Evolution and Applications of Radar

Total Page:16

File Type:pdf, Size:1020Kb

Evolution and Applications of Radar International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072 EVOLUTION AND APPLICATIONS OF RADAR Amritha S1, Anagha S M2, Chandan A Kowshik3, Ranjini N V4 5Dr. Chanda V Reddy (Prof and Head, Department of Telecommunication, KSIT) K S Institute of Technology, Bengaluru, India. ------------------------------------------------------------------------***------------------------------------------------------------------------- Abstract — This paper gives a brief insight about the historical backdrop and the underlying development of radar. Although innovation has been altogether improved, cutting edge radars for most applications are generally still what they have consistently been regarding their RF framework structure for the past 30-50 years. Radar has been growing through the years in both capability and applications. The traditional transmitted signals have been for a long time, pulses, chirps or randomly coded signals. The Future Radars must be altogether improved in their RF framework ideas to meet the necessities for precise range and Doppler data. There has been a great deal of progress over some undefined time frame, from the hour of introductory advancement to date, which is shrouded in this paper. Keywords— radar framework, military radar, enemy targets, aircrafts, Doppler radar, phase array. 1. INTRODUCTION Even though it is difficult to characterize an exact date for the root of the current radar, its genuine advancement started autonomously. As a prologue to this, a short survey of the achievements of the recent years will be given, alongside the present status of radar. The essential rule of radar was started by Heinrich Hertz in 1888 and a working gadget for the recognition of ships, in light of his investigations based on his experiments, was tried in Germany in the mid- 1900s. Nothing was done to misuse these early showings, although for a long time preceding the genuine innovation of radar in the mid-1930s. There were reports of radio waves being reflected by objects. It can likewise be contended that the essential radio innovation required for radar existed. It remained, until the mid-1930s before radar showed up in most of the nations which had a decent mechanical base in radio. A potential explanation behind the flood of synchronous enthusiasm for radio identification around then was developing in the mid-1930s of the cutting edge plane as a long- extend military aircraft equipped for causing critical harm with its enormous payload. In this manner, it may be said that radar was created as a reaction to the cutting edge plane airship. The underlying advancement of radar was the consequence of military interests, and the greater part of the significant improvements that have happened during the fifty years of radar have been at the commencement of and financed by military needs. Radar is utilized in the military for reconnaissance and following of air, ocean, land, furthermore, space focuses on air and space stages [1]. It is additionally utilized for the route, including airship territory shirking, territory following. Significantly, a military radar has the option to play out its crucial disdain of unfriendly conditions, electronic countermeasures, and is an objective for unfriendly weapons. It must be accessible for use when required, similarly just like the other organization. Unlike regular radars, military radars must be fit for distinguishing focuses on the attempt to maintain a strategic distance from recognition; eg, those that fly very low, extremely high, quick, or attempt to make fast maneuvers. A considerable amount of systems and utilizations of radar first produced for the military have discovered their way into the known military personnel part. Radar innovation has had an extensive impact on different advancements including earthly and satellite microwave interchanges, route frameworks, electronic countermeasures, sensors for modern control, radio stargazing, microwave spectroscopy. An intriguing regular use of radar is the remote detecting the environment. This incorporates such “daily schedule” applications as a perception of the climate and ionospheric sounding, two applications where the radar engineer was most likely not in any case aware of the term “remote sensing of the environment” when these supplies were first created, also sent. The equivalent is likely valid for those who initially used radar for the examination of meteors and aurora. Remote sensing from space has been considered for numerous applications and a few diverse radar frameworks have been trying for different purposes. Space borne-radar remote detecting, be that as it may, presently can't seem to arrive at the point where it is something with enough intrigue and potential so it is utilized on a standard premise, as is weather radar. Over some undefined time frame there has been gigantic research in this field, following which there is an immense advancement [2]. 2. HISTORY In the early 20th century, German inventor Christian Hülsmeyer first used radio waves to detect distant metallic objects with a transmitter and a receiver. In 1910, Hans Dominik, another science fiction writer of German origin who was also an engineer built a machine to detect enemy targets in the darkness. This device operated at a 10-cm wavelength and employed a spark discharger. However, Dominik’s efforts ended with the start of World War I (fig.2.1). In 1917 in the August edition of Electrical Experimenter, Nikola Tesla gave an account edited by Hugo Gernsback, of detecting © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2142 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072 submarines using a radar-type device. However, no statements were made about the high loss encountered by the radio waves when propagating in water. In September 1922, Dr. Albert Hoyt Taylor and his collaborator Leo Clifford Youth were carrying out very-high-frequency (VHF) propagation experiments (at 60 MHz) at the U. S. Naval Aircraft Laboratory in Anacostia, Washington, D.C. They utilized a 50-W transmitter sufficiency regulated at 500 Hz. Taylor and Youth watched reflections from steel structures. At the point when they set the collector in a vehicle and drove the vehicle around the zone, they likewise watched reflections from trees and other objects, including a wooden vessel that passed them. Taylor at that point recommended that at this recurrence, radio waves could be utilized for radio recognition of boats independent of mist, haziness, or then again smoke screen. Precursors to radar development during the 1920s include electromagnetic-distance-measuring techniques, which were being worked on independently without any thought of their potential use for detecting long-distance targets. Rather, these techniques were being used for ionospheric sounding and determining the effects of the ionosphere on high- frequency (HF) propagation. Additionally, frequency-modulated continuous-wave (FM-CW) altimeters were being developed for installation on aircraft [3] [10]. Fig.2.1 Radars during World War I During World War II, military radar administrators took note commotion in returned echoes because of climate components like a downpour, a day off, hail [5]. This prompted the improvement of climate radar. Four methods, exceptionally significant in post-war radars, developed in the late 1940s and the mid-1950s: 1. Pulse-Doppler(often known as moving-target indicator or MTI), 2. Mono pulse (also called simultaneous lobing), 3. Phased array, and 4. Synthetic aperture. The first three were known and even used, during wartime [8]. In 1960, aircraft flying in certain areas were required to carry a radar transponder that identified the aircraft and helped improve radar performance as well as air-traffic control. Since 1966, the capable office in the US is the Federal Aviation Administration. Applications of radar also include autonomous cruise-control systems, autonomous Landing guidance, radar altimeter, air-traffic management, early-warning radar, fire-control radar, forward-warning collision sensing, ground-penetrating radar, surveillance, Doppler Radar, weather forecasting, and so on. Its applications have penetrated many areas of engineering. The underlying advancement of radar was the consequence of military interests, and the greater part of the significant improvements that have happened during the fifty years of radar have been at the commencement of and financed by military needs (the radars during World War II is shown in fig.2.2). The historical descriptions of radar are mostly those of the US, especially after World War II, because of the unavailability to the writer of adequate historical information about radar developments in Europe and elsewhere. A worthy future project for some historians would be a complete and authoritative history of this important technology [2] [4]. © 2020, IRJET | Impact Factor value: 7.34 | ISO 9001:2008 Certified Journal | Page 2143 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 04 | Apr 2020 www.irjet.net p-ISSN: 2395-0072 Fig.2.2 Radars during World War II The majority of the present best in class radars, with the exception of a few military radars, transmit an indistinguishable sign for the entire time of their activity. Functionality-wise, this is wasteful since the radar will be constrained to a limited field of activity, when there are a wide range of assignments/situations that are experienced in any event, for a solitary radar, for example near range, far range, tracking, low range resolution, high range resolution, etc.. With respect to radars, the radiation of uncorrelated sign is a need to maintain a strategic distance from capture attempt/recognition, else their countermeasures become straight forward. The recurrence range turned into the most important asset on the planet for 20 years prior, on the grounds that it is carefully constrained and isn't transferable. In that capacity, it must be utilized as productively as it could be allowed.
Recommended publications
  • Chapter-5 Doppler Effect
    Chapter-5 Doppler Effect Stationary source Stationary observer Moving source Stationary observer Stationary source Moving observer Moving source Moving observer http://www.astro.ubc.ca/~scharein/a311/Sim/doppler/Doppler.html Doppler Effect The Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source of the waves and the observer. The apparent change in frequency f experienced as a result of the Doppler effect is known as the Doppler shift. The value of the Doppler shift increases as the relative velocity v between the source and the observer increases. The Doppler effect applies to all forms of waves. Doppler Effect (Moving Source) http://www.absorblearning.com/advancedphysics/demo/units/040103.html Suppose the source moves at a steady velocity vs towards a stationary observer. The source emits sound wave with frequency f. From the diagram, we can see that the distance between crests is shortened such that ' vs Since = c/f and = 1/f, We get c c v s f ' f f c vs f ' ( ) f c vs Doppler Effect (Moving Observer) Consider an observer moving with velocity vo toward a stationary source S. The source emits a sound wave with frequency f and wavelength = c/f. The velocity of the sound wave relative to the observer is c + vo. c Doppler Shift Consider a source moving towards an observer, the Doppler shift f is c f f ' f ( ) f f c vs f v s f c v s f v If v <<c, then we get s s f c The above equation also applies to a receding source, with vs taking as negative.
    [Show full text]
  • The Montague Doppler Radar, an Overview June 2018
    ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING · 317 WASHINGTON STREET · WATERTOWN, NY 13601 · (315) 785-2380 · WWW.TUGHILL.ORG The Tug Hill Commission Technical and Issue Paper Series are designed to help local officials and citizens in the Tug Hill region and other rural parts of New York State. The Tech- nical Paper Series provides guidance on procedures based on questions frequently received by the Commis- sion. The Issue Paper Series pro- vides background on key issues facing the region without taking advocacy positions. Other papers in each se- ries are available from the Tug Hill Commission. Please call us or vis- it our website for more information. The Montague Doppler Weather Radar, An Overview Table of Contents Introduction .................................................................................................................................................. 1 Who owns the Montague radar? ................................................................................................................. 1 Who uses the Montague radar? .................................................................................................................. 1 How does the radar system work? .............................................................................................................. 2 How does the radar predict lake-effect snowstorms? ................................................................................ 2 How does the
    [Show full text]
  • An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform
    aerospace Article An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform Xining Yu 1,*, Yan Zhang 1, Ankit Patel 1, Allen Zahrai 2 and Mark Weber 2 1 School of Electrical and Computer Engineering, University of Oklahoma, 3190 Monitor Avenue, Norman, OK 73019, USA; [email protected] (Y.Z.); [email protected] (A.P.) 2 National Severe Storms Laboratory, National Oceanic and Atomospheric Administration, Norman, OK 73072, USA; [email protected] (A.Z.); [email protected] (M.W.) * Correspondence: [email protected]; Tel.: +1-405-325-2871 Academic Editor: Konstantinos Kontis Received: 22 July 2016; Accepted: 2 September 2016; Published: 9 September 2016 Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language. Keywords: phased array radar; embedded computing; serial RapidIO; MPAR 1. Introduction 1.1. Real-Time, Large-Scale, Phased Array Radar Systems In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro Telecom Computing Architecture (MTCA) chassis.
    [Show full text]
  • Design Trade-Offs for Airborne Phased Array Radar for Atmospheric Research
    Design Trade-offs for Airborne Phased Array Radar for Atmospheric Research Jorge L. Salazar, Eric Loew, Pei-Sang Tsai, V. Chandrasekar Jothiram Vivekanandan and Wen Chau Lee Colorado State University (CSU) National Center for Atmospheric Research (NCAR) NCAR Affiliate Scientist 3450 Mitchell Lane Boulder, CO 80301, USA 1373 Fort Collins, CO 80523, U Abstract - This paper discusses the design options and trade- Besides the fact that both are single-polarized and passive offs of the key performance parameters, technology, and arrays, fast electronically scanned beams have provided the costs of dual-polarized and two-dimensional active phased scientific community with higher temporal resolution array antenna for an atmospheric airborne radar system. The measurements that improve detection and warning for severe design proposed provides high-resolution measurements of high-impact weather. Tornado false alarm rates have been the air motion and rainfall characteristics of very large storms reduced substantially and the tornado warning lead times that are difficult to observe with a ground-based radar system. extended from 14 minutes to 20 minutes [4]. Parameters such as antenna size, wavelength, beamwidth, transmit power, spatial resolution, along-track resolution, and Considering the benefit of phased array technology, polarization have been evaluated. The paper presents a academic, state, federal, and private institutions have been performance evaluation of the radar system. Preliminary working together to develop phased-array radar for results from the antenna front-end section that corresponds to atmospheric applications. Currently, the Massachusetts a Line Replacement Unit (LRU) are presented. Institute of Technology’s Lincoln Laboratory (MIT-LL) is developing a multifunction, two-dimensional (2-D), dual-pol, Index Terms – Airborne Doppler radar, ELDORA, phased flat and multifunction S-band radar system [6].
    [Show full text]
  • CMA-2012 Doppler Velocity Sensor and Navigation System
    CMA-2012 Doppler Velocity Sensor and Navigation System High Accuracy Velocity Sensor Ideally Suited for Helicopter Operations The CMA-2012 Doppler Velocity Sensor and The CMA-2012’s superior accuracy and performance are Navigation System represents the culmination achieved by integrating several technologies into one compact, of CMC Electronics’ 50 years of experience in low weight unit. A frequency modulation/continuous wave (FM/CW) modulation technique, together with a four-beam Janus airborne Doppler radar and navigation systems. It configuration, is optimized for low-speed conditions. A dynamic is particularly well suited for helicopter hover and carrier breakthrough circuit lowers hover drift. Signal returns then low-speed operations, such as anti-submarine undergo digital signal processing to optimize signal acquisition warfare and SAR, and for weapons targeting during over marginal terrain, such as smooth water, sand or snow, and tactical flight manoeuvres, where the highest enhance tracking precision accuracy. Pitch, roll and yaw heading accuracy velocity sensor is required to ensure inputs further enhance the CMA-2012’s performance during mission accomplishment. dynamic helicopter movements. With the input of pitch, roll and heading information, the CMA-2012 can provide Doppler navigation system functions, compute present position and other navigation information, and output navigation data to CMC’s or other multifunction CDUs via a digital data bus. Extensive flight testing of the CMA-2012 has demonstrated its excellent performance.
    [Show full text]
  • Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality
    Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality 1.) Introduction: The WSR-88D (Weather Surveillance Radar designed and built in the 80s) is the most useful tool used by National Weather Service (NWS) Meteorologists to detect precipitation, calculate its motion, estimate its type (rain, snow, hail, etc) and forecast its position. Radar stands for “Radio, Detection, and Ranging”, was developed in the 1940’s and used during World War II, has gone through numerous enhancements and technological upgrades to help forecasters investigate storms with greater detail and precision. However, as our ability to detect areas of precipitation, including rotation within thunderstorms has vastly improved over the years, so has the radar’s ability to detect other significant meteorological and non meteorological artifacts. In this article we will identify these signatures, explain why and how they occur and provide examples from KTYX and KCXX of both meteorological and non meteorological data which WSR-88D detects. KTYX radar is located on the Tug Hill Plateau near Watertown, NY while, KCXX is located in Colchester, VT with both operated by the NWS in Burlington. Radar signatures to be shown include: bright banding, tornadic hook echo, low level lake boundary, hail spikes, sunset spikes, migrating birds, Route 7 traffic, wind farms, and beam blockage caused by terrain and the associated poor data sampling that occurs. 2.) How Radar Works: The WSR-88D operates by sending out directional pulses at several different elevation angles, which are microseconds long, and when the pulse intersects water droplets or other artifacts, a return signal is sent back to the radar.
    [Show full text]
  • Continuous Wave Radar
    Continuous Wave Radar CW radar sets transmit a high-frequency signal continuously. The echo signal is received and processed permanently. One has to resolve two problems with this principle: Figure 1: The continuous wave radar method often uses separate transmit and receive antennas. These are constructed on a double-sided printed circuit board. prevent a direct connection of the transmitted energy into the receiver (feedback connection), assign the received echoes to a time system to be able to do run time measurements. A direct connection of the transmitted energy into the receiver can be prevented by: spatial separation of the transmitting antenna and the receiving antenna, e.g. the aim is illuminated by a strong transmitter and the receiver is located in the missile flying direction towards the aim; Frequency dependent separation by the Doppler-frequency during the measurement of speeds. A run time measurement isn't necessary for speed gauges, the actual range of the delinquent car doesn't have a consequence. If you need range information, then the time measurement can be realized by a frequency modulation or phase keying of the transmitted power. A CW-radar transmitting a unmodulated power can measure the speed only by using the Doppler- effect. It cannot measure a range and it cannot differ between two or more reflecting objects. Table of content « CW-Radar » 1. Doppler Radar 2. Block diagram of CW radar Direct conversion receiver Superheterodyne 3. Applications of unmodulated continuous wave radar Speed gauges Doppler radar motion sensor Motion monitoring When an echo signal is received, then that is the proof that there is an obstacle in the propagation direction of the electromagnetic waves.
    [Show full text]
  • Signal Processing for Atmospheric Radars
    NCAR/TN-331+STR i NCAR TECHNICAL NOTE I - May 1989 Signal Processing for Atmospheric Radars R. Jeffrey Keeler Richard E. Passarelli ATMOSPHERIC TECHNOLOGY DIVISION NATIONAL CENTER FOR ATMOSPHERIC RESEARCH BOULDER, COLORADO TBSIE OF COTENTS TABLE OF CONTENTS ..................... iii LIST OF FIGURES ......................... v LIST OF TABLES ................... .. .vii PREFACE. .. .. i....................... 1. Purpose and scope ................. 1 2. General characteristics of atmospheric radars. 3 2.1 Characteristics of processing .......... 3 2.1.1 Sampling ................... 3 2.1.2 Noise ...... ............... 4 2.1.3 Scattering ............... 5 2.1.4 Signal to noise ratio (SNR) .......... 6 2.2 Types of atmospheric radars .......... 6 2.2.1 Microwave radars . ........... 7 2.2.2 ST/MST radars or wind profilers ....... 8 2.2.3 FM-CW radars .. .............. 8 2.2.4 Mobile radars ............ .. 9 2.2.5 Lidar ............ ....... 10 2.2.6 Acoustic sounders . .......... 11 3. Doppler power spectrum moment estimation . .... 13 3.1 General features of the Doppler power spectrum. 14 3.2 Frequency domain spectral moment estimation . 18 3.2.1 Fast Fourier transform techniques . .... 18 3.2.2 Maximum entropy techniques .......... 20 3.2.3 Maximum likelihood techniques . ....... 23 3.2.4 Classical spectral moment computation ..... 25 3.3 Time domain spectral moment estimation. ..... 27 3.3.1 Geometric interpretations ........... 27 3.3.2 "Pulse pair" estimators ........... 28 3.3.3 Circular spectral moment computation for sampled data. ............. 31 3.3.4 Poly pulse pair techniques ..... 33 3.4 Uncertainties in spectrum moment estimators . 35 3.4.1 Reflectivity. ... ............ 35 3.4.2 Velocity. ..... ...... 36 3.4.3 Velocity spectrum width ........... 37 4. Signal processing to eliminate bias and artifacts.
    [Show full text]
  • Radar Basics Radar
    Radar Basics WHAT IS RADAR? ........................................................................ 3 RADAR APPLICATIONS ................................................................ 3 FREQUENCY BANDS .................................................................... 3 CONTINUOUS WAVE AND PULSED RADAR .................................. 4 PULSED RADAR ........................................................................... 4 PULSE POWER ................................................................................ 4 RADAR EQUATION ........................................................................... 5 PULSE WIDTH ................................................................................ 5 PULSE MODULATION ....................................................................... 6 Linear FM Chirps ................................................................... 6 Phase Modulation .................................................................. 6 Frequency Hopping ................................................................ 6 Digital Modulation ................................................................. 6 PULSE COMPRESSION ....................................................................... 6 LIFECYCLE OF RADAR MEASUREMENT TASKS .............................. 7 CHALLENGES OF RADAR DESIGN & VERIFICATION ............................... 7 CHALLENGES OF PRODUCTION TESTING............................................. 7 SIGNAL MONITORING ....................................................................
    [Show full text]
  • Doppler Radar with In-Band Full Duplex Radios
    Doppler Radar with In-Band Full Duplex Radios Seyed Ali Hassani1, Karthick Parashar2, Andre´ Bourdoux2, Barend van Liempd2 and Sofie Pollin1 1Department of Electrical Engineering, KU Leuven, Belgium 2Imec, Leuven, Belgium Abstract—The use of in-band full duplex (IBFD) is a promis- metric for indoor localization [1], [2] and passive human ing improvement over classical TDD or FDD communication activity/gesture recognition [3]–[6]. In fact, Wi-Fi is not the schemes. To enable IBFD radios, the electrical balance duplexer only technology of interest for these applications. For instance, (EBD) has been proposed to suppress the direct self-interference (SI) at the RF stage. The remaining SI is typically assumed to in [7] and [8] the authors propose RSSI-based localization be canceled further in the digital domain. In this paper, we show methods which can be applied in a wireless sensor network. that the non-zero Doppler frequencies can be extracted from the Since the RSSI is easily affected by the temporal and residual SI, giving information about the speed of objects in the spatial variance due to the multipath effect [9], the newest environment. As a result, an IBFD radio can be seen as a mono- efforts tend to estimate the Doppler/velocity of the moving static Doppler radar which is affected by the communication signal. This paper presents a detailed performance analysis of target instead. The sensing requirements for the applications the different sources of interference affecting the Doppler radar. mentioned above, however, are not as critical as for those that The performance is also evaluated using a radar-enhanced IBFD need a high-frequency wideband Doppler radar.
    [Show full text]
  • Multifunction Phased Array Radar: Technical Synopsis, Cost Implications and Operational Capabilities*
    MULTIFUNCTION PHASED ARRAY RADAR: TECHNICAL SYNOPSIS, COST IMPLICATIONS AND OPERATIONAL CAPABILITIES* Mark Weber†, John Cho, Jeff Herd, James Flavin Massachusetts Institute of Technology Lincoln Laboratory Lexington, MA 1. INTRODUCTION (cameras and military radars) that can determine target altitude and identify aircraft Current U.S. weather and aircraft type. surveillance radar networks vary in age from The Departments of Defense and 10 to more than 40 years. Ongoing Homeland Security are now involved in sustainment and upgrade programs can keep maintenance of U.S. surveillance radars, these operating in the near to mid term, but including a major Service Life Extension the responsible agencies (FAA, NWS and Program (SLEP) for 68 long-range air route DoD/DHS) recognize that large-scale surveillance radars (ARSR). The Strategy for replacement activities must begin during the Homeland Defense and Civil Support next decade. In addition, these agencies are (Department of Defense, 2005) directs DoD to re-evaluating their operational requirements cooperate with the FAA and other agencies for radar surveillance. FAA has announced “to develop an advanced capability to replace that next generation air traffic control (ATC) the current generation of radars to improve will be based on Automatic Dependent tracking and identification of low-altitude Surveillance – Broadcast (ADS-B) (Scardina, airborne threats”. 2002) rather than current primary and Finally, our nation’s weather radar secondary radars. ADS-B, however, requires networks are vital for severe weather verification and back-up services which could detection and forecasting, for quantitative be provided by retaining or replacing primary measurement of precipitation over wide areas ATC radars.
    [Show full text]
  • Wind Observations with Doppler Weather Radar
    Wind observations with Doppler weather radar Iwan Holleman Royal Netherlands Meteorological Institute (KNMI), PO Box 201, NL-3730AE De Bilt, Netherlands, Email: [email protected] I. INTRODUCTION 20 Range: 8.8 km Weather radars are commonly employed for detection and 10 Elev: 5.0 deg ranging of precipitation, but radars with Doppler capability Stddev: 0.51 m/s can also provide detailed information on the wind associated 0 with (severe) weather phenomena. The Royal Netherlands Meteorological Institute (KNMI) operates two identical C- -10 band (5.6 GHz) Doppler weather radars. One radar is located Radial velocity [m/s] -20 in De Bilt and the other one is located in Den Helder. Two distinctly different pulse repetition frequencies are used to 20 extend the unambiguous velocity interval of the Doppler radars Range: 16 km from 13 to 40 m/s (Holleman 2003). In this paper, the retrieval 10 Elev: 5.0 deg and quality of weather radar wind profiles are discussed. In Stddev: 3.7 m/s addition the extraction of temperature advection from these 0 profiles is presented. Finally the detection of severe weather -10 phenomena and monitoring of bird migration for aviation are highlighted. Radial velocity [m/s] -20 II. RETRIEVAL OF RADAR WIND PROFILES 0 90 180 270 360 Azimuth [deg] A Doppler weather radar measures the scattering from atmospheric targets, like rain, snow, dust, and insects. The Fig. 1. Two examples of Velocity Azimuth Display (VAD) data from the radar provides the mean radial velocity as a function of operational weather radar in De Bilt are shown.
    [Show full text]