I CONCRETE SHIPS ............ 33 Construction of Earliest Concrete Vessels ......................................................... 33 Construction of the Emergency Fleet Corporation ............................................ 39 Construction of the Selma ................................................................................... 44 Durham and Darlington ...................................................................................... 47 Conclusion .......................................................................................................... 50 CHAPTER IV VISUAL SURVEY OF SS SELMA ........................................................ 52 Circa 1940-1960 ................................................................................................... 52 2007 ...................................................................................................................... 58 2012 ...................................................................................................................... 65 2018 ...................................................................................................................... 69 CHAPTER V CONCLUSION ........................................................................................ 77 REFERENCES ................................................................................................................ 79 APPENDIX A ................................................................................................................. 83 APPENDIX B ................................................................................................................ 86 APPENDIX C ................................................................................................................ 88 vi LIST OF FIGURES Page Figure 1 First concrete rowboat made by Joseph Lambot ..................................... 3 Figure 2 Ninety-food barge built in Mobile, Alabama from 1912 ........................ 5 Figure 3 SS Selma being launched in Mobile, Alabama ....................................... 13 Figure 4 View of Selma stranded on the Tampico jetty from the deck of the SS John D. Rockefeller ............................................................................ 14 Figure 5 Reinforcing timbers on Selma to allow it to be sailed to Galveston ....... 16 Figure 6 Hull portion of SS Durham or Darlington .............................................. 24 Figure 7 Concrete wreck off Bolivar peninsula ..................................................... 30 Figure 8 Concrete wreck off North Jetty ............................................................... 30 Figure 9 Design of 7,500 ton concrete tankers ...................................................... 39 Figure 10 Selma at sea ............................................................................................. 45 Figure 11 Section of Aransas Pass ship being shifted to a horizontal position ....... 49 Figure 12 Deck of Selma facing aft ......................................................................... 53 Figure 13 Stern deck of Selma from amidships ....................................................... 54 Figure 14 Stern deck of Selma ................................................................................. 55 Figure 15 Deck of Selma, view aft .......................................................................... 56 Figure 16 Inside Selma superstructure ..................................................................... 57 Figure 17 View of Selma from port side, 2007 ....................................................... 58 Figure 18 Selma amidships, view aft, 2007 ............................................................. 59 Figure 19 View of Selma amidships from starboard with partial view of lower foredeck, 2007 ......................................................................................... 59 vii Figure 20 View of Selma amidships from starboard, 2007 ..................................... 60 Figure 21 View of Selma from starboard stern, 2007 .............................................. 60 Figure 22 Selma from the stern, 2007 ...................................................................... 61 Figure 23 Selma from the port side, 2007 ................................................................ 62 Figure 24 Selma, bow from port side, 2007 ............................................................. 63 Figure 25 Close up of Selma name port, 2007 ......................................................... 64 Figure 26 Close up of Selma name starboard, 2007 ................................................ 64 Figure 27 Selma, viewed from bow, 2007 ............................................................... 65 Figure 28 Selma, viewed from bow, 2012 ............................................................... 66 Figure 29 View of ship’s name from starboard, 2012 ............................................. 67 Figure 30 View of Selma bow from port side, 2012 ................................................ 68 Figure 31 View of Selma amidships port side, 2012 ............................................... 68 Figure 32 View of Selma from stern, 2018 .............................................................. 69 Figure 33 View of Selma’s stern to amidships from port
Recommended publications
  • Mebs Sea-Man
    NYNMINST 3120.2 MILITARY EMERGENCY BOAT SERVICE SEAMANSHIP MANUAL MEBS SEA-MAN NYNMINST 3120.2 MEBS SEA-MAN TABLE OF CONTENTS CHAPTER SUBJECT PAGE 1 Boat Characteristics 6 Boat Nomenclature and Terminology 6 Boat Construction 7 Displacement 8 Three Hull Types 9 Principle Boat Parts 11 2 Marlinespike Seamanship 15 Line 15 Knots and Splices 20 Basic Knots 20 Splices 33 Whipping 36 Deck Fittings 38 Line Handling 39 3 Stability 43 Gravity 43 Buoyancy 43 Righting Moment and Capsizing 46 4 Boat Handling 52 Forces 52 Propulsion and Steering 54 Inboard Engines 55 Outboard Motors and Stern Drives 58 Waterjets 60 Basic Maneuvering 61 Vessel Turning Characteristics 67 Using Asymmetric or Opposed Propulsion 70 Performing Single Screw Compound Maneuvering 70 Maneuvering To/From Dock 71 Maneuvering Alongside Another Vessel 77 Anchoring 78 5 Survival Equipment 85 Personal Flotation Device 85 Type I PFD 85 3 NYNMINST 3120.2 MEBS SEA-MAN Type II PFD 85 Type III PFD 86 Type IV PFD 88 Type V PFD 88 6 Weather and Oceanography 90 Wind 90 Thunderstorms 92 Waterspouts 93 Fog 93 Ice 94 Forecasting 95 Oceanography 98 Waves 98 Surf 101 Currents 102 7 Navigation 105 The Earth and its Coordinates 105 Reference Lines of the Earth 105 Parallels 107 Meridians 109 Nautical Charts 113 Soundings 114 Basic Chart Information 115 Chart Symbols and Abbreviations 119 Magnetic Compass 127 Piloting 130 Dead Reckoning 138 Basic Elements of Piloting 139 8 Aids to Navigation 152 U.S. Aids to Navigation System 152 Lateral and Cardinal Significance 152 AtoN Identification 154 9 First
    [Show full text]
  • Galveston, Texas
    Galveston, Texas 1 TENTATIVE ITINERARY Participants may arrive at beach house as early as 8am Beach geology, history, and seawall discussions/walkabout Drive to Galveston Island State Park, Pier 21 and Strand, Apffel Park, and Seawolf Park Participants choice! Check-out of beach house by 11am Activities may continue after check-out 2 GEOLOGIC POINTS OF INTEREST Barrier island formation, shoreface, swash zone, beach face, wrack line, berm, sand dunes, seawall construction and history, sand composition, longshore current and littoral drift, wavelengths and rip currents, jetty construction, Town Mountain Granite geology Beach foreshore, backshore, dunes, lagoon and tidal flats, back bay, salt marsh wetlands, prairie, coves and bayous, Pelican Island, USS Cavalla and USS Stewart, oil and gas drilling and production exhibits, 1877 tall ship ELISSA Bishop’s Palace, historic homes, Pleasure Pier, Tremont Hotel, Galveston Railroad Museum, Galveston’s Own Farmers Market, ArtWalk 3 TABLE OF CONTENTS • Barrier Island System Maps • Jetty/Breakwater • Formation of Galveston Island • Riprap • Barrier Island Diagrams • Town Mountain Granite (Galveston) • Coastal Dunes • Source of Beach and River Sands • Lower Shoreface • Sand Management • Middle Shoreface • Upper Shoreface • Foreshore • Prairie • Backshore • Salt Marsh Wetlands • Dunes • Lagoon and Tidal Flats • Pelican Island • Seawolf Park • Swash Zone • USS Stewart (DE-238) • Beach Face • USS Cavalla (SS-244) • Wrack Line • Berm • Longshore Current • 1877 Tall Ship ELISSA • Littoral Zone • Overview
    [Show full text]
  • The Martinak Boat (CAR-254, 18CA54) Caroline County, Maryland
    The Martinak Boat (CAR-254, 18CA54) Caroline County, Maryland Bruce F. Thompson Principal Investigator Maryland Department of Planning Maryland Historical Trust, Office of Archeology Maryland State Historic Preservation Office 100 Community Place Crownsville, Maryland 21032-2023 November, 2005 This project was accomplished through a partnership between the following organizations: Maryland Historical Trust Maryland Department of Natural Resources Martinak State Park Chesapeake Bay Maritime Museum Maritime Archaeological and Historical Society *The cover photo shows the entrance to Watts Creek where the Martinak Boat was discovered just to the right of the ramp http://www.riverheritage.org/riverguide/Sites/html/watts_creek.html (accessed December 10, 2004). Executive Summary The 1960s discovery and recovery of wooden shipwreck remains from Watt’s Creek, Caroline County induced three decades of discussion, study and documentation to determine the wrecks true place within the region’s history. Early interpretations of the wreck timbers claimed the vessel was an example of a Pungy (generally accepted to have been built ca. 1840 – 1920, perhaps as early as 1820), with "…full flaring bow, long lean run, sharp floors, flush deck…and a raking stem post and stern post" (Burgess, 1975:58). However, the closer inspection described in this report found that the floors are flatter and the stem post and stern post display a much longer run (not so raking as first thought). Additional factors, such as fastener types, construction details and tool marks offer evidence for a vessel built earlier than 1820, possibly a link between the late 18th-century shipbuilding tradition and the 19th-century Pungy form. The Martinak Boat (CAR-254, 18CA54) Caroline County, Maryland Introduction In November, 1989 Maryland Maritime Archeology Program (MMAP) staff met with Richard Dodds, then curator of the Chesapeake Bay Maritime Museum (CBMM), and Norman H.
    [Show full text]
  • Boat Handling
    Canadian Coast Guard Auxiliary Search & Rescue Crew Manual BOAT 6 HANDLING The skills involved in handling a vessel are learned over time and come with practice. A new boat handler will fair better if they un- derstand and can apply some of the princi- ples and basic tools outlined in this chapter. “The difference between a rough docking and a smooth easy docking is around 900 attempts.” BOAT HANDLING CONTENTS 6.0 Introduction . .101 6.1 Helm Position . .101 6.2 Forces on Your Vessel . .103 6.2.1 Winds . .103 6.2.2 Waves . .103 6.2.3 Current . .104 6.2.4 Combined natural forces . .104 6.3 Vessel Characteristics . .104 6.3.1 Displacement Hulls . .104 6.3.2 Planing Hulls . .105 6.4 Propulsion and Steering . .107 6.4.1 Pivot Point . .108 6.4.2 Trim . .108 6.5 Propellers . .109 6.5.1 Parts of a Propeller . .109 6.6 Basic Manoeuvres . .110 6.7 Manoeuvring . .110 6.7.1 Directed Thrust . .110 6.7.2 Twin Engine Directed Thrust . .110 6.7.3 Waterjets . .112 6.7.4 Non-Directed Thrust and Rudder Deflection . .112 6.8 Getting Underway . .113 6.9 Approaching the Dock . .113 6.10 Station Keeping . .114 100 Canadian Coast Guard Auxiliary Search & Rescue Crew Manual Excerpts taken from the book “High Seas High Risk” Written by Pat Wastel Norris 1999 (The Sudbury II was a legendary offshore salvage tug that had taken a large oil drilling platform in tow during the summer of 1961. This drama occurred in the Caribbean as Hurricane Hattie approached.) The Offshore 55, a towering oil rig, was at that time the largest rig in the world.
    [Show full text]
  • United States National Museum
    SMITHSONIAN INSTITUTION UNITED STATES NATIONAL MUSEUM BULLETIN 2 30 WASHINGTON, D.C. 1964 MUSEUM OF HISTORY AND TECHNOLOGY The Bark Canoes and Skin Boats of North America Edwin Tappan Adney and Howard I. Chapelle Curator of Transportation SMITHSONIAN INSTITUTION, WASHINGTON, D.C. 1964 — Publications of the United States National Aiuseum The scholarly and scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series the Museum publishes original articles and monographs dealing with the collections and work of its constituent museums—The Museum of Natural History and the Museum of History and Technology setting forth newly acquired facts in the fields of Anthropology, Biology, History, Geology, and Technology. Copies of each publication are distributed to libraries, to cultural and scientific organizations, and to specialists and others interested in the different subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers from the Museum of Natural History. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902 papers relating to the botanical collections of the Museum of Natural History have been published in the Bulletin series under the heading Contributions Jrom the United States National Herbarium, and since 1959, in Bulletins titled "Contributions from the Museum of History and Technology," have been gathered shorter papers relating to the collections and research of that Museum.
    [Show full text]
  • Skilful Vessel Handling
    Skilful Vessel Handling Capt. Øystein Johnsen MNI Buskerud and Vestfold University College March 2014 Manoeuvring of vessels that are held back by an external force This consideration is written in belated wisdom according to the accident of Bourbon Dolphin in April 2007 When manoeuvring a vessel that are held back by an external force and makes little or no speed through the water, the propulsion propellers run up to the maximum, and the highest sideways force might be required against wind, waves and current. The vessel is held back by 1 800 meters of chain and wire, weight of 300 tons. 35 knops wind from SW, waves about 6 meter and 3 knops current heading NE has taken her 840 meters to the east (stb), out of the required line of bearing for the anchor. Bourbon Dolphin running her last anchor. The picture is taken 37 minutes before capsizing. The slip streams tells us that all thrusters are in use and the rudders are set to port. (Photo: Sean Dickson) 2 Lack of form stability I Emil Aall Dahle It is Aall Dahle’s opinion that the whole fleet of AHT/AHTS’s is a misconstruction because the vessels are based on the concept of a supplyship (PSV). The wide open after deck makes the vessels very vulnerable when tilted. When an ordinary vessel are listing an increasingly amount of volume of air filled hull is forced down into the water and create buoyancy – an up righting (rectification) force which counteract the list. Aall Dahle has a doctorate in marine hydrodynamics, has been senior principle engineer in NMD and DNV.
    [Show full text]
  • Nautical Education for Offshore Cxtractivc
    Lso-B-7i-ooz NAUTICALEDUCATION FOR OFFSHORE CXTRACTIVC INDUSTRIES RV G-H.HOFFMANN WITH FREDTOWNSEND AND WARREN NORVILLE 5' GRAHT PUI3I.ICATIOHHO. LSU-II-77-OL C6NTCRfOR WETLAND RESOURCES ~ LOUISIANA STATC UNIVf RSIEY ~ BATON ROUCIC, LOUISIANA 7000 NAUTICAL EDUCATION FOR THE V~M$pQog767 QoM G. H. Ho f fmann with Fred Townsend and Warren Norville LOUISIANA STATE UNIVERSITY CENTER FOR WETLAND RESOURCES BATON ROUGE, LA 70803 Sea Grant Publication No. LSU-8-77-001 September 1977 This work is a result of research sponsored jointly by the Terrebonne Parish School Board and the Louisiana Sea Grant Program, a part of the National Sea Grant Program maintained by the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce. CONTENTS List of Figures List of Tables Vi Acknowledgments Beginnings of the Oil Industry 1 2 The Offshore Revolution Drilling a Wildcat Well The Petr omar ine Fleet 46 6 4.1 Tankers 4.2 Seagoing Tank Barges and Tugs ll 4.3 Inland Tank Barges and Towboats 13 4.4 Inland Drilling Barges 16 4.5 Offshore Drilling Tenders 16 4.6 Submersible Drilling Vessels 17 4.7 3ack-up DrilIing Barges 18 4.8 Semi-Submersible Drilling Vessels 19 4.9 Drill Ships 20 4.10 Crewboats 27 4.11 Supply vessels 28 4.12 Tugs 30 4.13 Derrick Barges 31 4.I4 Pipelaying Barges 31 4.15 Air Cushion Vehicles ACV! 37 Producing Oil and Gas 37 Design Procedures 44 6.1 Owner Requirements 44 6.2 Design Drawings and Specifications 45 6.3 Regulatory Agencies 49 6.4 Design Calculations 54 6.5 The Measurements of a Ship 60 6.6 Free Surface 68 6.7 Model Testing 69 Construction Procedure 70 7.1 Estimating 70 7.2 Working Plans 72 7.3 Production 74 7.4 Inspection 76 7.5 Trials and Tests 78 Delivery 80 Stability and Trim 82 9.1 Stability 82 9.2 Transverse Metacenter 86 9.3 Calculating GM 87 9.4 KM and KG 88 9.
    [Show full text]
  • Hydrostatics & Propulsion
    Sutton Hoo Ship Reconstruction Project: Phase 1, Report 2: Hydrostatics & Propulsion Pat Tanner & Julian Whitewright The following report outlines the final element of the work undertaken as part of Phase 1 of the Sutton Hoo Ship Reconstruction Project. The overall phase is concerned with the creation of a digital interpretation of the Sutton Hoo ship, based on the available evidence, and subsequent hydrostatic testing. It is seen as a critical phase in advance of full-scale building because of the cost-effective opportunity that digital modelling affords for exploring challenges to using the original dataset and resolving questions of interpretation prior to full-scale construction work. Phase 1 Interim Report 1 focused on conducting initial comparative analysis of the three existing ​ lines plan interpretations (1939, 1975, 2016) of the ship, and on understanding the nature of the surviving archaeological evidence and issues arising from this. Following on from this, Phase 1 Report ​ 1: Hull Structure contains an account of the re-interpretation of the published archaeological ​ evidence leading to the digital modelling of the minimum reconstruction of the hull of the Sutton ​ ​ Hoo ship. The present report takes that work to its final stage and begins to attempt to understand some of the day-to-day operation of the vessel, and specifically aspects such as the quantity and position of the various crew, oars-men, helmsman, boat captain and any potential passengers. In the first instance this is done through hydrostatic testing to establish floatation conditions, stability and potential speed (Section 1). This is followed (Section 2) by discussion of some initial rowing arrangements, in the implications arising from these for the propulsion and function of the vessel.
    [Show full text]
  • Cornshuckers and San
    INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.
    [Show full text]
  • Wilfred Sykes Education Corporation
    Number 302 • summer 2017 PowerT HE M AGAZINE OF E NGINE -P OWERED V ESSELS FRO M T HEShips S T EA M SHI P H IS T ORICAL S OCIE T Y OF A M ERICA ALSO IN THIS ISSUE Messageries Maritimes’ three musketeers 8 Sailing British India An American Classic: to the Persian steamer Gulf 16 Post-war American WILFRED Freighters 28 End of an Era 50 SYKES 36 Thanks to All Who Continue to Support SSHSA July 2016-July 2017 Fleet Admiral – $50,000+ Admiral – $25,000+ Maritime Heritage Grant Program The Dibner Charitable The Family of Helen & Henry Posner, Jr. Trust of Massachusetts The Estate of Mr. Donald Stoltenberg Ambassador – $10,000+ Benefactor ($5,000+) Mr. Thomas C. Ragan Mr. Richard Rabbett Leader ($1,000+) Mr. Douglas Bryan Mr. Don Leavitt Mr. and Mrs. James Shuttleworth CAPT John Cox Mr. H.F. Lenfest Mr. Donn Spear Amica Companies Foundation Mr. Barry Eager Mr. Ralph McCrea Mr. Andy Tyska Mr. Charles Andrews J. Aron Charitable Foundation CAPT and Mrs. James McNamara Mr. Joseph White Mr. Jason Arabian Mr. and Mrs. Christopher Kolb CAPT and Mrs. Roland Parent Mr. Peregrine White Mr. James Berwind Mr. Nicholas Langhart CAPT Dave Pickering Exxon Mobil Foundation CAPT Leif Lindstrom Peabody Essex Museum Sponsor ($250+) Mr. and Mrs. Arthur Ferguson Mr. and Mrs. Jeffrey Lockhart Mr. Henry Posner III Mr. Ronald Amos Mr. Henry Fuller Jr. Mr. Jeff MacKlin Mr. Dwight Quella Mr. Daniel Blanchard Mr. Walter Giger Jr. Mr. and Mrs. Jack Madden Council of American Maritime Museums Mrs. Kathleen Brekenfeld Mr.
    [Show full text]
  • Concrete Ship - Wikipedia Page 1 of 6
    Concrete ship - Wikipedia Page 1 of 6 Concrete ship From Wikipedia, the free encyclopedia Concrete ships are built of steel and ferrocement (reinforced concrete) instead of more traditional materials, such as steel or wood. The advantage of ferrocement construction is that materials are cheap and readily available, while the disadvantages are that construction labor costs are high, as are operating costs. (Ferrocement ships require thick hulls, which means extra mass to push and less space for cargo.) During the late 19th century, there were concrete river barges in Europe, and during both World War I and World War II, steel shortages led the US military to order the construction of small fleets of ocean-going concrete ships, the largest of which was the SS Selma.[1] Few concrete ships were completed in time to see wartime service during World War I, but during 1944 and 1945, concrete ships and barges were used to support U.S. and British invasions in Europe and the Pacific. Since the late 1930s, there have also been ferrocement pleasure boats. Contents ◾ 1 History ◾ 2 Today ◾ 2.1 Remaining wartime ships ◾ 2.1.1 Americas ◾ 2.1.2 Europe ◾ 2.1.3 Other ◾ 3 References ◾ 4 External links History The oldest known ferrocement watercraft was a dinghy built by Joseph-Louis Lambot in Southern France in 1848. Lambot's boat was featured in the Exposition Universelle held in Paris in 1855. Beginning in the 1860s, ferrocement barges were built in Europe for use on canals, and around 1896, an Italian engineer, Carlo Gabellini, began building small ships out of ferrocement.
    [Show full text]
  • (CWP) Handbook of Fishery Statistical Standards Annex LIII
    Coordinating Working Party on Fishery Statistics (CWP) Handbook of Fishery Statistical Standards Annex LIII: Length of Fishery Vessels (Approved at the 11th Session of the CWP, 1982) Length overall (o/l): The most frequently used and preferred measure of the length of a fishing vessel is the length overall. This refers to the maximum length of a vessel from the two points on the hull most distant from each other, measured perpendicular to the waterline Other measures of the length of vessels are: Waterline length (w/l) refers to the length of the designed waterline of the vessel from the stern to the stern. This measure is used in determining certain properties of a vessel for example, the water displacement; Length between perpendiculars (p/p) refers to the length of a vessel along the waterline from the forward surface of the stern, or main bow perpendicular member, to the after surface of the sternpost, or main stern perpendicular member. This is believed to give a reasonable idea of the vessel’s carrying capacity, as it excludes the small, often unusable volume contained in her overhanging ends. On some types of vessels this is, for all practical purposes, a waterline measurement. In a vessel with raked stern, naturally this length <change as the draught of the ship changes, therefore it is measured from the defined loaded condition. p/p Length between perpendiculars w/l Waterline length o/a Length overall b Breadth f Freeboard d Draught Coordinating Working Party on Fishery Statistics (CWP) Handbook of Fishery Statistical Standards Vessel size (length overall in Code meters) Lower limit Upper limit 210 0 5.9 221 6 11.9 222 12 17.9 223 18 23.9 224 24 29.9 225 30 35.9 230 36 44.9 240 45 59.9 250 60 74.9 260 75 99.9 270 100 and over Annex LVII: Vessel size (Approved by CWP-11, 1982) .
    [Show full text]