Radar Basics Radar

Total Page:16

File Type:pdf, Size:1020Kb

Radar Basics Radar Radar Basics WHAT IS RADAR? ........................................................................ 3 RADAR APPLICATIONS ................................................................ 3 FREQUENCY BANDS .................................................................... 3 CONTINUOUS WAVE AND PULSED RADAR .................................. 4 PULSED RADAR ........................................................................... 4 PULSE POWER ................................................................................ 4 RADAR EQUATION ........................................................................... 5 PULSE WIDTH ................................................................................ 5 PULSE MODULATION ....................................................................... 6 Linear FM Chirps ................................................................... 6 Phase Modulation .................................................................. 6 Frequency Hopping ................................................................ 6 Digital Modulation ................................................................. 6 PULSE COMPRESSION ....................................................................... 6 LIFECYCLE OF RADAR MEASUREMENT TASKS .............................. 7 CHALLENGES OF RADAR DESIGN & VERIFICATION ............................... 7 CHALLENGES OF PRODUCTION TESTING............................................. 7 SIGNAL MONITORING ..................................................................... 8 BASIC RF PULSED RADAR SIGNALS ..................................................... 8 TRANSMITTER TESTS....................................................................... 9 RECEIVER TESTS ............................................................................. 9 Modern radars produce complicated pulses that can present significant measurement challenges. Improvements to range, resolution, and immunity to interference have motivated numerous coding schemes, frequency and phase modulated pulses, frequency chirped pulses, and narrow pulses with high overall bandwidth. Frequency Bands Radar frequency bands are classified into letter designations defined by the IEEE (see Table 1). The most commonly used bands used today for radar are the L-band through the KU- band or 1 – 18 GHz. Short-range automotive radar systems use the very high W-band frequencies in the 75+ GHz range. Figure 1: A Weather Radar Display Table 1 Common Radar Frequency Bands What is Radar? Band Use Range Radar (RAdio Detection And Ranging) is actually a fairly HF Long-range, over the horizon 3-30 MHz simple process of bouncing radio waves off objects and (OTH) looking at the reflections to determining presence, size, VHF Long-range, over the horizon 30-300 MHz distance, position and speed. (OTH) Typically, radars illuminate their targets with an RF pulse and UHF Long-range, over the horizon 300 MHz-3 then listen for the return echo. Since the RF pulse propagates (OTH) GHz at the speed of light, the time it takes the echo to return is proportional to the distance from the target. This, of course, L Long range Air Traffic Control 1-2 GHz applies to a primary-radar, one that relies on reflected energy (ATC), surveillance bouncing back off the target. Secondary-radars, that re- S Medium Range, Airport 2-4 GHz transmit the signal back from a transponder, have additional Surveillance Radar (ASR), delays. long range weather, marine radar Transmitted RF signals are “bounced” off a target and a C Weather, snow/ice mapping, 4-8 GHz receiver measures the characteristics of the echo. Most often, precipitation detection low duty cycle pulses are used. As the technology has evolved, the basic concept of radar has X Missile guidance, marine radar, 8-12 GHz not changed. At the same time, the accuracy, resolution and weather, ground surveillance, number of radar applications has increased dramatically over short-range airport tracking radar time. Ku High-resolution radar, satellite 12-18 GHz transponders Radar Applications K Cloud detection, police radar 18-27 GHz Radar technology is used heavily in military applications. Ka Short range, airport surveillance, 27-40 GHz Ground-based radar is used for long-range threat-detection red-light traffic camera trigger and air traffic control. Ship-based radar provide surface-to- surface and surface-to-air observation. Airborne radar is V Very short range, space 40-75 GHz utilized for threat detection, surveillance, mapping, and applications altitude determination. Finally, missile radars are used for W Automotive/vehicle 75-110GHz tracking and guidance. parking/warning radar systems, There are many commercial aviation applications of radar imaging such as air traffic control (ATC) long range surveillance, terminal air traffic monitoring, surface movement tracking, and weather surveillance. Additionally, short-range radar is increasingly being used in automotive applications for collision avoidance, driver assistance, and autonomous driving. Specialized radars can also be used to provide imaging through fog, through walls, and even underground. www.tektronix.com/radar 3 better resolution. This relationship constitutes one of the Continuous Wave and Pulsed fundamental trade-offs in radar engineering. Pulse compression with a modulated carrier is often used to Radar enhance resolution while maintaining a narrow PW allowing Radar systems can use continuous wave (CW) signals or, for higher power and longer range. more commonly, low duty-cycle pulsed signals. CW radar The Pulse Repetition Interval (PRI) is the time the pulse cycle applications can be simple unmodulated Doppler speed takes before repeating. It is equal to the reciprocal of the PRF sensing systems such as those used by police and sports or Pulse Repetition Rate (PRR), the number of transmitted related radars, or may employ modulation in order to sense pulses per second. PRI is important because it determines the range as well as speed. Modulated CW applications have maximum unambiguous range or distance of the radar. In fact, many specialized and military applications such as maritime / pulse-off time may actually be a better indication of the radar naval applications, missile homing, and radar altimeters. The system's maximum design range. detection range of CW radar systems is relatively short, due to the constraints of continuous RF power. There is no minimum Traditional radar systems employ a Transmit/Receive (T/R) range, however, which makes CW radar particularly useful for switch to allow the transmitter and receiver to share a single close-in applications. antenna. The transmitter and receiver take turns using the antenna. The transmitter sends out pulses and during the off- Pulsed Radar time, the receiver listens for the return echo. The pulse-off time is the period the receiver can listen for the reflected echo. The radar measurements discussed in this document are all The longer the off-time, the further away the target can be pulse measurements. Although there are several continuous without the return delay putting the received pulse after the transmission types of radar, primarily Doppler, the great next transmitted pulse. This would incorrectly make the target majority of radars are pulsed. There are two general appear to be reflected from a nearby object. To avoid this categories of pulsed radar, Moving Target Indicator (MTI) and ambiguity, most radars simply use a pulse-off time that is long Pulsed Doppler. MTI radar is a long-range, low pulse enough to make echo returns from very distant objects so repetition frequency (PRF) radar used to detect and track weak in power, they are unlikely to be erroneously detected in 2 small (~2m ) moving targets at long distances (up to ~30km) the subsequent pulse's off-time. by eliminating ground clutter (aka chaff). MTI is useful when velocity is not a big concern (i.e. “just tell me if something is Figure 3 illustrates the need for pulse compression to obtain moving”). Pulsed Doppler radar, in contrast, utilizes a high good range and resolution. Wider PWs have higher average PRF to avoid “blind speeds” and has a shorter “unambiguous” power, which increases range capability. However, wide PWs range (~15km), high resolution, and provides detailed velocity may cause echoes from closely spaced targets to overlap or data. It is used for airborne missile approach tracking, air run together in the receiver, appearing as a single target. traffic control, and medical applications (e.g. blood flow Modulated pulses mitigate these issues, providing higher monitoring). power and finer resolution to separate closely spaced targets. The RF pulse characteristics reveal a great deal about a radar's capability. Electronic Warfare (EW) and ELectronic lNTelligence (ELINT) experts specialize in the study of these pulsed signals. Pulse characteristics provide valuable information about the type of radar producing a signal and what its source might be - sailboat, battleship, passenger plane, bomber, missile, etc. Figure 3. Pulse Width versus Resolution Pulse Power Figure 2. Common Pulse Characteristics Another consideration for the maximum range of a radar is the transmitted power. Peak power is a measure of the maximum Pulsed radar typically utilizes very low duty cycle RF pulses (< instantaneous power level in the pulse. Power droop, pulse 10%). The range and resolution is determined by the pulse top amplitude, and overshoot are also of interest. ELINT repetition frequency (PRF), pulse width (PW),
Recommended publications
  • Chapter-5 Doppler Effect
    Chapter-5 Doppler Effect Stationary source Stationary observer Moving source Stationary observer Stationary source Moving observer Moving source Moving observer http://www.astro.ubc.ca/~scharein/a311/Sim/doppler/Doppler.html Doppler Effect The Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source of the waves and the observer. The apparent change in frequency f experienced as a result of the Doppler effect is known as the Doppler shift. The value of the Doppler shift increases as the relative velocity v between the source and the observer increases. The Doppler effect applies to all forms of waves. Doppler Effect (Moving Source) http://www.absorblearning.com/advancedphysics/demo/units/040103.html Suppose the source moves at a steady velocity vs towards a stationary observer. The source emits sound wave with frequency f. From the diagram, we can see that the distance between crests is shortened such that ' vs Since = c/f and = 1/f, We get c c v s f ' f f c vs f ' ( ) f c vs Doppler Effect (Moving Observer) Consider an observer moving with velocity vo toward a stationary source S. The source emits a sound wave with frequency f and wavelength = c/f. The velocity of the sound wave relative to the observer is c + vo. c Doppler Shift Consider a source moving towards an observer, the Doppler shift f is c f f ' f ( ) f f c vs f v s f c v s f v If v <<c, then we get s s f c The above equation also applies to a receding source, with vs taking as negative.
    [Show full text]
  • Waveform Design and Related Processing for Multiple Target Detection and Resolution Target Detection and Resolution
    DOI: 10.5772/intechopen.71549 Chapter 1 Provisional chapter Waveform Design and Related Processing for Multiple Waveform Design and Related Processing for Multiple Target Detection and Resolution Target Detection and Resolution Gaspare Galati and Gabriele Pavan Gaspare Galati and Gabriele Pavan Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.71549 Abstract The performance of modern radar systems mostly depends on the radiated wave- forms, whose design is the basis of the entire system design. Today’s coherent, solid- state radars (either of the phased array type or of the single-radiator type as air traffic control or marine radars) transmit a set of deterministic signals with relatively large duty cycles, an order of 10%, calling for pulse compression to get the required range resolution. Often, power budget calls for different pulse lengths (e.g., short, medium, and long waveforms with a rectangular envelope) to cover the whole radar range. The first part of the chapter includes the topic of mitigating the effect of unwanted side lobes, inherent to every pulse compression, which is achieved both by a careful and optimal design of the waveform and by a (possibly mismatched) suitable processing. The second part of the chapter deals with the novel noise radar technology, not yet used in commercial radar sets but promising: (1) to prevent radar interception and exploitation by an enemy part and (2) to limit the mutual interferences of nearby radars, as in the marine environment. In this case, the design includes a tailoring of a set of pseudo-random waveforms, generally by recursive processing, to comply with the system requirements.
    [Show full text]
  • The Montague Doppler Radar, an Overview June 2018
    ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING · 317 WASHINGTON STREET · WATERTOWN, NY 13601 · (315) 785-2380 · WWW.TUGHILL.ORG The Tug Hill Commission Technical and Issue Paper Series are designed to help local officials and citizens in the Tug Hill region and other rural parts of New York State. The Tech- nical Paper Series provides guidance on procedures based on questions frequently received by the Commis- sion. The Issue Paper Series pro- vides background on key issues facing the region without taking advocacy positions. Other papers in each se- ries are available from the Tug Hill Commission. Please call us or vis- it our website for more information. The Montague Doppler Weather Radar, An Overview Table of Contents Introduction .................................................................................................................................................. 1 Who owns the Montague radar? ................................................................................................................. 1 Who uses the Montague radar? .................................................................................................................. 1 How does the radar system work? .............................................................................................................. 2 How does the radar predict lake-effect snowstorms? ................................................................................ 2 How does the
    [Show full text]
  • A Pulse Compression Waveform for Improved-Sensitivity Weather Radar Observations
    DECEMBER 2014 K U R D Z O E T A L . 2713 A Pulse Compression Waveform for Improved-Sensitivity Weather Radar Observations JAMES M. KURDZO School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma BOON LENG CHEONG Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma ROBERT D. PALMER AND GUIFU ZHANG School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma JOHN B. MEIER Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma (Manuscript received 22 January 2013, in final form 9 September 2014) ABSTRACT The progression of phased array weather observations, research, and planning over the past decade has led to significant advances in development efforts for future weather radar technologies. However, numerous challenges still remain for large-scale deployment. The eventual goal for phased array weather radar tech- nology includes the use of active arrays, where each element would have its own transmit/receive module. This would lead to significant advantages; however, such a design must be capable of utilizing low-power, solid-state transmitters at each element in order to keep costs down. To provide acceptable sensitivity, as well as the range resolution needed for weather observations, pulse compression strategies are required. Pulse compression has been used for decades in military applications, but it has yet to be applied on a broad scale to weather radar, partly because of concerns regarding sensitivity loss caused by pulse windowing. A robust optimization technique for pulse compression waveforms with minimalistic windowing using a genetic al- gorithm is presented. A continuous nonlinear frequency-modulated waveform that takes into account transmitter distortion is shown, both in theory and in practical use scenarios.
    [Show full text]
  • An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform
    aerospace Article An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform Xining Yu 1,*, Yan Zhang 1, Ankit Patel 1, Allen Zahrai 2 and Mark Weber 2 1 School of Electrical and Computer Engineering, University of Oklahoma, 3190 Monitor Avenue, Norman, OK 73019, USA; [email protected] (Y.Z.); [email protected] (A.P.) 2 National Severe Storms Laboratory, National Oceanic and Atomospheric Administration, Norman, OK 73072, USA; [email protected] (A.Z.); [email protected] (M.W.) * Correspondence: [email protected]; Tel.: +1-405-325-2871 Academic Editor: Konstantinos Kontis Received: 22 July 2016; Accepted: 2 September 2016; Published: 9 September 2016 Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language. Keywords: phased array radar; embedded computing; serial RapidIO; MPAR 1. Introduction 1.1. Real-Time, Large-Scale, Phased Array Radar Systems In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro Telecom Computing Architecture (MTCA) chassis.
    [Show full text]
  • New Non-Linear FM Pulse-Compression Technique for Radar Applications
    University of Central Florida STARS Retrospective Theses and Dissertations 1985 New Non-Linear FM Pulse-Compression Technique for Radar Applications Ronald A. Booher University of Central Florida Part of the Engineering Commons Find similar works at: https://stars.library.ucf.edu/rtd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Booher, Ronald A., "New Non-Linear FM Pulse-Compression Technique for Radar Applications" (1985). Retrospective Theses and Dissertations. 4806. https://stars.library.ucf.edu/rtd/4806 NEW NON-LINEAR FM PULSE-COMPRESSION TECHNIQUE FOR RADAR APPLICATIONS BY RONALD A. BOOHER B.S.E., University of Central Florida, 1984 THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science .in Engineering in the Graduate Studies Program of the College of Engineering University of Central Florida Orlando, Florida Fall Tenn 1985 ABSTRACT The development of pulsed type radar signals is examined, with a brief review of matched filtering. Gated RF, linear and non-linear FM pulse-compression ~hirp) and matched filtering of radar signals is reviewed in depth. Emphasis is given to identifying the desirable characteristics of each method. A new method of non-linear FM pulse-compression is introduced; it utilizes the Eigen Function (a form of the raised-cosine family) of functions) as its modulating term. Its properties are then compared to those of the linear and non-linear systems reviewed in the preceding sections.
    [Show full text]
  • Design Trade-Offs for Airborne Phased Array Radar for Atmospheric Research
    Design Trade-offs for Airborne Phased Array Radar for Atmospheric Research Jorge L. Salazar, Eric Loew, Pei-Sang Tsai, V. Chandrasekar Jothiram Vivekanandan and Wen Chau Lee Colorado State University (CSU) National Center for Atmospheric Research (NCAR) NCAR Affiliate Scientist 3450 Mitchell Lane Boulder, CO 80301, USA 1373 Fort Collins, CO 80523, U Abstract - This paper discusses the design options and trade- Besides the fact that both are single-polarized and passive offs of the key performance parameters, technology, and arrays, fast electronically scanned beams have provided the costs of dual-polarized and two-dimensional active phased scientific community with higher temporal resolution array antenna for an atmospheric airborne radar system. The measurements that improve detection and warning for severe design proposed provides high-resolution measurements of high-impact weather. Tornado false alarm rates have been the air motion and rainfall characteristics of very large storms reduced substantially and the tornado warning lead times that are difficult to observe with a ground-based radar system. extended from 14 minutes to 20 minutes [4]. Parameters such as antenna size, wavelength, beamwidth, transmit power, spatial resolution, along-track resolution, and Considering the benefit of phased array technology, polarization have been evaluated. The paper presents a academic, state, federal, and private institutions have been performance evaluation of the radar system. Preliminary working together to develop phased-array radar for results from the antenna front-end section that corresponds to atmospheric applications. Currently, the Massachusetts a Line Replacement Unit (LRU) are presented. Institute of Technology’s Lincoln Laboratory (MIT-LL) is developing a multifunction, two-dimensional (2-D), dual-pol, Index Terms – Airborne Doppler radar, ELDORA, phased flat and multifunction S-band radar system [6].
    [Show full text]
  • CMA-2012 Doppler Velocity Sensor and Navigation System
    CMA-2012 Doppler Velocity Sensor and Navigation System High Accuracy Velocity Sensor Ideally Suited for Helicopter Operations The CMA-2012 Doppler Velocity Sensor and The CMA-2012’s superior accuracy and performance are Navigation System represents the culmination achieved by integrating several technologies into one compact, of CMC Electronics’ 50 years of experience in low weight unit. A frequency modulation/continuous wave (FM/CW) modulation technique, together with a four-beam Janus airborne Doppler radar and navigation systems. It configuration, is optimized for low-speed conditions. A dynamic is particularly well suited for helicopter hover and carrier breakthrough circuit lowers hover drift. Signal returns then low-speed operations, such as anti-submarine undergo digital signal processing to optimize signal acquisition warfare and SAR, and for weapons targeting during over marginal terrain, such as smooth water, sand or snow, and tactical flight manoeuvres, where the highest enhance tracking precision accuracy. Pitch, roll and yaw heading accuracy velocity sensor is required to ensure inputs further enhance the CMA-2012’s performance during mission accomplishment. dynamic helicopter movements. With the input of pitch, roll and heading information, the CMA-2012 can provide Doppler navigation system functions, compute present position and other navigation information, and output navigation data to CMC’s or other multifunction CDUs via a digital data bus. Extensive flight testing of the CMA-2012 has demonstrated its excellent performance.
    [Show full text]
  • Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality
    Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality 1.) Introduction: The WSR-88D (Weather Surveillance Radar designed and built in the 80s) is the most useful tool used by National Weather Service (NWS) Meteorologists to detect precipitation, calculate its motion, estimate its type (rain, snow, hail, etc) and forecast its position. Radar stands for “Radio, Detection, and Ranging”, was developed in the 1940’s and used during World War II, has gone through numerous enhancements and technological upgrades to help forecasters investigate storms with greater detail and precision. However, as our ability to detect areas of precipitation, including rotation within thunderstorms has vastly improved over the years, so has the radar’s ability to detect other significant meteorological and non meteorological artifacts. In this article we will identify these signatures, explain why and how they occur and provide examples from KTYX and KCXX of both meteorological and non meteorological data which WSR-88D detects. KTYX radar is located on the Tug Hill Plateau near Watertown, NY while, KCXX is located in Colchester, VT with both operated by the NWS in Burlington. Radar signatures to be shown include: bright banding, tornadic hook echo, low level lake boundary, hail spikes, sunset spikes, migrating birds, Route 7 traffic, wind farms, and beam blockage caused by terrain and the associated poor data sampling that occurs. 2.) How Radar Works: The WSR-88D operates by sending out directional pulses at several different elevation angles, which are microseconds long, and when the pulse intersects water droplets or other artifacts, a return signal is sent back to the radar.
    [Show full text]
  • Continuous Wave Radar
    Continuous Wave Radar CW radar sets transmit a high-frequency signal continuously. The echo signal is received and processed permanently. One has to resolve two problems with this principle: Figure 1: The continuous wave radar method often uses separate transmit and receive antennas. These are constructed on a double-sided printed circuit board. prevent a direct connection of the transmitted energy into the receiver (feedback connection), assign the received echoes to a time system to be able to do run time measurements. A direct connection of the transmitted energy into the receiver can be prevented by: spatial separation of the transmitting antenna and the receiving antenna, e.g. the aim is illuminated by a strong transmitter and the receiver is located in the missile flying direction towards the aim; Frequency dependent separation by the Doppler-frequency during the measurement of speeds. A run time measurement isn't necessary for speed gauges, the actual range of the delinquent car doesn't have a consequence. If you need range information, then the time measurement can be realized by a frequency modulation or phase keying of the transmitted power. A CW-radar transmitting a unmodulated power can measure the speed only by using the Doppler- effect. It cannot measure a range and it cannot differ between two or more reflecting objects. Table of content « CW-Radar » 1. Doppler Radar 2. Block diagram of CW radar Direct conversion receiver Superheterodyne 3. Applications of unmodulated continuous wave radar Speed gauges Doppler radar motion sensor Motion monitoring When an echo signal is received, then that is the proof that there is an obstacle in the propagation direction of the electromagnetic waves.
    [Show full text]
  • Matched-Filter Ultrasonic Sensing: Theory and Implementation Zhaohong Zhang
    White Paper SLAA814–December 2017 Matched-Filter Ultrasonic Sensing: Theory and Implementation Zhaohong Zhang ........................................................................................................... MSP Systems This document provides a detailed discussion on the operating theory of the matched-filter based ultrasonic sensing technology and the single-chip implementation platform using the Texas Instruments (TI) MSP430FR6047 microcontroller (MCU). Contents 1 Introduction ................................................................................................................... 2 2 Theory of Matched Filtering ................................................................................................ 2 3 MSP430FR6047 for Ultrasonic Sensing .................................................................................. 5 4 MSP430FR6047 USS Subsystem......................................................................................... 6 5 MSP430FR6047 Low Energy Accelerator (LEA) ........................................................................ 8 6 References ................................................................................................................... 9 List of Figures 1 Sonar in Target Range Measurement .................................................................................... 2 2 Concept of Pulse Compression............................................................................................ 2 3 Time-Domain Waveform and Autocorrelation of FM Chirp............................................................
    [Show full text]
  • PART0001 (Pulse Compression for Phased Array Weather Radars.)
    NCAR/TN-444 NCAR TECHNICAL NOTE _· i May 1999 Pulse Compression for Phased Array Weather Radars R. Jeffrey Keeler Charles A. Hwang Ashok S. Mudukutore ATMOSPHERIC TECHNOLOGY DIVISION i NATIONAL CENTER FOR ATMOSPHERIC RESEARCH BOULDER, COLORADO - Pulse Compression for Phased Array Weather Radars NCAR Technical Report I R. Jeffrey Keeler 1, Charles A. Hwang1 and Ashok Mudukutore 2 1National Center for Atmospheric Research* PO Box 3000, Boulder, Colorado 80307 USA 2Colorado State University Fort Collins, Colorado 80369 USA E-mail: keeler@ucaredu Tel: 303-497-2031 Fax: 303-497-2044 *NCAR is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation Preface This Technical Report is a reprint of the Final Report from NCAR's Atmospheric Technology Division on work per- formed from 1991 through 1995 for the FAA Terminal Area Surveillance Systems Program. It details the application of pulse compression waveforms to weather radar, the importance of range time sidelobes, special considerations for FM waveforms, simulations of fluctuating weather targets, and a validation study using the NCAR ELDORA testbed radar. The report was originally written in 1995, but not published until now. A few relevant references have been added when they amplify the work originally performed. rJK May 15, 1999 List of figures Figure 1.1. Advanced high resolution radarsystem using pulse compression waveform and phased array electronic scanned antenna . ..................................................... ................................................. .................................................. 2 Figure 2.1. Graphicaldescription of optimal sidelobe suppressionfilter design. The desiredoutput response, dk, is an impulse, but the actual output, yk, has sidelobes. ........ 6.................................................................................................6 Figure 2.2. The integratedsidelobe levels (ISL)for a Barker 13 code with inversefiltering decrease with longerfilter length for zero Doppler.
    [Show full text]