Mebs Sea-Man
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Personal Dead Reckoning Module Dr
A Personal Dead Reckoning Module Dr. C. Tom Judd, Point Research Corporation BIOGRAPHY what has been done in vehicular and aircraft applications where inertial navigators are used to bridge the dead Dr. Tom Judd is Chief Scientist at Point Research spots. Corporation. For the past four years he has been responsible for developing and implementing algorithms Dead reckoning has been used for ages to obtain a for dead reckoning. Dr. Judd received his Bachelor of position estimate based on velocity, time, and direction Science degree in Physics from St. Mary’s College of from a starting point. For a person on foot, measuring California, and his Ph.D. in Biophysics from the distance directly using a pedometer is a practical means University of California, Davis. for measuring distance traveled. Take the pace count and multiply by the distance for each pace, and you get the ABSTRACT total distance traveled. Pace count has in the past been a an important measure of distance over land. The word Point Research Corporation of Santa Ana, CA has mile originates from the Latin word for one thousand, developed a new lightweight miniature Dead Reckoning milie, the number of paces in a mile. Module (DRM) for drift-free navigation by personnel on foot. The traditional compass and pace-count dead There are several advantages in weight, size, power reckoning navigation has been replaced by a continuous consumption, and accuracy to using electronic dead hands-free module. An internal solid-state 3 dimensional reckoning over a conventional inertial navigator. Inertial compass provides a robust tilt-corrected heading. -
Pacific Parables Final
Pacific Parables Raqs Media Collective [Address to the Pacific Rim New Media Summit, ISEA2006 and Zero One Festival, San Jose, August 2006. Published in in PLACE: Local Knowledge and New Media Practice, Edited by Danny Butt, Jon Bywater & Nova Paul. Cambridge Scholars Press, Newcastle, 2008] The Pacific Rim as a Fiction of Place The Pacific Rim is a fiction about place, a filter through which you can look at the world if you choose to and confer more or less arbitrary meanings on to a set of latitudes and longitudes. There have been previous fictions about place straddling this water, one was called the Greater East Asia Co-Prosperity Sphere, and unleashed havoc in the name of the solidarity of oppressed peoples of Asia, another thought of the Pacific as a Californian frontier, a kind of Wild Blue West. A third spoke French, and drew naked women in Tahiti, and dropped hydrogen bombs in the water. A fourth, the South Pacific Bubble, was one of the first episodes of global financial speculation that shaped the turbulence of the economy of our modern era. Meanwhile, Sikh peasants from the Punjab, Chinese railroad workers from Canton, Agricultural workers and sugarcane cultivators from the hinterland of North India traversed the ocean, Mexicans swam, or walked along the coastline, Australian sailors, New Zealanders on whaling ships, Japanese factory workers, Filipina nurses and itinerant Pacific Islander communities traversed the Pacific, and the wider world, buffeted by the rough winds of recent history. They grew fruit trees in Napa valley, felled timber in British Columbia, mined tin in Peru, pressed grapes in Chile and made what some of choose to call the Pacific Rim what it is today. -
Ten Mariner School Knots ~
~ Ten Mariner School Knots ~ ~ Knot Competition: 4 min / 10 knots Eyes closed. One Hand. On Too Short Rope ~ The Ten Mariner School Knots 1. Figure eight ~ Kahdeksikko 2. Clove hitch ~ Siansorkka 3. Bowline ~ Paalusolmu 4. Sheet Bend ~ Jalus- ja Lippusolmu 5. Half hitches ~ Ulkosorkka ja puolisorkat 6. High way man's hitch ~ Vetosolmu (=vetonaula) 7. Reefing knot ~ Merimiessolmu 8. Shorting knot ~ Lyhennyssolmu 9. Doubled loop bow-line ~ Kahden paalun paalusolmu 10. Monkey Fist ~ Apinannyrkki ~*~ 1) Figure Eight - Kahdeksikko ◦ Stopper Knot ◦ (alternative uses: join two ropes ◦ Fixed loop) 2) Bow Line - Paalusolmu ◦ Fixed loop ◦ Relatively weak knot: the strength of the rope decreases to 40 %, and becomes hard to open on thin strings ◦ Still, one of the most significant knot among sailors, known as the “King of Knots” ◦ Variations make it stronger & more efficient 3) Clove Hitch - Siansorkka ◦ Hitch rope to a bar ◦ Jams & opens easily (in tugging & pulling especially) ◦ > Never use alone / straightly on a bar when there’s pull / tugging on the rope > secure working-end e.g. with a half- hitch Or like this (with loops, ends of rope not needed): 4) Sheet Bend – Jalus- ja Lippusolmu ◦ Hitch rope to a same type of line ◦ Easy to use & learn ◦ Always make a loop with the bigger rope and the knot with smaller (Big rope in picture: red) ◦ Opens easily itself > When there’s pull / tugging, use two rounds (doubled) ◦ Short ends on same side!!! – otherwise no hold in the knot Sheet bend above, below with double round Continue to the other round: 5) Half Hitches – Puolisorkka ja Ulkosorkka ◦ A Clove Hitch turned on the rope itself ◦ A few simple variations makes this hitch very secure & easy to use – used widely e.g. -
An Analytical Approach to the Question of a Clock Change
An Analytical Approach to the Question of a Clock Change by Samuel Halpern One of the ongoing arguments that continues to be brought up is the question of whether or not clocks on Titanic were put back some time before the accident took place Sunday night, April 14, 1912. Some of the deck crew, awakened by the accident at 11:40 p.m. ship’s time, thought that it was close to the time that they were due to take their watch on deck, which would be at 12 o’clock. Despite Boatswain’s Mate Albert Haines, who was awake and on duty at the time, testifying that “The right time, without putting the clock back, was 20 minutes to 12,” there are some that try to argue that a 24 minute clock adjustment had already taken place, and the time of the accident on an unadjusted clock still keeping April 14th time would have been 4 minutes past 12. The underlying question that would resolve this issue is the run time from noon Sunday to the time of the accident. If the run time from noon to the time of the accident was 11 hours 40 minutes, then no clock change had yet taken place, and the time of collision was 11:40 p.m. in unadjusted hours. If the run time was more than 12 hours, then there was a clock change of some 23 or 24 minutes, and the time of collision was 11:40 p.m. in adjusted hours. It really is that simple. So how do we determine the actual run time from the available evidence that does not have to rely on subjective estimates such as time intervals or other measures that people may have perceived? The answer is to take an analytical approach to the problem using the taffrail log mileage data offered by quartermasters George Rowe and Robert Hichens at the inquiries. -
Glossary of Nautical Terms: English – Japanese
Glossary of Nautical Terms: English – Japanese 2 Approved and Released by: Dal Bailey, DIR-IdC United States Coast Guard Auxiliary Interpreter Corps http://icdept.cgaux.org/ 6/29/2012 3 Index Glossary of Nautical Terms: English ‐ Japanese A…………………………………………………………………………………………………………………………………...…..pages 4 ‐ 6 B……………………………………………………………………………………………………………………………….……. pages 7 ‐ 18 C………………………………………………………………………………………………………………………….………...pages 19 ‐ 26 D……………………………………………………………………………………………..……………………………………..pages 27 ‐ 32 E……………………………………………………………………………………………….……………………….…………. pages 33 ‐ 35 F……………………………………………………………………………………………………….…………….………..……pages 36 ‐ 41 G……………………………………………………………………………………………….………………………...…………pages 42 ‐ 43 H……………………………………………………………………………………………………………….….………………..pages 49 ‐ 48 I…………………………………………………………………………………………..……………………….……….……... pages 49 ‐ 50 J…………………………….……..…………………………………………………………………………………………….………... page 51 K…………………………………………………………………………………………………….….…………..………………………page 52 L…………………………………………………………………………………………………..………………………….……..pages 53 ‐ 58 M…………………………………………………………………………………………….……………………………....….. pages 59 ‐ 62 N……………….........................................................................…………………………………..…….. pages 63 ‐ 64 O……………………………………..........................................................................…………….…….. pages 65 ‐ 67 P……………………….............................................................................................................. pages 68 ‐ 74 Q………………………………………………………………………………………………………..…………………….……...…… page 75 R………………………………………………………………………………………………..…………………….………….. -
The Martinak Boat (CAR-254, 18CA54) Caroline County, Maryland
The Martinak Boat (CAR-254, 18CA54) Caroline County, Maryland Bruce F. Thompson Principal Investigator Maryland Department of Planning Maryland Historical Trust, Office of Archeology Maryland State Historic Preservation Office 100 Community Place Crownsville, Maryland 21032-2023 November, 2005 This project was accomplished through a partnership between the following organizations: Maryland Historical Trust Maryland Department of Natural Resources Martinak State Park Chesapeake Bay Maritime Museum Maritime Archaeological and Historical Society *The cover photo shows the entrance to Watts Creek where the Martinak Boat was discovered just to the right of the ramp http://www.riverheritage.org/riverguide/Sites/html/watts_creek.html (accessed December 10, 2004). Executive Summary The 1960s discovery and recovery of wooden shipwreck remains from Watt’s Creek, Caroline County induced three decades of discussion, study and documentation to determine the wrecks true place within the region’s history. Early interpretations of the wreck timbers claimed the vessel was an example of a Pungy (generally accepted to have been built ca. 1840 – 1920, perhaps as early as 1820), with "…full flaring bow, long lean run, sharp floors, flush deck…and a raking stem post and stern post" (Burgess, 1975:58). However, the closer inspection described in this report found that the floors are flatter and the stem post and stern post display a much longer run (not so raking as first thought). Additional factors, such as fastener types, construction details and tool marks offer evidence for a vessel built earlier than 1820, possibly a link between the late 18th-century shipbuilding tradition and the 19th-century Pungy form. The Martinak Boat (CAR-254, 18CA54) Caroline County, Maryland Introduction In November, 1989 Maryland Maritime Archeology Program (MMAP) staff met with Richard Dodds, then curator of the Chesapeake Bay Maritime Museum (CBMM), and Norman H. -
December 2007 Crew Journal of the Barque James Craig
December 2007 Crew journal of the barque James Craig Full & By December 2007 Full & By The crew journal of the barque James Craig http://www.australianheritagefleet.com.au/JCraig/JCraig.html Compiled by Peter Davey [email protected] Production and photos by John Spiers All crew and others associated with the James Craig are very welcome to submit material. The opinions expressed in this journal may not necessarily be the viewpoint of the Sydney Maritime Museum, the Sydney Heritage Fleet or the crew of the James Craig or its officers. 2 December 2007 Full & By APEC parade of sail - Windeward Bound, New Endeavour, James Craig, Endeavour replica, One and All Full & By December 2007 December 2007 Full & By Full & By December 2007 December 2007 Full & By Full & By December 2007 7 Radio procedures on James Craig adio procedures being used onboard discomfort. Effective communication Rare from professional to appalling relies on message being concise and clear. - mostly on the appalling side. The radio Consider carefully what is to be said before intercoms are not mobile phones. beginning to transmit. Other operators may The ship, and the ship’s company are be waiting to use the network. judged by our appearance and our radio procedures. Remember you may have Some standard words and phases. to justify your transmission to a marine Affirm - Yes, or correct, or that is cor- court of inquiry. All radio transmissions rect. or I agree on VHF Port working frequencies are Negative - No, or this is incorrect or monitored and tape recorded by the Port Permission not granted. -
47Ft Motor Lifeboat Operator's Handbook
47FT MOTOR LIFEBOAT OPERATOR’S HANDBOOK COMDTINST M16114.25B November 2007 47FT MLB Operator’s Handbook This page intentionally left blank Commandant 2100 Second Street, S.W. United States Coast Guard Washington, DC 20593-0001 Staff Symbol: CG-731 Phone: (202) 372-2457 COMDTINST M16114.25B NOV 14 2007 COMMANDANT INSTRUCTION M16114.25B Subj: 47FT MOTOR LIFEBOAT OPERATOR’S HANDBOOK 1. PURPOSE. This Manual provides technical orientation, performance characteristics, and basic operating procedures for the 47FT Motor Lifeboat (MLB). It also standardizes boat outfit, storage and equipment layout. 2. ACTION. Area, district, and sector commanders, commanders of maintenance and logistics commands, commanding officers of integrated support commands, commanding officers of headquarters units, assistant commandants for directorates, Judge Advocate General and special staff elements at Headquarters shall ensure compliance with the provisions of this Manual. Internet release is authorized. 3. DIRECTIVES AFFECTED. The 47FT Motor Lifeboat Operator’s Handbook, COMDTINST M16114.25A is cancelled. 4. DISCUSSION. This Manual contains information necessary to safely and efficiently operate the 47FT MLB. The operational capabilities, limitations, and emergency procedures are clearly stipulated. The fittings, outfit list, and physical characteristics of the boat are pictured and described in detail. This Manual is directive in nature and applies to all 47FT MLB crews, operational, and supervisory commands. 5. SUMMARY OF CHANGES. This revision provides new policies and procedures, makes modification and clarification to other existing policies, and makes several minor clerical changes. The majority of these changes originated from feedback received from the field. In addition to illustrations that were replaced throughout the Manual, the following major areas of change were made: a b c d e f g h i j k l m n o p q r s t u v w x y z A B * 5 10 * 2 2 10 * 1 C 2 1 5 D * 150 1 E 1 5 1 F G H NON-STANDARD DISTRIBUTION LIST: See Page 4 COMDTINST M16114.25B a. -
The Castaways, by Harry Collingwood
Harry Collingwood "The Castaways" | Chapter 1 | | Chapter 2 | | Chapter 3 | | Chapter 4 | | Chapter 5 | | Chapter 6 | | Chapter 7 | | Chapter 8 | | Chapter 9 | | Chapter 10 | | Chapter 11 | | Chapter 12 | | Chapter 13 | | Chapter 14 | | Chapter 15 | Chapter One. Miss Onslow. It was on a wet, dreary, dismal afternoon, toward the end of October 18—, that I found myself en route for Gravesend, to join the clipper ship City of Cawnpore, in the capacity of cuddy passenger, bound for Calcutta. The wind was blowing strong from the south-east, and came sweeping along, charged with frequent heavy rain squalls that dashed fiercely against the carriage windows, while the atmosphere was a mere dingy, brownish grey expanse of shapeless vapour, so all-pervading that it shut out not only the entire firmament but also a very considerable portion of the landscape. There had been a time, not so very long ago—while I was hunting slavers on the West Coast, grilling under a scorching African sun day after day and month after month, with pitiless monotony—when the mere recollection of such weather as this had made me long for a taste of it as a priceless luxury; but now, after some five months’ experience of the execrable British climate, I folded my cloak more closely about me, as I gazed through the carriage windows at the rain-blurred landscape, and blessed the physician who was sending me southward in search of warmth and sunshine and the strong salt breeze once more. For it was in pursuit of renewed health and strength that I was about to undertake the -
Gising Dead-Reckoning; Historic Maritime Maps in GIS Menne KOSIAN
13 th International Congress „Cultural Heritage and New Technologies“ Vienna, 2008 GISing dead-reckoning; historic maritime maps in GIS Menne KOSIAN Abstract: The Dutch mapmakers of the 16th and 17th century were famous for their accurate and highly detailed maps. Several atlases were produced and were the pride and joy of many a captain, whether Dutch, English, French, fighting or merchant navy. For modern eyes, these maps often seem warped and inaccurate; besides, in those times it still was impossible to accurately determine ones longitude, so how could these maps be accurate at all? But since these maps were actually used to navigate on, and (most of) the ships actually made it to their destination and back, the information on the maps should have been accurate enough. Using old navigational techniques and principles it is possible to place these maps, and the wealth of information depicted on them, in a modern GIS. That way these old basic-data not only provides us with an insight in the development of our rich maritime landscape over the centuries, but also gives an almost personal insight in the mind of the captains using them and the command structure of the fleets dominating the high seas. Keywords: historic Dutch maritime maps, georeferencing historic data, maritime archaeology Introduction The Dutch maps from the 16th and 17th centuries were famous for their accuracy and detail level. These charts were also very popular with seafarers, both in the Netherlands, as in other seafaring nations of that time. Many of those charts had, in addition to the editions for actual navigational use also editions for presentation, often beautifully coloured and bound together into atlases. -
Science and Seventeenth Century Navigation DWAYNE R
SOCIAL SCIENCES -------------- ------ Science and Seventeenth Century Navigation DWAYNE R. MASON, Norman Until the advent of electronic navigational devices there had been only two important techniques for determining a ship's position when out of sight of land: dead-reckoning and celestial navigation. Dead-reckon ing consisted of cumulative plots ot d.t8tancee and dJrection ot travel on a plane chart. The navigator plotted each segment, beg1nn1ng at the end ot the previous segment and, it his information concerning the ship's progreu were correct and. If he had plotted carefully, he was able to make an accurate estimate ot his position at any time. Information conceming the ship's progress was supplied, in part, by the shlp's compau but, for the most part, the navigator had to rely upon his own skill in estimating speed, leeway, and the effect of currents.' The theoretical framework upon which celestial navigation was founded was at leut as old as Ptolemy. Almageat. In parts three and four of Book I, Ptolemy hypothesizes the spherical movement of the heavens and the sphericity ot the earth. As arguments for these hypotheses, Ptolemy asserted that the ditfereJ1Ce. in the recorded times ot ob8ervattona of celestial phenomena was detenninecS by the differences in the longitudes ot the places of observation. The dlt ferences in the observed altltudN of known stara were due to the dlfter eDCe8 in the latitudes of the placea of Observation.' By taking the eleva- 148 PROC. OF THE OKLA. ACAD. OF SCI. FOR 1963 uon. at zenith, of a known .tar and comparing that value with the one Jlven In an ephemerlde8, prepared tor a place of known latitude, the navlptor could compute the latitude of h1I position. -
Nautical Education for Offshore Cxtractivc
Lso-B-7i-ooz NAUTICALEDUCATION FOR OFFSHORE CXTRACTIVC INDUSTRIES RV G-H.HOFFMANN WITH FREDTOWNSEND AND WARREN NORVILLE 5' GRAHT PUI3I.ICATIOHHO. LSU-II-77-OL C6NTCRfOR WETLAND RESOURCES ~ LOUISIANA STATC UNIVf RSIEY ~ BATON ROUCIC, LOUISIANA 7000 NAUTICAL EDUCATION FOR THE V~M$pQog767 QoM G. H. Ho f fmann with Fred Townsend and Warren Norville LOUISIANA STATE UNIVERSITY CENTER FOR WETLAND RESOURCES BATON ROUGE, LA 70803 Sea Grant Publication No. LSU-8-77-001 September 1977 This work is a result of research sponsored jointly by the Terrebonne Parish School Board and the Louisiana Sea Grant Program, a part of the National Sea Grant Program maintained by the National Oceanic and Atmospheric Administration of the U.S. Department of Commerce. CONTENTS List of Figures List of Tables Vi Acknowledgments Beginnings of the Oil Industry 1 2 The Offshore Revolution Drilling a Wildcat Well The Petr omar ine Fleet 46 6 4.1 Tankers 4.2 Seagoing Tank Barges and Tugs ll 4.3 Inland Tank Barges and Towboats 13 4.4 Inland Drilling Barges 16 4.5 Offshore Drilling Tenders 16 4.6 Submersible Drilling Vessels 17 4.7 3ack-up DrilIing Barges 18 4.8 Semi-Submersible Drilling Vessels 19 4.9 Drill Ships 20 4.10 Crewboats 27 4.11 Supply vessels 28 4.12 Tugs 30 4.13 Derrick Barges 31 4.I4 Pipelaying Barges 31 4.15 Air Cushion Vehicles ACV! 37 Producing Oil and Gas 37 Design Procedures 44 6.1 Owner Requirements 44 6.2 Design Drawings and Specifications 45 6.3 Regulatory Agencies 49 6.4 Design Calculations 54 6.5 The Measurements of a Ship 60 6.6 Free Surface 68 6.7 Model Testing 69 Construction Procedure 70 7.1 Estimating 70 7.2 Working Plans 72 7.3 Production 74 7.4 Inspection 76 7.5 Trials and Tests 78 Delivery 80 Stability and Trim 82 9.1 Stability 82 9.2 Transverse Metacenter 86 9.3 Calculating GM 87 9.4 KM and KG 88 9.