Identification of Legumes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cover Crops for Home Gardens West of the Cascades
Cover Crops for Home Gardens West of the Cascades WASHINGTON STATE UNIVERSITY EXTENSION FACT SHEET • FS111E This fact sheet is one of a three-part series on cover crops for home gardeners. It focuses on choosing the best cover crops for gardens in Washington and Oregon, west of the Cascades. A companion fact sheet, Cover Crops for Home Gardens East of the Cascades, focuses on choosing the best cover crops for gardens in Washington and Oregon, east of the Cascades. The third fact sheet in this series, Methods for Successful Cover Crop Management in Your Home Garden, covers the management of garden cover crops, including planning, planting, managing nutrients, and terminating plants. What Is a Cover Crop? Table 1. Benefits of cover crops. • Replace soil organic matter Cover crops are plants grown to both cover and improve • Recycle nutrients the soil. They may be used as a living or dead mulch on the • Supply nitrogen (legumes only) soil surface, or they can be tilled into the soil as a “green manure.” Gardeners usually plant cover crops in the fall • Protect soil from rain and wind erosion for winter cover, but some gardeners also use cover crops • Reduce runoff and water erosion as part of a summer rotation. Cover crops can be any type • Reduce leaching of nutrients of plant but are generally grasses (including cereal grains), • Suppress weeds legumes, or grass/legume mixtures. Some non-legume • Break up compacted soil broadleaf plants can also be used. • Attract beneficial insects by providing pollen and nectar Why Grow a Cover Crop? • Reduce disease and nematodes Cover crops serve the gardener in many ways, typically by Cold-hardy cover crops protecting and improving the soil, suppressing weeds, and Gardeners usually plant these species in the fall as winter attracting beneficial insects (Table 1). -
Alfalfa and Cool-Season Clovers1 A
SS-AGR-173 Alfalfa and Cool-Season Clovers1 A. R. Blount and R. L. Stanley2 Cool-season legumes make the most of their growth in the observers and are environmentally acceptable as a source winter and spring when temperatures are too low for warm- of “natural,” slow-release nitrogen to reduce the potential of season forages to grow. Their growth is highly dependent nitrates in groundwater. on soil moisture, and therefore they can be grown in areas of the state where rainfall is sufficient to maintain good soil Alfalfa moisture—especially on soils with better-than-average soil Alfalfa (Medicago sativa) is popularly known as “the moisture-holding capacity or where irrigation is available queen of forages” and is often the forage by which all and affordable. Use of adapted cool-season legumes in a other forages are judged. It is an erect, upright-growing livestock enterprise can reduce the need for stored feed perennial with many leafy stems arising from large crowns during the winter months when warm-season forages are at the soil surface. Alfalfa (Figure 1) has a long taproot, dormant. Cool-season legumes are high in quality and making it drought tolerant, and it may grow as tall as 24–36 result in improved animal performance, including growth, inches. Although called a warm-season legume by some milk production, conception rate, weaning weight, and (top growth is killed by a freeze), it has been placed with weaning percentages. Legumes have the ability to “fix” the cool-season legumes because in Florida it is planted nitrogen, and those adapted to Florida can add from 50 to at the same time as other cool-season legumes, and its 200 lb per acre of nitrogen for use by grasses growing in best production occurs during the spring. -
Small Broomrape Orobanche Minor
Small broomrape Other common names: none noted USDA symbol: ORMI Orobanche minor ODA rating: B Introduction: Small broomrape is one species in a large group of parasitic plants that attack a wide diversity of host species. Small broomrape is important because it attacks economically important legume crops. Broomrape seeds are like dust and easily contaminate seed lots that are shipped around the world. It is present in the Willamette Valley. Distribution: The first documented site in Oregon was in 1923 in Multnomah County. It can be found in several north Willamette Valley counties wherever clover seed crops are grown. Description: Annual; blooms within a week of plant emergence. Grows 6 to 12 inches tall. Like other parasitic plants, small broomrape lacks chlorophyll. The flower stalk is yellowish-brown, unbranched with a purplish tint. Leaves look like small triangular scales. Flowers pinkish, yellow or white in color and arranged in an elongated spike. Impacts: Upon germination, the first root attaches to and penetrates the root of the host plant, usually clover and other legumes, disrupting nutrients and water transport in the host root system. It has the ability to produce up to 500,000 seeds per plant that are dispersed by wind, tillage equipment, harvesters, commodity movement and animals. An uprooted flowering plant will continue to produce seed. Heavy infestations can cause severe crop damage that may result in nearly total crop failure. It is especially problematic in clover crops where the Orbanche seeds are hard to detect or remove during mechanical cleaning of harvested seed. Biological controls: None identified. Oregon Department of Agriculture Noxious Weed Control Program Photos by Tom Forney, ODA 635 Capitol Street NE Salem, OR 97301 503-986-4621 www.oregon.gov/ODA/programs/Weeds/Pages/Default.aspx Oct 2014 . -
Atlas of the Flora of New England: Fabaceae
Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states. -
FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa
FORAGE LEGUMES Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Minnesota Agricultural Jared J. Goplen Experiment Station Station Bulletin 608-2018 Forage Legumes Clovers, Birdsfoot Trefoil, Cicer Milkvetch, Crownvetch and Alfalfa Craig C. Sheaffer Nancy J. Ehlke Kenneth A. Albrecht Jacob M. Jungers Jared J. Goplen Station Bulletin 608-2018 Minnesota Agricultural Experiment Station University of Minnesota Saint Paul, Minnesota The University of Minnesota shall provide equal access to and opportunity in its programs, facilities, and employment without regard to race, color, creed, religion, national origin, gender, age, marital status, disability, public assistance status, veteran status, sexual orientation, gender identity, or gender expression. Editors Craig Sheaffer, Nancy Ehlke, and Jacob Jungers are agronomists with the University of Minnesota Department of Agronomy and Plant Genetics in the College of Food, Agricultural and Natural Resource Sciences, Saint Paul, Minnesota. Jared Goplen is an Extension Educator in Crops for University of Minnesota Extension. Kenneth Albrecht is an agronomist with the University of Wisonsin’s Department of Agronomy. Acknowledgments This publication is a revision of Minnesota Agricultural Experiment Station Bulletin 597-1993, Forage Le- gumes, orginally issued in 1993 and then updated in 2003 and then again in 2018. The editors of this third edition gratefully acknowledge the contributions of the coauthors of the original publication: Harlan Ford, Neal Martin, Russell Mathison, David Rabas and Douglas Swanson. Publications editing, design and development for the Minnesota Agricultural Experiment Station is by Shelly Gustafson, experiment station communications specialist. Photos are by Dave Hansen or Don Breneman. -
Sweet Clover Poisoning
Beef Cattle Handbook BCH-3415 Product of Extension Beef Cattle Resource Committee Adapted from the Cattle Producer’s Library Sweet Clover Poisoning I. A. Schipper, Veterinarian, North Dakota State University Sweet clover poisoning is a problem of varying frequen- dicoumarin will interfere with the metabolism and syn- cy and intensity in livestock wherever sweet clover thesis of vitamin K. Vitamin K is essential to liver synthe- grows. The toxic compound produced in sweet clover sis of four components (prothrombin, and factors VII, IX, prevents normal blood clotting resulting in hemorrhages X) necessary to the prevention of seepage of blood from and associated symptoms. the circulatory system and to establish the clotting of The preliminary symptoms include stiffness, lame- blood expelled by injury or surgery. ness, dull attitude, and swellings beneath the skin Vitamin K1 is found in green plants such as alfalfa. (hematomas or blood clots) over all parts of the body, Vitamin K2 is formed by the microflora of the digestive but primarily at the hips, brisket, or neck. The mucous tract. These two sources are normally sufficient to pro- membranes may be pale—indicating that anemia exists. vide the requirements of cattle. Menadione (vitamin K3) Hemorrhage decreases the quantity of red blood cells is a synthetic compound that may be used as a feed available to transport oxygen to the body and carbon supplement or injectable product to counteract vitamin dioxide to the lungs. This results in varying degrees of K deficiency. respiratory stress, depending on the amount of red Not all moldy sweet clover is toxic, and the absence blood cell loss and physical exertion of the animal. -
Biological Activities of Trifolium Pratense: a Review
Acta Scientific Pharmaceutical Sciences (ISSN: 2581-5423) Volume 3 Issue 9 September 2019 Review Article Biological Activities of Trifolium Pratense: A Review Atiq-ur-Rehman1,2* 1University College of Pharmacy, University of the Punjab, Lahore, Pakistan 2Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan *Corresponding Author: Atiq-ur-Rehman, Faculty of Pharmacy, The University of Lahore and University College of Pharmacy, University of the Punjab, Lahore Pakistan. Received: July 25, 2019; Published: August 16, 2019 Abstract Trifolium pratense is an important plant of the Legume family. It has drawn the attention of several researchers around the globe. This plant was traditionally used as forage or as soil improver is now seen as the plant containing vast therapeutic activities which include anti-oxidative, anti-cancer, neuroprotective, anti-hyperglycemic, anti-hyperlipidemic, osteoprotective and cardio protective properties. The therapeutic properties are shown in various in vivo, in vitro and ex vivo experiments. The review highlights the Tri- forium pratense basic knowledge its extraction, components and their actions, major activities possessed by plant along with their mechanisms. Trifolium plant is mainmajorly used in menopausal women to reduce the discomfort and menopausal effects such as moderate cancer causing cells. Various strategies were applied and the plant is still under study for further development in its effects. hot flushes and increase in breast density. The plant is also majorly responsible for preventing breast cancer and other apoptosis of Keywords: Trifolium Pratense; Cancer; Trifolium Introduction Family The genus Trifolium comprises of almost 240 species each re- It belongs to the family Fabeaceae leguminosae. markable for its agricultural and therapeutic effects. -
The Biology of Trifolium Repens L. (White Clover)
The Biology of Trifolium repens L. (White Clover) Photo: Mary-Anne Lattimore, NSW Agriculture, Yanco Version 2: October 2008 This document provides an overview of baseline biological information relevant to risk assessment of genetically modified forms of the species that may be released into the Australian environment. For information on the Australian Government Office of the Gene Technology Regulator visit <http://www.ogtr.gov.au> The Biology of Trifolium repens L. (white clover) Office of the Gene Technology Regulator TABLE OF CONTENTS PREAMBLE ...........................................................................................................................................1 SECTION 1 TAXONOMY .............................................................................................................1 SECTION 2 ORIGIN AND CULTIVATION ...............................................................................3 2.1 CENTRE OF DIVERSITY AND DOMESTICATION .................................................................................. 3 2.2 COMMERCIAL USES ......................................................................................................................... 3 2.3 CULTIVATION IN AUSTRALIA .......................................................................................................... 4 2.3.1 Commercial propagation ..................................................................................................5 2.3.2 Scale of cultivation ...........................................................................................................5 -
Oregon City Nuisance Plant List
Nuisance Plant List City of Oregon City 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Acer platanoides Norway Maple Acroptilon repens Russian knapweed Aegopodium podagraria and variegated varieties Goutweed Agropyron repens Quack grass Ailanthus altissima Tree-of-heaven Alliaria officinalis Garlic Mustard Alopecuris pratensis Meadow foxtail Anthoxanthum odoratum Sweet vernalgrass Arctium minus Common burdock Arrhenatherum elatius Tall oatgrass Bambusa sp. Bamboo Betula pendula lacinata Cutleaf birch Brachypodium sylvaticum False brome Bromus diandrus Ripgut Bromus hordeaceus Soft brome Bromus inermis Smooth brome-grasses Bromus japonicus Japanese brome-grass Bromus sterilis Poverty grass Bromus tectorum Cheatgrass Buddleia davidii (except cultivars and varieties) Butterfly bush Callitriche stagnalis Pond water starwort Cardaria draba Hoary cress Carduus acanthoides Plumeless thistle Carduus nutans Musk thistle Carduus pycnocephalus Italian thistle Carduus tenufolius Slender flowered thistle Centaurea biebersteinii Spotted knapweed Centaurea diffusa Diffuse knapweed Centaurea jacea Brown knapweed Centaurea pratensis Meadow knapweed Chelidonium majou Lesser Celandine Chicorum intybus Chicory Chondrilla juncea Rush skeletonweed Cirsium arvense Canada Thistle Cirsium vulgare Common Thistle Clematis ligusticifolia Western Clematis Clematis vitalba Traveler’s Joy Conium maculatum Poison-hemlock Convolvulus arvensis Field Morning-glory 1 Nuisance Plant List -
Vascular Plant Inventory of Mount Rainier National Park
National Park Service U.S. Department of the Interior Natural Resource Program Center Vascular Plant Inventory of Mount Rainier National Park Natural Resource Technical Report NPS/NCCN/NRTR—2010/347 ON THE COVER Mount Rainier and meadow courtesy of 2007 Mount Rainier National Park Vegetation Crew Vascular Plant Inventory of Mount Rainier National Park Natural Resource Technical Report NPS/NCCN/NRTR—2010/347 Regina M. Rochefort North Cascades National Park Service Complex 810 State Route 20 Sedro-Woolley, Washington 98284 June 2010 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data. -
Forage Crop Production - Masahiko Hirata
THE ROLE OF FOOD, AGRICULTURE, FORESTRY AND FISHERIES IN HUMAN NUTRITION – Vol. I - Forage Crop Production - Masahiko Hirata FORAGE CROP PRODUCTION Masahiko Hirata Faculty of Agriculture, Miyazaki University, Miyazaki, Japan Keywords: agricultural revolution, alternative agriculture, bio-diversity, cover crop, fallow, forage crop, grass, green manure, hay, legume, mixed farming, root crop, rotation system, seed industry, silage. Contents 1. Introduction 2. Early Recognition of the Importance of Forage 3. Early Use of Forage Crops 4. The Dark Ages 5. The Great Progress 5.1. The European Agricultural Revolution 5.2. The Contribution of Forage Crops to the Development of Mixed Farming 5.3. The Dispersion of Forage Crops throughout Europe 5.4. Global Dispersion of Forage Crops: the First Stage 5.4.1. Temperate Grasses 5.4.2. Temperate Legumes 5.4.3. Tropical and Subtropical Grasses 5.4.4. Tropical and Subtropical Legumes 5.5. The Rise of the Forage Seed Industry 6. The Modern Era 6.1. The Development of Plant Improvement 6.1.1. Temperate Forages in Great Britain 6.1.2. Buffelgrass in Australia 6.1.3. Bermudagrass in USA 6.1.4. Wheatgrasses and Wildryes in the USA and Canada 6.2. The Growth of the Forage Seed Industry 6.3. Global Dispersion of Forage Crops: the Second Stage 6.3.1. Temperate Grasses 6.3.2. Tropical and Subtropical Grasses 6.3.3. Tropical and Subtropical Legumes 6.4. ForagesUNESCO in the Growing Industrialized – Agriculture EOLSS 6.5. Forages in the Rise and Growth of Environmental Issues 7. The Future SAMPLE CHAPTERS Acknowledgements Glossary Bibliography Biographical Sketch Summary The history of forage crops can be traced back to about 1300 BC when alfalfa was cultivated in Turkey. -
Trifolium Douglasii House Douglas' Clover Fabaceae - Pea Family Status: State Endangered, BLM Sensitive, USFS Sensitive Rank: G2 / S1
Trifolium douglasii House Douglas' clover Fabaceae - pea family status: State Endangered, BLM sensitive, USFS sensitive rank: G2 / S1 General Description: Nonrhizomatous (occasionally reported to be rhizomatous) perennial from a thick taproot, usually hairless; stems generally several, erect, simple or with a few branches, 4-8 dm tall. Leaves compound; leaflets 3, linear to oblong-elliptic, 4-10 cm long, the margins very finely serrated to spiny. Petioles usually shorter than the stipules. Stipules oblong-lanceolate, 2-7 cm long, adnate to the petiole most of their length, the margins finely serrated. Floral Characteristics: Heads axillary as well as terminal and long-pedunculate, spherical to ovoid-cylindric, about 3 cm thick, as long to nearly twice as long, with 50-200 flowers, and not subtended by an involucre. Flowers erect, spreading, or the lowest reflexed, 14-20 mm long, reddish purple. Calyx 1/2 Illustration by Jeanne R. Janish, to 3/5 as long as the corolla, hairless, the tube with 17-25 ©1961 University of Washington nerves. Upper pair of calyx teeth broader than the lower 3 and Press usually conspicuously curved downward. Sinuses between the lateral teeth deeper than that between the upper pair. Blooms June to July. Fruits: Pods usually 1-seeded. Identification Tips: Distinguished from other species of Trifolium by its perennial habit, flowers lacking a true involucre, 3 leaflets, and hairless calyx tube generally with 20 prominent nerves. The plants are usually over 5 dm tall, and the flower heads are elongate, usually 3-5 cm long but not as thick. Range: Historically from Spokane Co., WA, to Baker Co., OR, east to adjacent ID.