Design and Analysis of Doppler Radar-Based Vehicle Speed Detection

Total Page:16

File Type:pdf, Size:1020Kb

Design and Analysis of Doppler Radar-Based Vehicle Speed Detection INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 06, JUNE 2016 ISSN 2277-8616 Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection Su Myat Paing, Su Su Yi Mon, Hla Myo Tun Abstract: The most unwanted thing to happen to a road user is road accident. Most of the fatal accidents occur due to over speeding. Faster vehicles are more prone to accident than the slower one. Among the various methods for detecting speed of the vehicle, object detection systems based on Radar have been replaced for about a century for various purposes like detection of aircrafts, spacecraft, ships, navigation, reading weather formations and terrain mapping. The essential feature in adaptive vehicle activated sign systems is the accurate measurement of a vehicle’s velocity. The velocities of the vehicles are acquired from a continuous wave Doppler radar. A very low amount of power is consumed in this system and only batteries can use to operate. The system works on the principle of Doppler Effect by detecting the Doppler shift in microwaves reflected from a moving object. Since, the output of the sensor is sinusoidal wave with very small amplitude and needs to be amplified with the help of the amplifier before further processing. The purpose to calculate and display the speed on LCD is performed by the microcontroller. Keywords: CW Doppler Radar, Doppler Effect, Doppler Shift, Microcontroller, Amplifier. ———————————————————— I. INTRODUCTION The overall system configuration is shown in Figure 2. Radar stands for radio detection and ranging. It operates by There are two main sections in this system: (1) an radiating electromagnetic waves and detecting the echo amplification circuit, and (2) a frequency counter and speed returned from the target. Although radar cannot reorganize display. The Doppler radar transmits the frequency of the collar of the object and resolve the detailed features of 10.525GHz to the vehicle. It reflects back some portion of the target like the human eye, it can see through darkness, the transmitted signal with a shift in the frequency. Since, fog and rain, and over a much longer range. This system the output voltage of the sensor is in small dc value. So, it uses HB series of microwave motion sensor module are X- needs to amplify with the help of the amplifier circuit. The Band Mono-static DRO Doppler transceiver front-end output of the amplifier is fed to the microcontroller. The module(HB100). These modules are designed for microcontroller performs the tasks of calculation of movement detection, like intruder alarms, occupancy frequency, calculation of speed and displays them on the modules and other innovative ideas. The module can detect LCD. the distance within 20m and its transmitted frequency is 10.525GHz. It consists of Dielectric Resonator Oscillator III. DESIGN PROCEDURE (DRO), microwave mixer and path antenna. The oscillator is used to produce a sinusoidal wave of frequency (1) Amplification Circuit 10.525GHz, patch antenna connected to the oscillator 3The output of the sensor is in the audio frequency range radiates the wave towards the target and the reflected wave and small dc value. So, an audio amplifier with low pass is received by another set of patch antenna. The mixer active filter is desired for the design to meet this mixes these two signals to generate a sinusoidal wave with requirement. The complete diagram of the amplifier circuit frequency equal to the difference between the two signals. used is shown in Figure 3. LM324 Quad op-amp is the Figure 1 shows the internal structure of HB100. amplifier IC used for this purpose as the output gets nearly 4.5V which is enough to drive the microcontroller. +5V GND Oscillator Mixer Tx Rx Antenna Antenna GND IF Figure 1: Internal structure of HB100 II. SYSTEM DESCRIPTION +5V DC SUPPLY DOPPLER MICROCONTROLLER Figure 3: Circuit Diagram of the Amplifier using LM358N RADAR AMPLIFIER (PIC16F887) (HB100) DISPLAY SPEED (LM016L) Figure 2: General Block Diagram of the System 145 IJSTR©2016 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 06, JUNE 2016 ISSN 2277-8616 Design Calculation of Amplifier Circuit to drive the Microcontroller To use LM324 op-amp as driver, it is selected 5V as Vcc. For cascaded stages, Vbias for each stage must be 2.5V. R 2 Vbias .Vcc R1 R 2 R 2.5V 2 .5V R1 R 2 R 1 2 R1 R 2 2 Therefor , R R 100k is selected. Figure 4: Output Waveform of the amplifier using LM358N 1 2 For minimum error due to inupt bias current, it must be reduced to nearly 0.01mA. Vbias Ibias R3 2.5V R 250k 3 0.01mA Therefore, standard value 330k is selected for R3. For First Stage (Amplification) Since the output of the sensor is a small dc value, it must Figure 5: Circuit Diagram of the Amplifier using LM324 be amplified at least 100 times to drive the microcontroller. Assume Av1 100 For non - inverting amplificat ion, R A 1 f1 v1 R in1 From the data sheet of LM324, Rin1=10kΩ is selected to achieve output voltage about 5V. R 100 1 f1 10k Rf1 99 x 10k 990k 1M Figure 6: Output Waveform of the amplifier using LM324 Rf1 Rf2 1M is selected for both stages. For AC coupling amplificat ion, Cin 4.7μF is To minimize the effect of the noise, the amplification is achieved in two stages. The first stage is configured as convenient with Rin 10k. non-inverting amplifier. Since the output of the sensor is a Cin1 Cin2 4.7μF is selected for both stages. small dc value (0.01 to 0.2Vdc), AC coupling of the output is necessary. The output of the first stage is a sinusoidal signal with a small dc offset. The dc component at the For Second Stage (low - pass filter) output is filtered by the capacitor at the output terminal. The 1 second stage is configured as inverting amplifier. The 2.2nF f capacitor in the feedback path of the amplifier makes this c 2πR C configuration an active low pass filter. The high frequency in2 in2 noises are filtered and the accuracy of the system is 1 4Hz improved. The two stages are cascaded to achieve the 2πRin2(4.7μF) overall gain of the amplifier. The second stage acts as a R 8.4k comparator and the output produced is a digital waveform in2 that can be sensed by the digital pin of a microcontroller. Therefore, standard value 8.2k is selected for Rin2. 146 IJSTR©2016 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 06, JUNE 2016 ISSN 2277-8616 (2) Frequency Counter and Speed Display Relation Between Frequency and Speed f fr fo...............Eq : (1) c λ .....................Eq : (2) fo 2v f ....................Eq : (3) λ where; f Doppler shift f r received frequency f o transmitted frequency λ wavelength of transmitted wave c speed of light v speed of the vehicle For Δf 2.5kHz, c 3x108 ms-1 λ 0.0285m 9 fo 10.525x10 cycles/s 2v Figure 6: Pulse Generator Properties window (adding the Δf λ frequency with 2.5kHz) 2v 2.5kcycles /s 0.0285m v128250mph 128.25kmph Figure 7: Simulation of the frequency counter after running Frequency of the signal is the factor representing the speed of the moving object. So, the frequency of the incoming pulse from the amplifier is measured by connecting the Figure 8: Simulation for the speed display output of the amplifier to the timer1 clock input pin of PIC16F887. The corresponding pin in PIC16F887 is pin 15. The speed is calculated by writing the equation of the When used with an internal clock source, the module is a relation between frequency and speed in the existing timer. When used with an external clock source, the module program. can be used as either a timer or counter. In this paper, it is operated as an external clock source. When counting, Start Timer1 is incremented on the rising edge of the external Initialize I/O ports clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontroller system clock or run Configure LCD connections asynchronously. In Counter mode, a falling edge must be registered by the counter prior to the first incrementing Extract the digits rising edge after one or more of the following conditions: Set up TMR1 Timer1 is enabled after POR or BOR Reset A write to TMR1H or TMR1L Set up cnt T1CKI is high when Timer1 is disabled and when Delay 1 second Timer1 is reenabled T1CKI is low. Read the low byte and high byte of TMR1 The frequency of the input signal can be obtained from Display the counted value and the clock of the counter. A number of frequency & speed on LCD such measurements can be taken and averaged for better Figure 9: Flow Chart for Frequency Counter and Speed accuracy. Display 147 IJSTR©2016 www.ijstr.org INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 06, JUNE 2016 ISSN 2277-8616 IV. CONCLUSION In this paper, a low cost and efficient embedded vehicular speed detecting system is presented. The work aimed at implementing the better results by comparing the existing methods such as FFT, DSP and LASAR based techniques. The output was more accurate with no other moving objects in the surrounding. In reality, the radar will not measure the actual velocity when the vehicle is not travelling directly towards the radar and slightly inclined at an angle. ACKNOWLEDGEMENT The author would like to thanks her supervisor Dr. Su Su Yi Mon, Associate Professor, Department of Electronic Engineering, Mandalay Technological University, for accomplished guidance, helpful suggestions, and continuous supervision.
Recommended publications
  • Chapter-5 Doppler Effect
    Chapter-5 Doppler Effect Stationary source Stationary observer Moving source Stationary observer Stationary source Moving observer Moving source Moving observer http://www.astro.ubc.ca/~scharein/a311/Sim/doppler/Doppler.html Doppler Effect The Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source of the waves and the observer. The apparent change in frequency f experienced as a result of the Doppler effect is known as the Doppler shift. The value of the Doppler shift increases as the relative velocity v between the source and the observer increases. The Doppler effect applies to all forms of waves. Doppler Effect (Moving Source) http://www.absorblearning.com/advancedphysics/demo/units/040103.html Suppose the source moves at a steady velocity vs towards a stationary observer. The source emits sound wave with frequency f. From the diagram, we can see that the distance between crests is shortened such that ' vs Since = c/f and = 1/f, We get c c v s f ' f f c vs f ' ( ) f c vs Doppler Effect (Moving Observer) Consider an observer moving with velocity vo toward a stationary source S. The source emits a sound wave with frequency f and wavelength = c/f. The velocity of the sound wave relative to the observer is c + vo. c Doppler Shift Consider a source moving towards an observer, the Doppler shift f is c f f ' f ( ) f f c vs f v s f c v s f v If v <<c, then we get s s f c The above equation also applies to a receding source, with vs taking as negative.
    [Show full text]
  • The Montague Doppler Radar, an Overview June 2018
    ISSUE PAPER SERIES The Montague Doppler Radar, An Overview June 2018 NEW YORK STATE TUG HILL COMMISSION DULLES STATE OFFICE BUILDING · 317 WASHINGTON STREET · WATERTOWN, NY 13601 · (315) 785-2380 · WWW.TUGHILL.ORG The Tug Hill Commission Technical and Issue Paper Series are designed to help local officials and citizens in the Tug Hill region and other rural parts of New York State. The Tech- nical Paper Series provides guidance on procedures based on questions frequently received by the Commis- sion. The Issue Paper Series pro- vides background on key issues facing the region without taking advocacy positions. Other papers in each se- ries are available from the Tug Hill Commission. Please call us or vis- it our website for more information. The Montague Doppler Weather Radar, An Overview Table of Contents Introduction .................................................................................................................................................. 1 Who owns the Montague radar? ................................................................................................................. 1 Who uses the Montague radar? .................................................................................................................. 1 How does the radar system work? .............................................................................................................. 2 How does the radar predict lake-effect snowstorms? ................................................................................ 2 How does the
    [Show full text]
  • An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform
    aerospace Article An Implementation of Real-Time Phased Array Radar Fundamental Functions on a DSP-Focused, High-Performance, Embedded Computing Platform Xining Yu 1,*, Yan Zhang 1, Ankit Patel 1, Allen Zahrai 2 and Mark Weber 2 1 School of Electrical and Computer Engineering, University of Oklahoma, 3190 Monitor Avenue, Norman, OK 73019, USA; [email protected] (Y.Z.); [email protected] (A.P.) 2 National Severe Storms Laboratory, National Oceanic and Atomospheric Administration, Norman, OK 73072, USA; [email protected] (A.Z.); [email protected] (M.W.) * Correspondence: [email protected]; Tel.: +1-405-325-2871 Academic Editor: Konstantinos Kontis Received: 22 July 2016; Accepted: 2 September 2016; Published: 9 September 2016 Abstract: This paper investigates the feasibility of a backend design for real-time, multiple-channel processing digital phased array system, particularly for high-performance embedded computing platforms constructed of general purpose digital signal processors. First, we obtained the lab-scale backend performance benchmark from simulating beamforming, pulse compression, and Doppler filtering based on a Micro Telecom Computing Architecture (MTCA) chassis using the Serial RapidIO protocol in backplane communication. Next, a field-scale demonstrator of a multifunctional phased array radar is emulated by using the similar configuration. Interestingly, the performance of a barebones design is compared to that of emerging tools that systematically take advantage of parallelism and multicore capabilities, including the Open Computing Language. Keywords: phased array radar; embedded computing; serial RapidIO; MPAR 1. Introduction 1.1. Real-Time, Large-Scale, Phased Array Radar Systems In [1], we had introduced the real-time phased array radar (PAR) processing based on the Micro Telecom Computing Architecture (MTCA) chassis.
    [Show full text]
  • Design Trade-Offs for Airborne Phased Array Radar for Atmospheric Research
    Design Trade-offs for Airborne Phased Array Radar for Atmospheric Research Jorge L. Salazar, Eric Loew, Pei-Sang Tsai, V. Chandrasekar Jothiram Vivekanandan and Wen Chau Lee Colorado State University (CSU) National Center for Atmospheric Research (NCAR) NCAR Affiliate Scientist 3450 Mitchell Lane Boulder, CO 80301, USA 1373 Fort Collins, CO 80523, U Abstract - This paper discusses the design options and trade- Besides the fact that both are single-polarized and passive offs of the key performance parameters, technology, and arrays, fast electronically scanned beams have provided the costs of dual-polarized and two-dimensional active phased scientific community with higher temporal resolution array antenna for an atmospheric airborne radar system. The measurements that improve detection and warning for severe design proposed provides high-resolution measurements of high-impact weather. Tornado false alarm rates have been the air motion and rainfall characteristics of very large storms reduced substantially and the tornado warning lead times that are difficult to observe with a ground-based radar system. extended from 14 minutes to 20 minutes [4]. Parameters such as antenna size, wavelength, beamwidth, transmit power, spatial resolution, along-track resolution, and Considering the benefit of phased array technology, polarization have been evaluated. The paper presents a academic, state, federal, and private institutions have been performance evaluation of the radar system. Preliminary working together to develop phased-array radar for results from the antenna front-end section that corresponds to atmospheric applications. Currently, the Massachusetts a Line Replacement Unit (LRU) are presented. Institute of Technology’s Lincoln Laboratory (MIT-LL) is developing a multifunction, two-dimensional (2-D), dual-pol, Index Terms – Airborne Doppler radar, ELDORA, phased flat and multifunction S-band radar system [6].
    [Show full text]
  • CMA-2012 Doppler Velocity Sensor and Navigation System
    CMA-2012 Doppler Velocity Sensor and Navigation System High Accuracy Velocity Sensor Ideally Suited for Helicopter Operations The CMA-2012 Doppler Velocity Sensor and The CMA-2012’s superior accuracy and performance are Navigation System represents the culmination achieved by integrating several technologies into one compact, of CMC Electronics’ 50 years of experience in low weight unit. A frequency modulation/continuous wave (FM/CW) modulation technique, together with a four-beam Janus airborne Doppler radar and navigation systems. It configuration, is optimized for low-speed conditions. A dynamic is particularly well suited for helicopter hover and carrier breakthrough circuit lowers hover drift. Signal returns then low-speed operations, such as anti-submarine undergo digital signal processing to optimize signal acquisition warfare and SAR, and for weapons targeting during over marginal terrain, such as smooth water, sand or snow, and tactical flight manoeuvres, where the highest enhance tracking precision accuracy. Pitch, roll and yaw heading accuracy velocity sensor is required to ensure inputs further enhance the CMA-2012’s performance during mission accomplishment. dynamic helicopter movements. With the input of pitch, roll and heading information, the CMA-2012 can provide Doppler navigation system functions, compute present position and other navigation information, and output navigation data to CMC’s or other multifunction CDUs via a digital data bus. Extensive flight testing of the CMA-2012 has demonstrated its excellent performance.
    [Show full text]
  • Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality
    Radar Artifacts and Associated Signatures, Along with Impacts of Terrain on Data Quality 1.) Introduction: The WSR-88D (Weather Surveillance Radar designed and built in the 80s) is the most useful tool used by National Weather Service (NWS) Meteorologists to detect precipitation, calculate its motion, estimate its type (rain, snow, hail, etc) and forecast its position. Radar stands for “Radio, Detection, and Ranging”, was developed in the 1940’s and used during World War II, has gone through numerous enhancements and technological upgrades to help forecasters investigate storms with greater detail and precision. However, as our ability to detect areas of precipitation, including rotation within thunderstorms has vastly improved over the years, so has the radar’s ability to detect other significant meteorological and non meteorological artifacts. In this article we will identify these signatures, explain why and how they occur and provide examples from KTYX and KCXX of both meteorological and non meteorological data which WSR-88D detects. KTYX radar is located on the Tug Hill Plateau near Watertown, NY while, KCXX is located in Colchester, VT with both operated by the NWS in Burlington. Radar signatures to be shown include: bright banding, tornadic hook echo, low level lake boundary, hail spikes, sunset spikes, migrating birds, Route 7 traffic, wind farms, and beam blockage caused by terrain and the associated poor data sampling that occurs. 2.) How Radar Works: The WSR-88D operates by sending out directional pulses at several different elevation angles, which are microseconds long, and when the pulse intersects water droplets or other artifacts, a return signal is sent back to the radar.
    [Show full text]
  • Continuous Wave Radar
    Continuous Wave Radar CW radar sets transmit a high-frequency signal continuously. The echo signal is received and processed permanently. One has to resolve two problems with this principle: Figure 1: The continuous wave radar method often uses separate transmit and receive antennas. These are constructed on a double-sided printed circuit board. prevent a direct connection of the transmitted energy into the receiver (feedback connection), assign the received echoes to a time system to be able to do run time measurements. A direct connection of the transmitted energy into the receiver can be prevented by: spatial separation of the transmitting antenna and the receiving antenna, e.g. the aim is illuminated by a strong transmitter and the receiver is located in the missile flying direction towards the aim; Frequency dependent separation by the Doppler-frequency during the measurement of speeds. A run time measurement isn't necessary for speed gauges, the actual range of the delinquent car doesn't have a consequence. If you need range information, then the time measurement can be realized by a frequency modulation or phase keying of the transmitted power. A CW-radar transmitting a unmodulated power can measure the speed only by using the Doppler- effect. It cannot measure a range and it cannot differ between two or more reflecting objects. Table of content « CW-Radar » 1. Doppler Radar 2. Block diagram of CW radar Direct conversion receiver Superheterodyne 3. Applications of unmodulated continuous wave radar Speed gauges Doppler radar motion sensor Motion monitoring When an echo signal is received, then that is the proof that there is an obstacle in the propagation direction of the electromagnetic waves.
    [Show full text]
  • Signal Processing for Atmospheric Radars
    NCAR/TN-331+STR i NCAR TECHNICAL NOTE I - May 1989 Signal Processing for Atmospheric Radars R. Jeffrey Keeler Richard E. Passarelli ATMOSPHERIC TECHNOLOGY DIVISION NATIONAL CENTER FOR ATMOSPHERIC RESEARCH BOULDER, COLORADO TBSIE OF COTENTS TABLE OF CONTENTS ..................... iii LIST OF FIGURES ......................... v LIST OF TABLES ................... .. .vii PREFACE. .. .. i....................... 1. Purpose and scope ................. 1 2. General characteristics of atmospheric radars. 3 2.1 Characteristics of processing .......... 3 2.1.1 Sampling ................... 3 2.1.2 Noise ...... ............... 4 2.1.3 Scattering ............... 5 2.1.4 Signal to noise ratio (SNR) .......... 6 2.2 Types of atmospheric radars .......... 6 2.2.1 Microwave radars . ........... 7 2.2.2 ST/MST radars or wind profilers ....... 8 2.2.3 FM-CW radars .. .............. 8 2.2.4 Mobile radars ............ .. 9 2.2.5 Lidar ............ ....... 10 2.2.6 Acoustic sounders . .......... 11 3. Doppler power spectrum moment estimation . .... 13 3.1 General features of the Doppler power spectrum. 14 3.2 Frequency domain spectral moment estimation . 18 3.2.1 Fast Fourier transform techniques . .... 18 3.2.2 Maximum entropy techniques .......... 20 3.2.3 Maximum likelihood techniques . ....... 23 3.2.4 Classical spectral moment computation ..... 25 3.3 Time domain spectral moment estimation. ..... 27 3.3.1 Geometric interpretations ........... 27 3.3.2 "Pulse pair" estimators ........... 28 3.3.3 Circular spectral moment computation for sampled data. ............. 31 3.3.4 Poly pulse pair techniques ..... 33 3.4 Uncertainties in spectrum moment estimators . 35 3.4.1 Reflectivity. ... ............ 35 3.4.2 Velocity. ..... ...... 36 3.4.3 Velocity spectrum width ........... 37 4. Signal processing to eliminate bias and artifacts.
    [Show full text]
  • Radar Basics Radar
    Radar Basics WHAT IS RADAR? ........................................................................ 3 RADAR APPLICATIONS ................................................................ 3 FREQUENCY BANDS .................................................................... 3 CONTINUOUS WAVE AND PULSED RADAR .................................. 4 PULSED RADAR ........................................................................... 4 PULSE POWER ................................................................................ 4 RADAR EQUATION ........................................................................... 5 PULSE WIDTH ................................................................................ 5 PULSE MODULATION ....................................................................... 6 Linear FM Chirps ................................................................... 6 Phase Modulation .................................................................. 6 Frequency Hopping ................................................................ 6 Digital Modulation ................................................................. 6 PULSE COMPRESSION ....................................................................... 6 LIFECYCLE OF RADAR MEASUREMENT TASKS .............................. 7 CHALLENGES OF RADAR DESIGN & VERIFICATION ............................... 7 CHALLENGES OF PRODUCTION TESTING............................................. 7 SIGNAL MONITORING ....................................................................
    [Show full text]
  • Doppler Radar with In-Band Full Duplex Radios
    Doppler Radar with In-Band Full Duplex Radios Seyed Ali Hassani1, Karthick Parashar2, Andre´ Bourdoux2, Barend van Liempd2 and Sofie Pollin1 1Department of Electrical Engineering, KU Leuven, Belgium 2Imec, Leuven, Belgium Abstract—The use of in-band full duplex (IBFD) is a promis- metric for indoor localization [1], [2] and passive human ing improvement over classical TDD or FDD communication activity/gesture recognition [3]–[6]. In fact, Wi-Fi is not the schemes. To enable IBFD radios, the electrical balance duplexer only technology of interest for these applications. For instance, (EBD) has been proposed to suppress the direct self-interference (SI) at the RF stage. The remaining SI is typically assumed to in [7] and [8] the authors propose RSSI-based localization be canceled further in the digital domain. In this paper, we show methods which can be applied in a wireless sensor network. that the non-zero Doppler frequencies can be extracted from the Since the RSSI is easily affected by the temporal and residual SI, giving information about the speed of objects in the spatial variance due to the multipath effect [9], the newest environment. As a result, an IBFD radio can be seen as a mono- efforts tend to estimate the Doppler/velocity of the moving static Doppler radar which is affected by the communication signal. This paper presents a detailed performance analysis of target instead. The sensing requirements for the applications the different sources of interference affecting the Doppler radar. mentioned above, however, are not as critical as for those that The performance is also evaluated using a radar-enhanced IBFD need a high-frequency wideband Doppler radar.
    [Show full text]
  • Multifunction Phased Array Radar: Technical Synopsis, Cost Implications and Operational Capabilities*
    MULTIFUNCTION PHASED ARRAY RADAR: TECHNICAL SYNOPSIS, COST IMPLICATIONS AND OPERATIONAL CAPABILITIES* Mark Weber†, John Cho, Jeff Herd, James Flavin Massachusetts Institute of Technology Lincoln Laboratory Lexington, MA 1. INTRODUCTION (cameras and military radars) that can determine target altitude and identify aircraft Current U.S. weather and aircraft type. surveillance radar networks vary in age from The Departments of Defense and 10 to more than 40 years. Ongoing Homeland Security are now involved in sustainment and upgrade programs can keep maintenance of U.S. surveillance radars, these operating in the near to mid term, but including a major Service Life Extension the responsible agencies (FAA, NWS and Program (SLEP) for 68 long-range air route DoD/DHS) recognize that large-scale surveillance radars (ARSR). The Strategy for replacement activities must begin during the Homeland Defense and Civil Support next decade. In addition, these agencies are (Department of Defense, 2005) directs DoD to re-evaluating their operational requirements cooperate with the FAA and other agencies for radar surveillance. FAA has announced “to develop an advanced capability to replace that next generation air traffic control (ATC) the current generation of radars to improve will be based on Automatic Dependent tracking and identification of low-altitude Surveillance – Broadcast (ADS-B) (Scardina, airborne threats”. 2002) rather than current primary and Finally, our nation’s weather radar secondary radars. ADS-B, however, requires networks are vital for severe weather verification and back-up services which could detection and forecasting, for quantitative be provided by retaining or replacing primary measurement of precipitation over wide areas ATC radars.
    [Show full text]
  • Wind Observations with Doppler Weather Radar
    Wind observations with Doppler weather radar Iwan Holleman Royal Netherlands Meteorological Institute (KNMI), PO Box 201, NL-3730AE De Bilt, Netherlands, Email: [email protected] I. INTRODUCTION 20 Range: 8.8 km Weather radars are commonly employed for detection and 10 Elev: 5.0 deg ranging of precipitation, but radars with Doppler capability Stddev: 0.51 m/s can also provide detailed information on the wind associated 0 with (severe) weather phenomena. The Royal Netherlands Meteorological Institute (KNMI) operates two identical C- -10 band (5.6 GHz) Doppler weather radars. One radar is located Radial velocity [m/s] -20 in De Bilt and the other one is located in Den Helder. Two distinctly different pulse repetition frequencies are used to 20 extend the unambiguous velocity interval of the Doppler radars Range: 16 km from 13 to 40 m/s (Holleman 2003). In this paper, the retrieval 10 Elev: 5.0 deg and quality of weather radar wind profiles are discussed. In Stddev: 3.7 m/s addition the extraction of temperature advection from these 0 profiles is presented. Finally the detection of severe weather -10 phenomena and monitoring of bird migration for aviation are highlighted. Radial velocity [m/s] -20 II. RETRIEVAL OF RADAR WIND PROFILES 0 90 180 270 360 Azimuth [deg] A Doppler weather radar measures the scattering from atmospheric targets, like rain, snow, dust, and insects. The Fig. 1. Two examples of Velocity Azimuth Display (VAD) data from the radar provides the mean radial velocity as a function of operational weather radar in De Bilt are shown.
    [Show full text]