Appears in the Proceedings of the First IBM PAC2 Conference HeapMon: a Low Overhead, Automatic, and Programmable Memory Bug Detector ∗ Rithin Shetty, Mazen Kharbutli, Yan Solihin Milos Prvulovic Dept. of Electrical and Computer Engineering College of Computing North Carolina State University Georgia Institute of Technology frkshetty,mmkharbu,
[email protected] [email protected] Abstract memory bug detection tool, improves debugging productiv- ity by a factor of ten, and saves $7,000 in development costs Detection of memory-related bugs is a very important aspect of the per programmer per year [10]. Memory bugs are not easy software development cycle, yet there are not many reliable and ef- to find via code inspection because a memory bug may in- ficient tools available for this purpose. Most of the tools and tech- volve several different code fragments which can even be in niques available have either a high performance overhead or require different files or modules. The compiler is also of little help a high degree of human intervention. This paper presents HeapMon, in finding heap-related memory bugs because it often fails to a novel hardware/software approach to detecting memory bugs, such fully disambiguate pointers [18]. As a result, detection and as reads from uninitialized or unallocated memory locations. This new identification of memory bugs must typically be done at run- approach does not require human intervention and has only minor stor- time [1, 2, 3, 4, 6, 7, 8, 9, 11, 13, 14, 18]. Unfortunately, the age and execution time overheads. effects of a memory bug may become apparent long after the HeapMon relies on a helper thread that runs on a separate processor bug has been triggered.