APP201363 Application.Pdf(PDF, 816
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Patrones De Riqueza Y Distribución De La Flora Vascular En La Cordillera De
Patrones de riqueza y distribución de la flora vascular en la Cordillera de la Costa de Valdivia, Osorno y Llanquihue, Chile Distribution and species richness patterns of the vascular flora in the Coastal Range of Valdivia, Osorno and Llanquihue, Chile CECILIA SMITH-RAMÍREZ, PATRICIO PLISCOFF, SEBASTIÁN TEILLIER Y ELIZABETH BARRERA Abstract This study assesses the patterns of vascular plant species richness and their distri- bution in the Coastal Range of Valdivia, Osorno and Llanquihue, with the aim of proposing conservation priorities, based on areas with high floristic singularity and richness. The analysis considered or field collections (March 2000, October 2001 and January 2002), data from the literature, and records in the electronic database of the Flora of Chile. We estimated a total of 576 vascular plant species for the Coastal Range in the three provinces studied. Each species was assigned a hypothetical distribution area, based on its association with altitude and habitat types, inferred from the literature and verified on the ground. Distribution maps for each species were generated with GIS. Two types of maps were produces: a his- torical reconstruction based on the assumption of a continuous forest cover, and a contemporary one considering the present land cover types, resulting from human activities. We identified forest types sampled that differed greatly from other regional forest types or represent distributional limits. As a first priority, we recommend the conservation of remnant forests in the eastern slopes of the Coastal Range, because they contain a higher species richness than the western slopes. In second place, we recommend that new protected areas should be designed to include a broad alti- tudinal gradient on both slopes of the Coastal Range, because different altitudes harbor different plant species assemblages. -
Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects. -
Bark and Cambial Variation in the Genus Clematis (Ranunculaceae) in Taiwan
Bark and Cambial Variation in the Genus Clematis (Ranunculaceae) in Taiwan Sheng-Zehn Yang ( [email protected] ) National Pingtung University of Science and Technology https://orcid.org/0000-0001-8648-7507 Po-Hao Chen Graduate Institute of bioresources Chien-Fan Chen Taiwan Forestry Research Institute Original Article Keywords: cogwheel-like rhytidome, ray indentation, wedge-like phloem, Ranunculaceae, vessel restriction Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-89689/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/21 Abstract Background Studies on the anatomical characteristics of stems of Taiwanese species from the Clematis genus (Ranunculaceae) are scarce. The aim of this study was to investigate and compare cambial variation in stems of 22 Clematis species. Results The rhytidome (outer bark) was either cogwheel-like or continuous, except for in the species Clematis tashiroi. Key features of the genus were eccentric to elliptical or polygonous-lobed stems, wedge-like phloem, wedge-like rays, indentations in the axial parenchyma, and ray dilatation. The cortical sclerenchyma bers were embedded in the phloem rays with approximately 23% of the Clematis species. Both C. psilandra and C. tsugetorum had restricted vessels. There were three vascular bundle patterns, with approximately 27% of the Clematis species in Taiwan having 12 vascular bundles. The vessels dispersed throughout the stem were semi-ring-porous in most species, but were ring-porous in others. No species had diffuse-porous vessels. Only two species had a primary xylem ring located around the pith. -
Written Report on a Joint AGS/Merlin Trust Funded Trip Charlotte Reynolds Merlin 607 30Th November – 16Th December 2013
Alpine Adventures in Argentina: In search of Violas Written report on a Joint AGS/Merlin Trust Funded Trip Charlotte Reynolds Merlin 607 30th November – 16th December 2013 Charlotte Reynolds 1 Contents Introduction - page 3 Day by day log - page 4 Monday 2nd December – Laguna Blanca - page 4 Tuesday 3rd December – Laguna del Burro & Rahue Pass - page 6 Wednesday 4th December – Primeros Pinos - page 8 Thursday 5th December - Volcan Batea Mahuida - page 9 Friday 6th December - Rio Litran - page 11 Saturday 7th December – Copahue - page 12 Sunday 8th December – Salta del Agrio & Cascada del Agrio - page 13 Monday 9th December - Cordon del Cajon Chico - page 14 Tuesday 10th December - Chos Malal - page 15 Wednesday 11th December – Tromen National Park - page 15 Thursday 12th December - Cerro Wayle -page 16 Friday 13th December - Lagunas Epu Lauquen - page 17 Plant family index – page 19 Violas - page 19 Trees and shrubs – page 23 Cushions - page 33 Bulbs - page 38 Orchids - page 42 Cactus – page 43 Wetland - page 45 Perennials – page 50 Conclusion – page 64 Charlotte Reynolds 2 Introduction & Background The Alpine Garden Society ran this tour to Northern Patagonia led by Martin Sheader, an expert in flora of the area. Patagonia is a region in the far south of South America which is divided between Chile and Argentina. We toured the Argentine Patagonian province Neuquen travelling around Zapala, Villa Pehuenia, Caviahue and Chos Malal. The landscape in these areas was dry, grassland steppes in the main. However we also saw a wide-range of micro-habitats, due to the different localised conditions. For instance, boggy wetlands caused by snow melt, shady cliff faces, Auracaria forest floors, rocky crevices and pumice-covered cliffs to name a few. -
Ontogenetic Studies on the Determination of the Apical Meristem In
Ontogenetic studies on the determination of the apical meristem in racemose inflorescences D i s s e r t a t i o n Zur Erlangung des Grades Doktor der Naturwissenschaften Am Fachbereich Biologie Der Johannes Gutenberg-Universität Mainz Kester Bull-Hereñu geb. am 19.07.1979 in Santiago Mainz, 2010 CONTENTS SUMMARY OF THE THESIS............................................................................................ 1 ZUSAMMENFASSUNG.................................................................................................. 2 1 GENERAL INTRODUCTION......................................................................................... 3 1.1 Historical treatment of the terminal flower production in inflorescences....... 3 1.2 Structural understanding of the TF................................................................... 4 1.3 Parallel evolution of the character states referring the TF............................... 5 1.4 Matter of the thesis.......................................................................................... 6 2 DEVELOPMENTAL CONDITIONS FOR TERMINAL FLOWER PRODUCTION IN APIOID UMBELLETS...................................................................................................... 7 2.1 Introduction...................................................................................................... 7 2.2 Materials and Methods..................................................................................... 9 2.2.1 Plant material.................................................................................... -
Redalyc.Identification of Isoquinoline Alkaloids from Berberis Microphylla
Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MANOSALVA, Loreto; MUTIS, Ana; DÍAZ, Juan; URZÚA, Alejandro; FAJARDO, Víctor; QUIROZ, Andrés Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 13, núm. 4, 2014, pp. 324-335 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85631435002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2014 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13 (4): 324 - 335 ISSN 0717 7917 www.blacpma.usach.cl Artículo Original | Original Article In memorian Professor Luis Astudillo, Universidad de Talca, Chile Identification of isoquinoline alkaloids from Berberis microphylla by HPLC ESI-MS/MS [Identificación de alcaloides isoquinolínicos en Berberis microphylla G. Forst mediante CLAE IES-MS/MS] Loreto MANOSALVA1, Ana MUTIS2, Juan DÍAZ3, Alejandro URZÚA4, Víctor FAJARDO5 & Andrés QUIROZ2 1Doctorado en Ciencias de Recursos Naturales; 2Laboratorio de Ecología Química, Departamento de Ciencias Químicas y Recursos Naturales; 3Laboratory of Mass Spectrometry, Scientific and Technological Bioresource Nucleus (Bioren), Universidad de La Frontera, Temuco, Chile 4Laboratory of Chemical Ecology, Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile 5Chile Laboratorio de Productos Naturales, Universidad de Magallanes, Punta Arenas, Chile Contactos | Contacts: Andrés QUIROZ - E-mail address: [email protected] Abstract: Berberis microphylla (G. -
Literaturverzeichnis
Literaturverzeichnis Abaimov, A.P., 2010: Geographical Distribution and Ackerly, D.D., 2009: Evolution, origin and age of Genetics of Siberian Larch Species. In Osawa, A., line ages in the Californian and Mediterranean flo- Zyryanova, O.A., Matsuura, Y., Kajimoto, T. & ras. Journal of Biogeography 36, 1221–1233. Wein, R.W. (eds.), Permafrost Ecosystems. Sibe- Acocks, J.P.H., 1988: Veld Types of South Africa. 3rd rian Larch Forests. Ecological Studies 209, 41–58. Edition. Botanical Research Institute, Pretoria, Abbadie, L., Gignoux, J., Le Roux, X. & Lepage, M. 146 pp. (eds.), 2006: Lamto. Structure, Functioning, and Adam, P., 1990: Saltmarsh Ecology. Cambridge Uni- Dynamics of a Savanna Ecosystem. Ecological Stu- versity Press. Cambridge, 461 pp. dies 179, 415 pp. Adam, P., 1994: Australian Rainforests. Oxford Bio- Abbott, R.J. & Brochmann, C., 2003: History and geography Series No. 6 (Oxford University Press), evolution of the arctic flora: in the footsteps of Eric 308 pp. Hultén. Molecular Ecology 12, 299–313. Adam, P., 1994: Saltmarsh and mangrove. In Groves, Abbott, R.J. & Comes, H.P., 2004: Evolution in the R.H. (ed.), Australian Vegetation. 2nd Edition. Arctic: a phylogeographic analysis of the circu- Cambridge University Press, Melbourne, pp. marctic plant Saxifraga oppositifolia (Purple Saxi- 395–435. frage). New Phytologist 161, 211–224. Adame, M.F., Neil, D., Wright, S.F. & Lovelock, C.E., Abbott, R.J., Chapman, H.M., Crawford, R.M.M. & 2010: Sedimentation within and among mangrove Forbes, D.G., 1995: Molecular diversity and deri- forests along a gradient of geomorphological set- vations of populations of Silene acaulis and Saxi- tings. -
Plant Invasions in Rhode Island Riparian Zones ✴Paleostratigraphy in B Y S U Z a N N E M
Volume 12 • Number 2 • November 2005 What’s Inside… Plant Invasions in Rhode Island Riparian Zones ✴Paleostratigraphy in B Y S U Z A N N E M . L U S S I E R A N D S A R A N . D A S I L V A the Campus Freezer ✴Wandering Hooded Riparian zones opportunistic, they are often the first Methods Seals are the corridors plants to colonize disturbed patches of Selecting the Study Sites ✴Bringing Watershed of land adjacent soil and forest edges. Several research- Health and Land to streams, riv- ers have found that riparian zones sup- By using hydrographical and land Use History into the use/land cover data from the Rhode Classroom ers, and other port a greater abundance and diversity Island Geographic Information System ✴ surface waters, of invasive plants than other habitats The Paleozoology (RIGIS, http://www.edc.uri.edu/rigis/), Collection of the which serve as (Brown and Peet 2003, Burke and Museum of Natural transitional areas Grime 1996, Gregory et al. 1991). we characterized eight subwatersheds History, Roger Wil- between terres- by their percentage of residential land liams Park trial and aquatic Streams within urban and suburban use (4–59%). Stream corridors were de- ✴“The Invasives Beat” systems. Their watersheds characteristically carry lineated using orthophotos and verified ✴Bioblitz 2005 vegetation pro- higher nutrient loads following storm with on-site latitude/longitude readings ✴and lots more... vides valuable events as the first flush of overland run- from a Geographic Positioning System wildlife habitat off transports nonpoint-source (nutri- (GPS). We also calculated the edge- while enhancing ent) pollution into the stream corridors to-area ratio for each riparian zone to instream habitat (Burke and Grime 1996). -
ABSTRACT ROUNSAVILLE, TODD JEFFREY. Cytogenetics
ABSTRACT ROUNSAVILLE, TODD JEFFREY. Cytogenetics, Micropropagation, and Reproductive Biology of Berberis, Mahonia, and Miscanthus. (Under the direction of Thomas G. Ranney). Research was conducted to determine the genome sizes and ploidy levels for a diverse collection of Berberis L. and Mahonia Nutt. genotypes, develop a micropropagation protocol for Mahonia „Soft Caress‟, and examine the fertility and reproductive pathways among clones of diploid and triploid Miscanthus sinensis Andersson. Berberis and Mahonia are sister taxa within the Berberidaceae with strong potential for ornamental improvement. Propidium iodide (PI) flow cytometric analysis was conducted to determine genome sizes. Mean 1CX genome size varied between the two Mahonia subgenera (Occidentales = 1.17 pg, Orientales = 1.27 pg), while those of Berberis subgenera were similar (Australes = 1.45 pg, Septentrionales = 1.47 pg), but larger than those of Mahonia. Traditional cytology was performed on representative species to calibrate genome sizes with ploidy levels. While the majority of species were determined to be diploid with 2n = 2x = 28, artificially-induced autopolyploid Berberis thunbergii seedlings were confirmed to be tetraploid and an accession of Mahonia nervosa was confirmed to be hexaploid. Genome sizes and ploidy levels are presented for the first time for the majority of taxa sampled and will serve as a resource for plant breeders, ecologists, and systematists. Mahonia „Soft Caress‟ is a unique new cultivar exhibiting a compact form and delicate evergreen leaves, though propagation can be a limiting factor for production. Micropropagation protocols for M. „Soft Caress‟ were developed to expedite multiplication and serve as a foundation for future work with other Mahonia taxa. -
The Vegetation of Whale Island. Part II. Species List of Vascular Plants, By
Tane (1971) 17:39-46 39 THE VEGETATION OF WHALE ISLAND PART II. SPECIES LIST OF VASCULAR PLANTS by B.S. Parris* ABSTRACT A list of vascular plants found on Whale Island is presented together with the abundance of each species and the plant communities in which it occurs. INTRODUCTION This list was drawn up during the July visit and only a few species were added on the August visit. Further collections at more favourable seasons would probably add more species, particularly adventive annuals, to the list. The plant communities are as in Parris et al. (1971). Specimens of most species are lodged in the herbarium of the Auckland Institute and Museum. Nomenclature is as follows: indigenous dicotyledons and ferns, 'Flora of New Zealand' Vol. 1 by H.H. Allan (1961); indigenous monocotyledons, 'Flora of New Zealand' Vol. 2 by L.B. Moore and E. Edgar (1970); adventive species, 'Handbook of the Naturalised flora of New Zealand' by H.H. Allan (1941) and 'A Guide to the Identification of Weeds and Clovers' by A.J. Healy (1970). LIST OF SPECIES * adventive species Psilopsida Psilotum nudum locally abundant under kanuka, occurs under pohutukawa Lycopsida Lycopodium cernuum one locality Sulphur Valley L. varium Pa Hill Filicopsida Schizaeaceae Schizaea fistulosa Sulphur Valley Hymenophyllaceae Hymenophyllum sanguinolentum three localities, in forest Dicksoniaceae Dicksonia squarrosa local - forest and grassland * Plant Diseases Division, D.S.I.R. Auckland. 40 Cyatheaceae Cyathea dealbata common - forest; local - grassland C. medullaris common in forest & grassland Polypodiaceae Pyrrosia serpens abundant throughout Phymatodes diversifolium widespread but not common Thelypteridaceae Thelypteris pennigera local in forest Dennstaedtiaceae Hypolepis tenuifolia locally abundant, kanuka Pteridaceae Paesia scaberula common, more so than bracken Histiopteris incisa locally abundant, kanuka and grassland Pteridium aquilinum local, grassland Pteris tremula abundant throughout P. -
Flora-Lab-Manual.Pdf
LabLab MManualanual ttoo tthehe Jane Mygatt Juliana Medeiros Flora of New Mexico Lab Manual to the Flora of New Mexico Jane Mygatt Juliana Medeiros University of New Mexico Herbarium Museum of Southwestern Biology MSC03 2020 1 University of New Mexico Albuquerque, NM, USA 87131-0001 October 2009 Contents page Introduction VI Acknowledgments VI Seed Plant Phylogeny 1 Timeline for the Evolution of Seed Plants 2 Non-fl owering Seed Plants 3 Order Gnetales Ephedraceae 4 Order (ungrouped) The Conifers Cupressaceae 5 Pinaceae 8 Field Trips 13 Sandia Crest 14 Las Huertas Canyon 20 Sevilleta 24 West Mesa 30 Rio Grande Bosque 34 Flowering Seed Plants- The Monocots 40 Order Alistmatales Lemnaceae 41 Order Asparagales Iridaceae 42 Orchidaceae 43 Order Commelinales Commelinaceae 45 Order Liliales Liliaceae 46 Order Poales Cyperaceae 47 Juncaceae 49 Poaceae 50 Typhaceae 53 Flowering Seed Plants- The Eudicots 54 Order (ungrouped) Nymphaeaceae 55 Order Proteales Platanaceae 56 Order Ranunculales Berberidaceae 57 Papaveraceae 58 Ranunculaceae 59 III page Core Eudicots 61 Saxifragales Crassulaceae 62 Saxifragaceae 63 Rosids Order Zygophyllales Zygophyllaceae 64 Rosid I Order Cucurbitales Cucurbitaceae 65 Order Fabales Fabaceae 66 Order Fagales Betulaceae 69 Fagaceae 70 Juglandaceae 71 Order Malpighiales Euphorbiaceae 72 Linaceae 73 Salicaceae 74 Violaceae 75 Order Rosales Elaeagnaceae 76 Rosaceae 77 Ulmaceae 81 Rosid II Order Brassicales Brassicaceae 82 Capparaceae 84 Order Geraniales Geraniaceae 85 Order Malvales Malvaceae 86 Order Myrtales Onagraceae -
Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia
molecules Article Polyphenol Composition and (Bio)Activity of Berberis Species and Wild Strawberry from the Argentinean Patagonia Melina F. Chamorro 1, Gabriela Reiner 1, Cristina Theoduloz 2, Ana Ladio 1, Guillermo Schmeda-Hirschmann 3 , Sergio Gómez-Alonso 4 and Felipe Jiménez-Aspee 5,* 1 Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche 8400, Río Negro, Argentina 2 Laboratorio de Cultivo Celular, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Region del Maule, Chile 3 Laboratorio de Química de Productos Naturales, Instituto de Química de Recursos Naturales, Universidad de Talca, Talca 3460000, Region del Maule, Chile 4 Instituto Regional de Investigación Científica Aplicada, Departamento de Química Analítica y Tecnología de Alimentos, Universidad Castilla-La Mancha, 13005 Ciudad Real, Spain 5 Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 346000, Región del Maule, Chile * Correspondence: [email protected]; Tel.: +56-71-2200-291 Received: 5 August 2019; Accepted: 2 September 2019; Published: 12 September 2019 Abstract: The Argentinean Patagonia berries Berberis microphylla, Berberis darwinii, and Fragaria chiloensis ssp. chiloensis f. patagonica were investigated for their polyphenol content and composition by means of liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry. The in vitro antioxidant activity and inhibition of metabolic syndrome-associated enzymes (α-glucosidase, α-amylase, and lipase) of the fruit extracts was assessed. The most complex polyphenol profile was found in the Berberis samples, with 10 anthocyanins, 27 hydroxycinnamic acids, 3 proanthocyanidins, 2 flavan-3-ol, and 22 flavonols. Fragaria presented four anthocyanins, nine ellagitannins, two proanthocyanidin dimers, one flavan-3-ol, and five flavonols.