Baossi–Warack Monogenetic Volcanoes, Adamawa Plateau, Cameroon: Petrography, Mineralogy and Geochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Baossi–Warack Monogenetic Volcanoes, Adamawa Plateau, Cameroon: Petrography, Mineralogy and Geochemistry Acta Geochim (2019) 38(1):40–67 https://doi.org/10.1007/s11631-018-0272-9 ORIGINAL ARTICLE Baossi–Warack monogenetic volcanoes, Adamawa Plateau, Cameroon: petrography, mineralogy and geochemistry 1,2 2 3 Anicet Feudjio Tiabou • Robert Temdjim • Pierre Wandji • 4 1,5 6 Jacques-Marie Bardintzeff • Vivian Bih Che • Edith Ekatah Bate Tibang • 7 7 Caroline Neh Ngwa • Franc¸ois Xavier Onana Mebara Received: 19 December 2017 / Revised: 2 April 2018 / Accepted: 13 April 2018 / Published online: 23 April 2018 Ó Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Three monogenetic cones in the Baossi–Warack include titano-magnetite and titano-hematite, nepheline, area, Ngaounde´re´, Adamawa Plateau forming part of the apatite and amphibole xenocrysts. Sanidine occurs in some Cameroon Volcanic Line (CVL) are documented in this samples and sodi-potassic albite in others. Some olivines and study. Basaltic lavas (\ 1km3) scattered around these vents clinopyroxenes exhibit resorbed margins and thin reaction and restricted volcaniclastic deposits were emplaced by rims while plagioclase displays oscillatory zoning, and Hawaiian and mild strombolian style eruptions. The lavas are sieved textures as a result of magma mixing. Whole-rock porphyritic, mainly composed of olivine (chrysolite) and geochemistry data indicates that the lavas are silica-under- clinopyroxene (diopside and augite) phenocrysts and pla- saturated, composed of basanites and basalts, showing little gioclase (andesine) microphenocrysts. Accessory minerals compositional variations (SiO2: 39.20 wt.%–48.01 wt.%, MgO: 5.29 wt.%–9.70 wt.%). Trace elements patterns of these lavas suggest they are enriched in LILE including Pb, Pierre Wandji: Deceased. probably due to crustal contamination. REE patterns suggest cogenetic magmas below Baossi 1 and Baossi 2 volcanoes, Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11631-018-0272-9) contains supple- and distinct sources below Warack volcano and nearby lavas. mentary material, which is available to authorized users. The lavas studied show affinity to high-l (HIMU), enriched type I (EM1) and Oceanic Island Basalt (OIB)-like mantle & Anicet Feudjio Tiabou [email protected]; [email protected] signatures and thus indicate a heterogeneous mantle source underneath the vents as noted at other monogenetic and 1 Remote Sensing Unit, Faculty of Science, Department of polygenetic volcanoes along the CVL. Primary melts Geology, University of Buea, P.O. Box 63, Buea, derived from low degrees of partial melting (0.5%–2%) and South West Region, Cameroon encountered low rates of fractionation, and crustal contam- 2 Department of Earth Sciences, Faculty of Science, University ination coupled with magma mixing. These melts evolved of Yaounde´ 1, P.O. Box 812, Yaounde´, Cameroon independently through structural weaknesses in the 3 Laboratoire de Ge´ologie, Ecole Normale Supe´rieure de basement. Yaounde´, P.O. Box 47, Yaounde´, Cameroon 4 Univ. Paris-Sud, Sciences de la Terre, Volcanologie, Keywords Cameroon volcanic line Á Adamawa Plateau Á ´ ˆ ´ Planetologie, UMR CNRS 8148 GEOPS, Bat. 504, Universite Volcanic field Monogenetic volcano Magma mixing Paris-Saclay, 91405 Orsay, France Á Á Á Petrogenesis 5 Higher Teacher Training College, Department of Geology, University of Bamenda, P.O. Box 39, Bambili, Bamenda, Cameroon 1 Introduction 6 Institute for Geological and Mining Research (IRGM), P.O. Box 333, Garoua, Cameroon Small-scale volcanic systems are the most widespread type 7 Institute for Geological and Mining Research (IRGM), Branch of Volcanologic and Geophysics Research (ARGV), of volcanism on Earth and occur in diverse tectonic settings P.O. Box 370, Buea, Cameroon (Can˜o´n-Tapia 2016; Smith and Ne´meth 2017). They are the 123 Acta Geochim (2019) 38(1):40–67 41 smallest in terms of the volume of magma that erupts Fig. 1 Structural disposition of the Cameroon Volcanic Line (CVL, c (McGee and Smith 2016). In such systems, the volcanic in black) with ages of the principal volcanic centers (after Marzoli et al. 1999) indicated. The study area with the Baossi–Warack cones edifices are usually basaltic in nature with restricted vol- is part of the Adamawa complex around Ngaounde´re´ umes and their eruptions are inferred to be short-lived events (Valentine and Gregg 2008; Ne´meth 2010; Bar- dintzeff 2016). Monogenetic volcanoes have long been regarded as being geochemically and volcanologically around Ngaounde´re´ on the Adamawa Plateau and form the simple compared to long-lived polygenetic volcanoes central part of the CVL, but they have not yet been studied. where greater degrees of magma evolution are expected This work focuses on volcanic cones within the Baossi– (Brenna et al. 2010). However, field data at a number of ´ ´ monogenetic volcanoes have identified eruption products Warack area in Ngaoundere northeast. We present new petrographic, mineralogical and whole-rock geochemical such as lava flows, pyroclastics of strombolian style erup- data for a suite of samples dispersed over the entire Baossi– tions as well as phreatomagmatic deposits pointing to a range of eruption styles and chemical compositions of Warack complex in a bid to contribute to our understanding of monogenetic style eruptions and their compositional erupting magma at these edifices (Ne´meth et al. 2003; variation. Martin and Ne´meth 2006; Valentine et al. 2007; Genareau et al. 2010; Kereszturi et al. 2011; Bardintzeff et al. 2012; McGee et al. 2012, 2013). For example, compositional discontinuities resulting from successive partial melting of 2 Geological setting distinct, but contiguous source components with differing The CVL has been extensively discussed in the literature melting characteristics in a heterogeneous source were (see Fitton and Dunlop 1985; Sato et al. 1990, 1991; reported in the Auckland Volcanic Field (McGee et al. 2012, 2013). The sequential eruption of two magma bat- Wandji et al. 2000; Aka et al. 2004; Temdjim et al. 2004; De´ruelle et al. 2007; Suh et al. 2008; Nkouathio et al. 2008; ches has also been reported at Parı`cutin in the Michoaca´n- Kamgang et al. 2013; Marzoli et al. 2015; Bate Tibang Guanajuato volcanic field (Erlund et al. 2010) and at Mt. ` Gambier in Australia (Van Otterloo et al. 2014). Thereby, et al. 2017; Ngwa et al. 2017; Njombie et al. 2018; Ziem a Bidias et al. 2018). Along this megastructure, the volcanic it is noticed that monogenetic volcanoes can exhibit great edifices are simultaneously developed into both oceanic complexities in their compositional features and petroge- nesis (e.g. Van Otterloo et al. 2015) but the wide spectrum and continental domains. The oceanic sector is composed of Pagalu, Sa˜oTome´, Principe, and Bioko islands and the of compositional changes accompanying the magmatic continental part of Mts Etinde, Cameroon, Manenguba, activities at these volcanoes are not fully understood. This ´ ´ can be investigated through detailed stratigraphic analysis Bambouto, Oku, Mandaras and Ngaoundere Plateau, which are built upon horsts that alternate with grabens towards the alongside systematic mineralogical and geochemical continental southern end of the chain, where monogenetic sampling. ´ Prominent among numerous intraplate volcanic fields cones predominate (Deruelle et al. 2007). The earlier work on monogenetic volcanoes along the CVL includes a worldwide (e.g. Cook et al. 2005; Brenna et al. 2010, 2012; comparative study of basalts between polygenetic and McGee et al. 2012, 2013; Kereszturi et al. 2013; Jordan et al. 2015) is the Cameroon Volcanic Line (CVL), an monogenetic volcanoes (see Sato et al. 1990). This study suggests that the major sources of magma feeding poly- active large intraplate volcanic province that comprises genetic volcanoes along the CVL is the upwelling several eruptive centers separated by uplifted and eroded plutons (De´ruelle et al. 2007). The CVL is a * 1700 km asthenosphere underneath the African plate, while those feeding monogenetic volcanoes result from partial melting long chain of numerous volcanic edifices that trends in the lowest portion of the subcontinental lithosphere. N030°E from Pagalu Island in the Atlantic Ocean to Lake Chad on the African plate, and spans 70 million years of Other researchers working on the Barombi Koto volcanic field located northeast of Mt. Cameroon reported the activity, with Mt. Cameroon still active today (see sum- presence of ten cinder cones and two maars (see Nkouathio mary in Njome and de Wit 2014; Fig. 1). Numerous studies ´ along this chain are concentrated on the large volcanic et al. 2002; Tamen et al. 2007; Tchamabe et al. 2013). In this volcanic field, the reconstruction of the stratigraphic edifices. Small volume volcanoes have so far received little sequence at Barombi Mbo maar highlighted the polycyclic attention with previous works focused on maars and cinder cones scattered in the continental southern end of the CVL nature of this maar, demonstrating the complexities of such volcanoes (Tchamabe´ et al. 2015, 2016). Ngwa et al. (e.g. Sato et al. 1990; Nkouathio et al. 2002; Tamen et al. (2017) also investigated the origin and evolution of prim- 2007; Ngwa et al. 2010, 2017; Tchamabe´ et al. 2014, 2015, 2016). These types of volcanoes also exist itive melts from the Debunscha maar, a monogenetic 123 42 Acta Geochim (2019) 38(1):40–67 123 Acta Geochim (2019) 38(1):40–67 43 volcano forming part of the Mt. Cameroon volcanic field, (REE) analyses of 20 lava samples were carried out by composed of over a hundred unstudied pyroclastic cones inductively coupled plasma mass spectrometry (ICP-MS) and craters scattered around it (Suh et al. 2003). In the at Activation Laboratories Ltd. (Actlabs). Sample solutions Debunscha area, there is evidence for repeatedly mixing of were produced from * 30 mg of sample powder. Here, compositionally diverse melts in a magma chamber at the powders were mixed with HF–HNO3–HCl in Teflon upper mantle depths prior to eruption (Ngwa et al. 2017). vials and placed on a hot plate at 150 °C for * 48 h.
Recommended publications
  • UC Berkeley Archaeological X-Ray Fluorescence Reports
    UC Berkeley Archaeological X-ray Fluorescence Reports Title X-Ray Fluorescence (XRF) Analysis Major Oxide and Trace Element Concentrations of Mainly Volcanic Rock Artifacts from a Number of Sites in Central Arizona Permalink https://escholarship.org/uc/item/7pt4r7vt Author Shackley, M. Steven Publication Date 2013-07-10 Supplemental Material https://escholarship.org/uc/item/7pt4r7vt#supplemental License https://creativecommons.org/licenses/by-nc/4.0/ 4.0 eScholarship.org Powered by the California Digital Library University of California www.escholarship.org/uc/item/7pt4r7vt GEOARCHAEOLOGICAL X-RAY FLUORESCENCE SPECTROMETRY LABORATORY 8100 WYOMING BLVD., SUITE M4-158 ALBUQUERQUE, NM 87113 USA X-RAY FLUORESCENCE (XRF) ANALYSIS MAJOR OXIDE AND TRACE ELEMENT CONCENTRATIONS OF MAINLY VOLCANIC ROCK ARTIFACTS FROM A NUMBER OF SITES IN CENTRAL ARIZONA Probable Cienega Large and San Pedro points from the collection by M. Steven Shackley Ph.D., Director Geoarchaeological XRF Laboratory Albuquerque, New Mexico Report Prepared for Dr. Anna Neuzil EcoPlan Associates, Inc. Tucson, Arizona 10 July 2013 www.escholarship.org/uc/item/7pt4r7vt INTRODUCTION The analysis here of artifacts mainly produced from high silica rhyolite is an attempt to provide a beginning data base for further artifact provenance studies in central Arizona. An intensive oxide and trace element analysis of the artifacts indicates a strong preference for high silica volcanics for the production of stone tools including dart points such as the ones figured on the cover page. None of the artifacts can be assigned to source at this time. The assemblage appears to be a Late Archaic/Cienega Phase assemblage rather typical of the region (Sliva 2...).
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • 31 a Preliminary Study Of
    31 A PRELIMINARY STUDY OF THE: TERTIARY VOLCANIC AND SEDIMENTARY ROCKS, GÜMELE, ESKİŞEHİR Eskişehir, Gümele Çevresindeki Tersiyer Volkanik ve Sedimanter Kayaçlarda Bir Ön Çalışma Taylan Lünel Middle East Technical University, Department of Geological Engineering Ankara ÖZ. — Seyitgazi-Eskişehir antiklinoriumu'nun çok fazla deforme olmuş ve metamorfizmaya uğramış kayaçlarının kuzey-kuzeybatısında bulunan sedimanter ve volkanik kayaçlar incelenmiştir. Karasal ve gölsel fasiyesde meydana gelen Tersi- yer sedimanter kayaçlar Güney Eskişehir küvetinde olunmuşlardır. Karasal fasiye- si meydana getiren kayaç birimlerini kaba kumtaşları, kumtaşları, bitki kalıntıları ihtiva eden kil ve marnlar ve serpantinit blokları taşıyan bazal konglomerası teşkil etmektedir. Gölsel fasiyes ise genellikle killi ve tüflü kalkerler, kalkerler, marnlar, kon- glomeralar ve tüflerden meydana gelmiştir. Küvetteki en eski sedimanlar ve piroklas- tikler Alt Miosen'de oluşmuşlardır. Yataya yakın konumlanmış bazik-intermediyar lav akıntıları Pliosen yaşlı olup Altüst Neojen sedimantasyon kesikliğinde meyda- na gelmiştir. Üst Neojen sedimanter kayaçları intermediyar-basaltik volkaniklerin üzerinde ince bandlar şeklinde bulunurlar. Bu birim marn ve kalkerlerden meyda- na gelmiştir. Alt Miosen’de asid volkanik faaliyetler neticesinde meydana gelen sil- lar (unweldd tuffs) oligomikt konglomeralardan evvel teşekkül etmiştir. Bu volkanik aktitivite muhtemelen kesikli ve kısıtlı olarak devam etmiş ve tüflü kalkerleri mey- dana getirmiştir. Pliosen yaşlı bazik-intermediyar
    [Show full text]
  • Derivation of Intermediate to Silicic Magma from the Basalt Analyzed at the Vega 2 Landing Site, Venus
    RESEARCH ARTICLE Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus J. Gregory Shellnutt* National Taiwan Normal University, Department of Earth Sciences, Taipei, Taiwan * [email protected] Abstract a1111111111 a1111111111 Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site a1111111111 indicates that intermediate to silicic liquids can be generated by fractional crystallization and a1111111111 equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 a1111111111 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) composi- tions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at OPEN ACCESS all pressures but requires relatively high temperatures ( 950ÊC) to generate the initial melt Citation: Shellnutt JG (2018) Derivation of at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be intermediate to silicic magma from the basalt generated at much lower temperatures (< 800ÊC). Anhydrous partial melt modeling yielded analyzed at the Vega 2 landing site, Venus. PLoS mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature ONE 13(3): e0194155. https://doi.org/10.1371/ journal.pone.0194155 required to produce the first liquid is very high ( 1130ÊC). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate Editor: Axel K Schmitt, Heidelberg University, GERMANY that, under certain conditions, the Vega 2 composition can generate silicic liquids that pro- duce granitic and rhyolitic rocks.
    [Show full text]
  • Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara
    PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara Ezra Kavana Acacia Mining PLc, North Mara Gold Mine, Department of Geology, P. O. Box 75864, Dar es Salaam, Tanzania Email: [email protected] Keywords: Musoma Mara Greenstone Belt, Mnanka volcanics, Archaean rocks and lithology ABSTRACT The Mnanka area is situated within the Musoma Mara Greenstone Belt, the area is near to Nyabigena, Gokona and Nyabirama gold mines. Mnanka area comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments. Gold mineralizations in Mnanka area is structure controlled and occur mainly as hydrothermal disseminated intrusion related deposits. Hence the predominant observed structures are joints and flow banding. Measurements from flow banding plotted on stereonets using win-TENSOR software has provided an estimate for the general strike of the area lying 070° to 100° dipping at an average range angle of 70° to 85° while data from joints plotted on stereonets suggest multiple deformation events one of which conforms to the East Africa Rift System (striking WSW-ENE, NNE-SSW and N-S). 1. INTRODUCTION This paper focuses on performing a systematic geological mapping and description of structures and rocks of the Mnanka area. The Mnanka area is located in the Mara region, Tarime district within the Musoma Mara Greenstone Belt. The gold at Mnanka is host ed by volcanic rocks that belong to the Musoma Mara Greenstone Belt (Figure 1). The Mnanka volcanics are found within the Kemambo group that comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments south of the Nyarwana fault.
    [Show full text]
  • USGS Professional Paper 1692
    USG S Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism Professional Paper 1692 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank Eruptive History and Chemical Evolution of the Precaldera and Postcaldera Basalt-Dacite Sequences, Long Valley, California: Implications for Magma Sources, Current Seismic Unrest, and Future Volcanism By Roy A. Bailey Professional Paper 1692 U.S. Department of the Interior U.S. Geological Survey ii U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director U.S. Geological Survey, Reston, Virginia: 2004 For sale by U.S. Geological Survey Information Services Box 25286, Denver Federal Center Denver, CO 80225 This report and any updates to it are available online at: http://pubs.usgs.gov//pp/p1692/ Additional USGS publications can be found at: http://geology.usgs.gov/products.html For more information about the USGS and its products: Telephone: 1–888–ASK–USGS (1–888–275–8747) World Wide Web: http://www.usgs.gov/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement of the U.S. Government. Although this report is in the public domain, it contains copyrighted materials that are noted in the text. Permission to reproduce those items must be secured from the individual copyright owners. Cataloging-in-publication data are on file with the Library of Congress (URL http://www.loc.gov/).
    [Show full text]
  • Relationships Between Pre-Eruptive Conditions and Eruptive Styles of Phonolite-Trachyte Magmas Joan Andújar, Bruno Scaillet
    Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas Joan Andújar, Bruno Scaillet To cite this version: Joan Andújar, Bruno Scaillet. Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas. Lithos, Elsevier, 2012, 152 (1), pp.122-131. 10.1016/j.lithos.2012.05.009. insu-00705854 HAL Id: insu-00705854 https://hal-insu.archives-ouvertes.fr/insu-00705854 Submitted on 10 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas JOAN ANDÚJAR*,a AND BRUNO SCAILLETa a. CNRS/INSU-UNIVERSITÉ D’ORLÉANS-BRGM ; INSTITUT DES SCIENCES DE LA TERRE D’ORLEANS, UMR 6113 - 1A, RUE DE LA FÉRROLLERIE-45071 ORLEANS CEDEX 2 (FRANCE) * Corresponding author : Joan Andújar phone number : (+33) 2 38 25 53 87 Fax: (+33) 02 38 63 64 88 e-mail address: [email protected] Bruno Scaillet e-mail address: [email protected] KEY WORDS: Phase equilibria, phonolite, trachyte, experimental petrology, eruptive dynamic, explosive, effusive, andesite, rhyolite, melt viscosity, magma viscosity. 2 Abstract Phonolitic eruptions can erupt either effusively or explosively, and in some cases develop highly energetic events such as caldera-forming eruptions.
    [Show full text]
  • THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution
    VOLCANISM IN HAWAII Chapter 1 - .-............,. THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution By David A. Clague and G. Brent Dalrymple ABSTRACT chain, the near-fixity of the hot spot, the chemistry and timing of The Hawaiian-Emperor volcanic chain stretches nearly the eruptions from individual volcanoes, and the detailed geom­ 6,000 km across the North Pacific Ocean and consists of at least etry of volcanism. None of the geophysical hypotheses pro­ t 07 individual volcanoes with a total volume of about 1 million posed to date are fully satisfactory. However, the existence of km3• The chain is age progressive with still-active volcanoes at the Hawaiian ewell suggests that hot spots are indeed hot. In the southeast end and 80-75-Ma volcanoes at the northwest addition, both geophysical and geochemical hypotheses suggest end. The bend between the Hawaiian and .Emperor Chains that primitive undegassed mantle material ascends beneath reflects a major change in Pacific plate motion at 43.1 ± 1.4 Ma Hawaii. Petrologic models suggest that this primitive material and probably was caused by collision of the Indian subcontinent reacts with the ocean lithosphere to produce the compositional into Eurasia and the resulting reorganization of oceanic spread­ range of Hawaiian lava. ing centers and initiation of subduction zones in the western Pacific. The volcanoes of the chain were erupted onto the floor of the Pacific Ocean without regard for the age or preexisting INTRODUCTION structure of the ocean crust. Hawaiian volcanoes erupt lava of distinct chemical com­ The Hawaiian Islands; the seamounts, hanks, and islands of positions during four major stages in their evolution and the Hawaiian Ridge; and the chain of Emperor Seamounts form an growth.
    [Show full text]
  • Northern Nevada Rift
    CONTRIBUTIONS TO THE GOLD METALLOGENY OF NORTHERN NEVADA OPEN-FILE REPORT 98-338 NEW STUDIES OF TERTIARY VOLCANIC ROCKS AND MINERAL DEPOSITS, NORTHERN NEVADA RIFT By Alan R. Wallace and David A. John ABSTRACT and mineralization along the rift has been known for some time, relatively little is known about the exact timing and The northern Nevada rift is a long, narrow, north-northwest- interaction between these events. New mapping along the rift trending alignment of middle Miocene volcanic and hypabyssal has focused on the southern Sheep Creek Range and northern rocks and epithermal gold-silver and mercury deposits formed Shoshone Range area, both near Battle Mountain, Nev., and during west-southwest to east-northeast extension. New the Ivanhoe mining district 60 km northeast of Battle Mountain mapping is underway in three areas along the rift: the Ivanhoe (fig. 1). Mapping in the Sheep Creek/northern Shoshone Range district, the southern Sheep Creek Range, and the Mule Canyon area was initiated to study the volcano-tectonic framework of area at the north end of the Shoshone Range. In the Ivanhoe the newly developed Mule Canyon gold deposit. The Ivanhoe district, Tertiary rocks range in age from late Eocene to middle study has served to understand a similar framework for the Miocene, whereas Tertiary rocks in the other two areas are Hollister gold and Ivanhoe mercury deposits and to expand mostly Miocene in age. Compositions are varied in all three previous studies of Miocene volcanic rocks and structures in locations; a substantial part of the volcanic rocks in the Sheep the Snowstorm Mountains and Midas mining district 25 km Creek Range and northern Shoshone Range is dacitic, in contrast to the northwest (Wallace, 1993).
    [Show full text]
  • Comparison of Hawaiian Basalts By: Alex Van Ningen and Adam Sagaser Geology 422: Petrology 5/2/2014 Introduction
    COMPARISON OF HAWAIIAN BASALTS BY: ALEX VAN NINGEN AND ADAM SAGASER GEOLOGY 422: PETROLOGY 5/2/2014 INTRODUCTION • The Hawaiian Islands were formed as a result of the Pacific Plate moving Northwest over a hotspot in the Earth’s mantle. • The islands in the southeast are the youngest and most volcanically active. • Hawai’i (the Big Island) is composed of a group of five volcanoes, with Mauna Loa being the world’s largest volcano and Kilauea being the world’s most active volcano (Saini-eidukat and Schwert, 2013). Image Source: U.S.G.S. Kauai Niihau Oahu Molokai Lanai Maui Kahoolawe Hawai’i Photo coutesy of: NASA HAWAI’I (THE BIG ISLAND) • Two samples were obtained from the big island. Sample 130309 was obtained from Kohala and sample 130315 was obtained from Hualalai. • Our initial hypothesis was that the sample from Kohala is a benmorite, and the sample from Hualalai is a basalt. Image source: U.S.G.S. RESEARCH & METHODS Sample: 130315 • To begin, we took our samples and put them in a jaw crusher. • For sample number 130315, there was some olivine and calcite that may have formed as a xenolith. An attempt was made to remove as much of the secondary minerals as possible. Sample: 130309 • Both samples were taken to Dr. Lewis’s lab, where a ring pulverizer was used to grind the fragments into a powder. • Thin sections were also prepared for conceptual purposes. RESEARCH & METHODS • Both sets of powder underwent loss on ignition (LOI) in a muffle furnace. This was initially done at 105⁰C.
    [Show full text]
  • 1 Appendix 3. Modes of Samples in the San Francisco Mountain
    Appendix 3. Modes of Samples in the San Francisco Mountain Volcanic System, and Selected Basalts from the Eastern San Francisco Volcanic Field. Minerals in Volume Percent. 1 2 3 4 5 6 7 Sample 3823A 2A06 2812A 2031A 2031.B 3732J DC04B Map Name basalt basalt basalt basalt basalt andesite andesite TAS Name basalt basalt basalt basalt basalt mugearite mugearite Field flow flow flow flow flow flow flow SiO2 48.7 48.9 49.7 50.4 51.0 52.2 53.0 Plagioclase 14.6, An69 8.3, An70 25.6,An67 25.5,An71 20.2,An74 29, An64 32.0,An62 Olivine 11.2, Fo83 10.9,Fo84 8.1, Fo73 7.0, Fo77 3.9, Fo76 3, Fo75 6.6, Fo75 Clinopyroxene 4.3 4.3 4.6 1.8 1.3 0 trace Opaque Oxide 4.1 0.2 0.5 1.6 0.3 1 2.4 Matrix 65.8 76.3 61.2 64.1 74.4 67 59.0 Points 1165 1173 1504 1464 1347 827 1549 Matrix intergran- inter- intergran- intergran- inter- microcrys- inter- Texture ular sertal ular ular sertal talline sertal MF1959 Symbol Qa1 Qa1 I-1663 Symbol Qao Qao 8 9 10 11 12 13 14 Sample 3732K 3732Z 3732Y 2705D 3831A 3729Q 3707 Map Name andesite andesite andesite andesite andesite andesite andesite TAS Name mugearite mugearite mugearite mugearite mugearite mugearite mugearite Field flow flow dike flow flow flow flow SiO2 53.4 53.7 53.8 55.2 55.3 56.0 56.6 Plagioclase 24.8,An64 15.3,An61 30.2,An61 42.1,An52 27.0,An62 29.8,An57 41.2,An57 Olivine 2.8, Fo69 3.1, Fo65 4.1 5.6 4.3, Fo62 3.7 Fo57 2.5, Fo58 Clinopyroxene 0.2 0.5 1.5 2.1 0.8 3.0 1.1 Orthopyroxene - - 0.5 - - 0.2 - Opaque Oxide 0.3 0.8 3.0 1.0 0.6 2.1 1.4 Matrix 71.8 80.3 60.7 49.2 67.2 61.1 53.8 Points 1196 1785 854 1844 1428 1029 1540 Matrix hyalo- inter- inter- hyalo- hyalo- hyalo- micro- Texture pilitic granular sertal ophitic pilitic ophitic crystalline MF1959 Symbol Qa1 Qa1 Qai Qa1 Qa2 Qa2 Qa2 I-1663 Symbol Qao Qao Qai Qao Qay Qay Qay Notes: 1.
    [Show full text]
  • The Jackson Volcano
    THE DEPARTMENT OF ENVIRONMENTAL QUALITY Office of Geology P. 0. Box 20307 Volume 18, Number 3 Jackson, Mississippi 39289-1307 September 1997 THE JACKSON VOLCANO David T. Dockery ID, John C. Marble, and Jack Henderson Mississippi Office of Geology INTRODUCTION One of the most interesting geologic features ofMississippi is the Jackson Volcano, which rests only 2900 feet beneath the state's capital city. The volcano's dense core forms one ofthe most prominent structural anomalies found on gravity and magnetic surveys of the state, showing tightly wrapped con­ tours of increasing gravity and magnetic deflection like a crowded bull's- eye (Figure l ). This igneous complex and the up Iifted formations around it comprise a structure known as the Jackson Dome. Northwest ofthe Jackson Volcano in southern Humphreys County is the Midnight Volcano and the associ­ ated volcanic terrain ofthe Sharkey Platform . Dense igneous rock below Jackson and Midnight increase the force ofgravity slightly as shown in Figure I. A person tipping the scales at Jackson or Midnight would be slightly heavier than elsewhere in the state (if anyone would like to use that for an excuse). No other capital city or major population center is situated above an extinct volcano, even though the recent movie "Volcano" fictitiously placed Los Angeles, California, above one. Monroe, Louisiana, is Jackson 's sister city in being a close second, as it rests above a volcanic terrain known as the Monroe Uplift. However, the position ofJackson's downtown district above the throat of an extinct Cretaceous volcano seems to be unique. Ifthe Jackson Volcano were to ever vent itself in the future, the Coliseum would be near ground zero.
    [Show full text]